pip install -r requirements.txt import streamlit as st from PIL import Image import numpy as np import cv2 from tensorflow.keras.models import load_model import os # Ensure the 'upload' directory exists upload_folder = 'uploads' if not os.path.exists(upload_folder): os.makedirs(upload_folder) # Load the pre-trained model model = load_model("gender_detector.keras") def get_result(img_path): img = cv2.imread(img_path) img_resize = cv2.resize(img, (224, 224)) img_resize = np.array(img_resize, dtype=np.float32) img_resize /= 255.0 img_input = img_resize.reshape(1, 224, 224, 3) prediction = model.predict(img_input) if prediction[0][0] < 0.5: return "He is a Men." else: return "She is a Women." # Set the title of the app st.title('Image Input and Display') # Upload image uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # If an image is uploaded, display it along with text if uploaded_image is not None: # Open the image using PIL # output = get_result(uploaded_image) image = Image.open(uploaded_image) image_path = os.path.join(upload_folder, uploaded_image.name) image.save(image_path) output = get_result(image_path) # Display the image st.image(image, caption= output, use_container_width=True)