Himanshu2003 commited on
Commit
01add57
·
verified ·
1 Parent(s): 49efd78

create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import numpy as np
4
+ import cv2
5
+ from tensorflow.keras.models import load_model
6
+ import os
7
+ # Ensure the 'upload' directory exists
8
+ upload_folder = 'uploads'
9
+ if not os.path.exists(upload_folder):
10
+ os.makedirs(upload_folder)
11
+
12
+ # Load the pre-trained model
13
+ model = load_model("gender_detector.keras")
14
+
15
+ def get_result(img_path):
16
+ img = cv2.imread(img_path)
17
+ img_resize = cv2.resize(img, (224, 224))
18
+ img_resize = np.array(img_resize, dtype=np.float32)
19
+ img_resize /= 255.0
20
+ img_input = img_resize.reshape(1, 224, 224, 3)
21
+ prediction = model.predict(img_input)
22
+
23
+ if prediction[0][0] < 0.5:
24
+ return "He is a Men."
25
+ else:
26
+ return "She is a Women."
27
+
28
+
29
+ # Set the title of the app
30
+ st.title('Image Input and Display')
31
+
32
+ # Upload image
33
+ uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
34
+
35
+ # If an image is uploaded, display it along with text
36
+ if uploaded_image is not None:
37
+ # Open the image using PIL
38
+
39
+ # output = get_result(uploaded_image)
40
+
41
+ image = Image.open(uploaded_image)
42
+
43
+ image_path = os.path.join(upload_folder, uploaded_image.name)
44
+ image.save(image_path)
45
+ output = get_result(image_path)
46
+ # Display the image
47
+ st.image(image, caption= output, use_container_width=True)