diff --git "a/cat_vs_dog.ipynb" "b/cat_vs_dog.ipynb" new file mode 100644--- /dev/null +++ "b/cat_vs_dog.ipynb" @@ -0,0 +1,6579 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "code", + "source": [ + "import os\n", + "import imghdr\n", + "import cv2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.utils.class_weight import compute_class_weight\n", + "from keras import Sequential\n", + "from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, BatchNormalization, Dropout\n", + "from keras.applications.resnet50 import ResNet50\n", + "from keras.applications.vgg16 import VGG16\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau\n", + "from sklearn.metrics import confusion_matrix, classification_report\n", + "from tqdm import tqdm\n", + "from google.colab import drive" + ], + "metadata": { + "id": "Vp4mKNLH05vA" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "98FmA3I3wUzG", + "outputId": "98ec5de6-336e-4a6d-86fe-5b5fca77b304" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Dataset URL: https://www.kaggle.com/datasets/tongpython/cat-and-dog\n", + "License(s): CC0-1.0\n", + "Downloading cat-and-dog.zip to /content\n", + "100% 217M/218M [00:01<00:00, 158MB/s]\n", + "100% 218M/218M [00:01<00:00, 150MB/s]\n" + ] + } + ], + "source": [ + "!kaggle datasets download tongpython/cat-and-dog" + ] + }, + { + "cell_type": "code", + "source": [ + "!unzip cat-and-dog.zip\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l8jszEGi0ct6", + "outputId": "c896d435-e16e-4169-c47c-1f4ca310f9bc" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", + " inflating: training_set/training_set/cats/cat.3704.jpg \n", + " inflating: training_set/training_set/cats/cat.3705.jpg \n", + " inflating: training_set/training_set/cats/cat.3706.jpg \n", + " inflating: training_set/training_set/cats/cat.3707.jpg \n", + " inflating: training_set/training_set/cats/cat.3708.jpg \n", + " inflating: training_set/training_set/cats/cat.3709.jpg \n", + " inflating: training_set/training_set/cats/cat.371.jpg \n", + " inflating: training_set/training_set/cats/cat.3710.jpg \n", + " inflating: training_set/training_set/cats/cat.3711.jpg \n", + " inflating: training_set/training_set/cats/cat.3712.jpg \n", + " inflating: training_set/training_set/cats/cat.3713.jpg \n", + " inflating: training_set/training_set/cats/cat.3714.jpg \n", + " inflating: training_set/training_set/cats/cat.3715.jpg \n", + " inflating: training_set/training_set/cats/cat.3716.jpg \n", + " inflating: training_set/training_set/cats/cat.3717.jpg \n", + " inflating: training_set/training_set/cats/cat.3718.jpg \n", + " inflating: training_set/training_set/cats/cat.3719.jpg \n", + " inflating: training_set/training_set/cats/cat.372.jpg \n", + " inflating: training_set/training_set/cats/cat.3720.jpg \n", + " inflating: training_set/training_set/cats/cat.3721.jpg \n", + " inflating: training_set/training_set/cats/cat.3722.jpg \n", + " inflating: training_set/training_set/cats/cat.3723.jpg \n", + " inflating: training_set/training_set/cats/cat.3724.jpg \n", + " inflating: training_set/training_set/cats/cat.3725.jpg \n", + " inflating: training_set/training_set/cats/cat.3726.jpg \n", + " inflating: training_set/training_set/cats/cat.3727.jpg \n", + " inflating: training_set/training_set/cats/cat.3728.jpg \n", + " inflating: training_set/training_set/cats/cat.3729.jpg \n", + " inflating: training_set/training_set/cats/cat.373.jpg \n", + " inflating: training_set/training_set/cats/cat.3730.jpg \n", + " inflating: training_set/training_set/cats/cat.3731.jpg \n", + " inflating: training_set/training_set/cats/cat.3732.jpg \n", + " inflating: training_set/training_set/cats/cat.3733.jpg \n", + " inflating: training_set/training_set/cats/cat.3734.jpg \n", + " inflating: training_set/training_set/cats/cat.3735.jpg \n", + " inflating: training_set/training_set/cats/cat.3736.jpg \n", + " inflating: training_set/training_set/cats/cat.3737.jpg \n", + " inflating: training_set/training_set/cats/cat.3738.jpg \n", + " inflating: training_set/training_set/cats/cat.3739.jpg \n", + " inflating: training_set/training_set/cats/cat.374.jpg \n", + " inflating: training_set/training_set/cats/cat.3740.jpg \n", + " inflating: training_set/training_set/cats/cat.3741.jpg \n", + " inflating: training_set/training_set/cats/cat.3742.jpg \n", + " inflating: training_set/training_set/cats/cat.3743.jpg \n", + " inflating: training_set/training_set/cats/cat.3744.jpg \n", + " inflating: training_set/training_set/cats/cat.3745.jpg \n", + " inflating: training_set/training_set/cats/cat.3746.jpg \n", + " inflating: training_set/training_set/cats/cat.3747.jpg \n", + " inflating: training_set/training_set/cats/cat.3748.jpg \n", + " inflating: training_set/training_set/cats/cat.3749.jpg \n", + " inflating: training_set/training_set/cats/cat.375.jpg \n", + " inflating: training_set/training_set/cats/cat.3750.jpg \n", + " inflating: training_set/training_set/cats/cat.3751.jpg \n", + " inflating: training_set/training_set/cats/cat.3752.jpg \n", + " inflating: training_set/training_set/cats/cat.3753.jpg \n", + " inflating: training_set/training_set/cats/cat.3754.jpg \n", + " inflating: training_set/training_set/cats/cat.3755.jpg \n", + " inflating: training_set/training_set/cats/cat.3756.jpg \n", + " inflating: training_set/training_set/cats/cat.3757.jpg \n", + " inflating: training_set/training_set/cats/cat.3758.jpg \n", + " inflating: training_set/training_set/cats/cat.3759.jpg \n", + " inflating: training_set/training_set/cats/cat.376.jpg \n", + " inflating: training_set/training_set/cats/cat.3760.jpg \n", + " inflating: training_set/training_set/cats/cat.3761.jpg \n", + " inflating: training_set/training_set/cats/cat.3762.jpg \n", + " inflating: training_set/training_set/cats/cat.3763.jpg \n", + " inflating: training_set/training_set/cats/cat.3764.jpg \n", + " inflating: training_set/training_set/cats/cat.3765.jpg \n", + " inflating: training_set/training_set/cats/cat.3766.jpg \n", + " inflating: training_set/training_set/cats/cat.3767.jpg \n", + " inflating: training_set/training_set/cats/cat.3768.jpg \n", + " inflating: training_set/training_set/cats/cat.3769.jpg \n", + " inflating: training_set/training_set/cats/cat.377.jpg \n", + " inflating: training_set/training_set/cats/cat.3770.jpg \n", + " inflating: training_set/training_set/cats/cat.3771.jpg \n", + " inflating: training_set/training_set/cats/cat.3772.jpg \n", + " inflating: training_set/training_set/cats/cat.3773.jpg \n", + " inflating: training_set/training_set/cats/cat.3774.jpg \n", + " inflating: training_set/training_set/cats/cat.3775.jpg \n", + " inflating: training_set/training_set/cats/cat.3776.jpg \n", + " inflating: training_set/training_set/cats/cat.3777.jpg \n", + " inflating: training_set/training_set/cats/cat.3778.jpg \n", + " inflating: training_set/training_set/cats/cat.3779.jpg \n", + " inflating: training_set/training_set/cats/cat.378.jpg \n", + " inflating: training_set/training_set/cats/cat.3780.jpg \n", + " inflating: training_set/training_set/cats/cat.3781.jpg \n", + " inflating: training_set/training_set/cats/cat.3782.jpg \n", + " inflating: training_set/training_set/cats/cat.3783.jpg \n", + " inflating: training_set/training_set/cats/cat.3784.jpg \n", + " inflating: training_set/training_set/cats/cat.3785.jpg \n", + " inflating: training_set/training_set/cats/cat.3786.jpg \n", + " inflating: training_set/training_set/cats/cat.3787.jpg \n", + " inflating: training_set/training_set/cats/cat.3788.jpg \n", + " inflating: training_set/training_set/cats/cat.3789.jpg \n", + " inflating: training_set/training_set/cats/cat.379.jpg \n", + " inflating: training_set/training_set/cats/cat.3790.jpg \n", + " inflating: training_set/training_set/cats/cat.3791.jpg \n", + " inflating: training_set/training_set/cats/cat.3792.jpg \n", + " inflating: training_set/training_set/cats/cat.3793.jpg \n", + " inflating: training_set/training_set/cats/cat.3794.jpg \n", + " inflating: training_set/training_set/cats/cat.3795.jpg \n", + " inflating: training_set/training_set/cats/cat.3796.jpg \n", + " inflating: training_set/training_set/cats/cat.3797.jpg \n", + " inflating: training_set/training_set/cats/cat.3798.jpg \n", + " inflating: training_set/training_set/cats/cat.3799.jpg \n", + " inflating: training_set/training_set/cats/cat.38.jpg \n", + " inflating: training_set/training_set/cats/cat.380.jpg \n", + " inflating: training_set/training_set/cats/cat.3800.jpg \n", + " inflating: training_set/training_set/cats/cat.3801.jpg \n", + " inflating: training_set/training_set/cats/cat.3802.jpg \n", + " inflating: training_set/training_set/cats/cat.3803.jpg \n", + " inflating: training_set/training_set/cats/cat.3804.jpg \n", + " inflating: training_set/training_set/cats/cat.3805.jpg \n", + " inflating: training_set/training_set/cats/cat.3806.jpg \n", + " inflating: training_set/training_set/cats/cat.3807.jpg \n", + " inflating: training_set/training_set/cats/cat.3808.jpg \n", + " inflating: training_set/training_set/cats/cat.3809.jpg \n", + " inflating: training_set/training_set/cats/cat.381.jpg \n", + " inflating: training_set/training_set/cats/cat.3810.jpg \n", + " inflating: training_set/training_set/cats/cat.3811.jpg \n", + " inflating: training_set/training_set/cats/cat.3812.jpg \n", + " inflating: training_set/training_set/cats/cat.3813.jpg \n", + " inflating: training_set/training_set/cats/cat.3814.jpg \n", + " inflating: training_set/training_set/cats/cat.3815.jpg \n", + " inflating: training_set/training_set/cats/cat.3816.jpg \n", + " inflating: training_set/training_set/cats/cat.3817.jpg \n", + " inflating: training_set/training_set/cats/cat.3818.jpg \n", + " inflating: training_set/training_set/cats/cat.3819.jpg \n", + " inflating: training_set/training_set/cats/cat.382.jpg \n", + " inflating: training_set/training_set/cats/cat.3820.jpg \n", + " inflating: training_set/training_set/cats/cat.3821.jpg \n", + " inflating: training_set/training_set/cats/cat.3822.jpg \n", + " inflating: training_set/training_set/cats/cat.3823.jpg \n", + " inflating: training_set/training_set/cats/cat.3824.jpg \n", + " inflating: training_set/training_set/cats/cat.3825.jpg \n", + " inflating: training_set/training_set/cats/cat.3826.jpg \n", + " inflating: training_set/training_set/cats/cat.3827.jpg \n", + " inflating: training_set/training_set/cats/cat.3828.jpg \n", + " inflating: training_set/training_set/cats/cat.3829.jpg \n", + " inflating: training_set/training_set/cats/cat.383.jpg \n", + " inflating: training_set/training_set/cats/cat.3830.jpg \n", + " inflating: training_set/training_set/cats/cat.3831.jpg \n", + " inflating: training_set/training_set/cats/cat.3832.jpg \n", + " inflating: training_set/training_set/cats/cat.3833.jpg \n", + " inflating: training_set/training_set/cats/cat.3834.jpg \n", + " inflating: training_set/training_set/cats/cat.3835.jpg \n", + " inflating: training_set/training_set/cats/cat.3836.jpg \n", + " inflating: training_set/training_set/cats/cat.3837.jpg \n", + " inflating: training_set/training_set/cats/cat.3838.jpg \n", + " inflating: training_set/training_set/cats/cat.3839.jpg \n", + " inflating: training_set/training_set/cats/cat.384.jpg \n", + " inflating: training_set/training_set/cats/cat.3840.jpg \n", + " inflating: training_set/training_set/cats/cat.3841.jpg \n", + " inflating: training_set/training_set/cats/cat.3842.jpg \n", + " inflating: training_set/training_set/cats/cat.3843.jpg \n", + " inflating: training_set/training_set/cats/cat.3844.jpg \n", + " inflating: training_set/training_set/cats/cat.3845.jpg \n", + " inflating: training_set/training_set/cats/cat.3846.jpg \n", + " inflating: training_set/training_set/cats/cat.3847.jpg \n", + " inflating: training_set/training_set/cats/cat.3848.jpg \n", + " inflating: training_set/training_set/cats/cat.3849.jpg \n", + " inflating: training_set/training_set/cats/cat.385.jpg \n", + " inflating: training_set/training_set/cats/cat.3850.jpg \n", + " inflating: training_set/training_set/cats/cat.3851.jpg \n", + " inflating: training_set/training_set/cats/cat.3852.jpg \n", + " inflating: training_set/training_set/cats/cat.3853.jpg \n", + " inflating: training_set/training_set/cats/cat.3854.jpg \n", + " inflating: training_set/training_set/cats/cat.3855.jpg \n", + " inflating: training_set/training_set/cats/cat.3856.jpg \n", + " inflating: training_set/training_set/cats/cat.3857.jpg \n", + " inflating: training_set/training_set/cats/cat.3858.jpg \n", + " inflating: training_set/training_set/cats/cat.3859.jpg \n", + " inflating: training_set/training_set/cats/cat.386.jpg \n", + " inflating: training_set/training_set/cats/cat.3860.jpg \n", + " inflating: training_set/training_set/cats/cat.3861.jpg \n", + " inflating: training_set/training_set/cats/cat.3862.jpg \n", + " inflating: training_set/training_set/cats/cat.3863.jpg \n", + " inflating: training_set/training_set/cats/cat.3864.jpg \n", + " inflating: training_set/training_set/cats/cat.3865.jpg \n", + " inflating: training_set/training_set/cats/cat.3866.jpg \n", + " inflating: training_set/training_set/cats/cat.3867.jpg \n", + " inflating: training_set/training_set/cats/cat.3868.jpg \n", + " inflating: training_set/training_set/cats/cat.3869.jpg \n", + " inflating: training_set/training_set/cats/cat.387.jpg \n", + " inflating: training_set/training_set/cats/cat.3870.jpg \n", + " inflating: training_set/training_set/cats/cat.3871.jpg \n", + " inflating: training_set/training_set/cats/cat.3872.jpg \n", + " inflating: training_set/training_set/cats/cat.3873.jpg \n", + " inflating: training_set/training_set/cats/cat.3874.jpg \n", + " inflating: training_set/training_set/cats/cat.3875.jpg \n", + " inflating: training_set/training_set/cats/cat.3876.jpg \n", + " inflating: training_set/training_set/cats/cat.3877.jpg \n", + " inflating: training_set/training_set/cats/cat.3878.jpg \n", + " inflating: training_set/training_set/cats/cat.3879.jpg \n", + " inflating: training_set/training_set/cats/cat.388.jpg \n", + " inflating: training_set/training_set/cats/cat.3880.jpg \n", + " inflating: training_set/training_set/cats/cat.3881.jpg \n", + " inflating: training_set/training_set/cats/cat.3882.jpg \n", + " inflating: training_set/training_set/cats/cat.3883.jpg \n", + " inflating: training_set/training_set/cats/cat.3884.jpg \n", + " inflating: training_set/training_set/cats/cat.3885.jpg \n", + " inflating: training_set/training_set/cats/cat.3886.jpg \n", + " inflating: training_set/training_set/cats/cat.3887.jpg \n", + " inflating: training_set/training_set/cats/cat.3888.jpg \n", + " inflating: training_set/training_set/cats/cat.3889.jpg \n", + " inflating: training_set/training_set/cats/cat.389.jpg \n", + " inflating: training_set/training_set/cats/cat.3890.jpg \n", + " inflating: training_set/training_set/cats/cat.3891.jpg \n", + " inflating: training_set/training_set/cats/cat.3892.jpg \n", + " inflating: training_set/training_set/cats/cat.3893.jpg \n", + " inflating: training_set/training_set/cats/cat.3894.jpg \n", + " inflating: training_set/training_set/cats/cat.3895.jpg \n", + " inflating: training_set/training_set/cats/cat.3896.jpg \n", + " inflating: training_set/training_set/cats/cat.3897.jpg \n", + " inflating: training_set/training_set/cats/cat.3898.jpg \n", + " inflating: training_set/training_set/cats/cat.3899.jpg \n", + " inflating: training_set/training_set/cats/cat.39.jpg \n", + " inflating: training_set/training_set/cats/cat.390.jpg \n", + " inflating: training_set/training_set/cats/cat.3900.jpg \n", + " inflating: training_set/training_set/cats/cat.3901.jpg \n", + " inflating: training_set/training_set/cats/cat.3902.jpg \n", + " inflating: training_set/training_set/cats/cat.3903.jpg \n", + " inflating: training_set/training_set/cats/cat.3904.jpg \n", + " inflating: training_set/training_set/cats/cat.3905.jpg \n", + " inflating: training_set/training_set/cats/cat.3906.jpg \n", + " inflating: training_set/training_set/cats/cat.3907.jpg \n", + " inflating: training_set/training_set/cats/cat.3908.jpg \n", + " inflating: training_set/training_set/cats/cat.3909.jpg \n", + " inflating: training_set/training_set/cats/cat.391.jpg \n", + " inflating: training_set/training_set/cats/cat.3910.jpg \n", + " inflating: training_set/training_set/cats/cat.3911.jpg \n", + " inflating: training_set/training_set/cats/cat.3912.jpg \n", + " inflating: training_set/training_set/cats/cat.3913.jpg \n", + " inflating: training_set/training_set/cats/cat.3914.jpg \n", + " inflating: training_set/training_set/cats/cat.3915.jpg \n", + " inflating: training_set/training_set/cats/cat.3916.jpg \n", + " inflating: training_set/training_set/cats/cat.3917.jpg \n", + " inflating: training_set/training_set/cats/cat.3918.jpg \n", + " inflating: training_set/training_set/cats/cat.3919.jpg \n", + " inflating: training_set/training_set/cats/cat.392.jpg \n", + " inflating: training_set/training_set/cats/cat.3920.jpg \n", + " inflating: training_set/training_set/cats/cat.3921.jpg \n", + " inflating: training_set/training_set/cats/cat.3922.jpg \n", + " inflating: training_set/training_set/cats/cat.3923.jpg \n", + " inflating: training_set/training_set/cats/cat.3924.jpg \n", + " inflating: training_set/training_set/cats/cat.3925.jpg \n", + " inflating: training_set/training_set/cats/cat.3926.jpg \n", + " inflating: training_set/training_set/cats/cat.3927.jpg \n", + " inflating: training_set/training_set/cats/cat.3928.jpg \n", + " inflating: training_set/training_set/cats/cat.3929.jpg \n", + " inflating: training_set/training_set/cats/cat.393.jpg \n", + " inflating: training_set/training_set/cats/cat.3930.jpg \n", + " inflating: training_set/training_set/cats/cat.3931.jpg \n", + " inflating: training_set/training_set/cats/cat.3932.jpg \n", + " inflating: training_set/training_set/cats/cat.3933.jpg \n", + " inflating: training_set/training_set/cats/cat.3934.jpg \n", + " inflating: training_set/training_set/cats/cat.3935.jpg \n", + " inflating: training_set/training_set/cats/cat.3936.jpg \n", + " inflating: training_set/training_set/cats/cat.3937.jpg \n", + " inflating: training_set/training_set/cats/cat.3938.jpg \n", + " inflating: training_set/training_set/cats/cat.3939.jpg \n", + " inflating: training_set/training_set/cats/cat.394.jpg \n", + " inflating: training_set/training_set/cats/cat.3940.jpg \n", + " inflating: training_set/training_set/cats/cat.3941.jpg \n", + " inflating: training_set/training_set/cats/cat.3942.jpg \n", + " inflating: training_set/training_set/cats/cat.3943.jpg \n", + " inflating: training_set/training_set/cats/cat.3944.jpg \n", + " inflating: training_set/training_set/cats/cat.3945.jpg \n", + " inflating: training_set/training_set/cats/cat.3946.jpg \n", + " inflating: training_set/training_set/cats/cat.3947.jpg \n", + " inflating: training_set/training_set/cats/cat.3948.jpg \n", + " inflating: training_set/training_set/cats/cat.3949.jpg \n", + " inflating: training_set/training_set/cats/cat.395.jpg \n", + " inflating: training_set/training_set/cats/cat.3950.jpg \n", + " inflating: training_set/training_set/cats/cat.3951.jpg \n", + " inflating: training_set/training_set/cats/cat.3952.jpg \n", + " inflating: training_set/training_set/cats/cat.3953.jpg \n", + " inflating: training_set/training_set/cats/cat.3954.jpg \n", + " inflating: training_set/training_set/cats/cat.3955.jpg \n", + " inflating: training_set/training_set/cats/cat.3956.jpg \n", + " inflating: training_set/training_set/cats/cat.3957.jpg \n", + " inflating: training_set/training_set/cats/cat.3958.jpg \n", + " inflating: training_set/training_set/cats/cat.3959.jpg \n", + " inflating: training_set/training_set/cats/cat.396.jpg \n", + " inflating: training_set/training_set/cats/cat.3960.jpg \n", + " inflating: training_set/training_set/cats/cat.3961.jpg \n", + " inflating: training_set/training_set/cats/cat.3962.jpg \n", + " inflating: training_set/training_set/cats/cat.3963.jpg \n", + " inflating: training_set/training_set/cats/cat.3964.jpg \n", + " inflating: training_set/training_set/cats/cat.3965.jpg \n", + " inflating: training_set/training_set/cats/cat.3966.jpg \n", + " inflating: training_set/training_set/cats/cat.3967.jpg \n", + " inflating: training_set/training_set/cats/cat.3968.jpg \n", + " inflating: training_set/training_set/cats/cat.3969.jpg \n", + " inflating: training_set/training_set/cats/cat.397.jpg \n", + " inflating: training_set/training_set/cats/cat.3970.jpg \n", + " inflating: training_set/training_set/cats/cat.3971.jpg \n", + " inflating: training_set/training_set/cats/cat.3972.jpg \n", + " inflating: training_set/training_set/cats/cat.3973.jpg \n", + " inflating: training_set/training_set/cats/cat.3974.jpg \n", + " inflating: training_set/training_set/cats/cat.3975.jpg \n", + " inflating: training_set/training_set/cats/cat.3976.jpg \n", + " inflating: training_set/training_set/cats/cat.3977.jpg \n", + " inflating: training_set/training_set/cats/cat.3978.jpg \n", + " inflating: training_set/training_set/cats/cat.3979.jpg \n", + " inflating: training_set/training_set/cats/cat.398.jpg \n", + " inflating: training_set/training_set/cats/cat.3980.jpg \n", + " inflating: training_set/training_set/cats/cat.3981.jpg \n", + " inflating: training_set/training_set/cats/cat.3982.jpg \n", + " inflating: training_set/training_set/cats/cat.3983.jpg \n", + " inflating: training_set/training_set/cats/cat.3984.jpg \n", + " inflating: training_set/training_set/cats/cat.3985.jpg \n", + " inflating: training_set/training_set/cats/cat.3986.jpg \n", + " inflating: training_set/training_set/cats/cat.3987.jpg \n", + " inflating: training_set/training_set/cats/cat.3988.jpg \n", + " inflating: training_set/training_set/cats/cat.3989.jpg \n", + " inflating: training_set/training_set/cats/cat.399.jpg \n", + " inflating: training_set/training_set/cats/cat.3990.jpg \n", + " inflating: training_set/training_set/cats/cat.3991.jpg \n", + " inflating: training_set/training_set/cats/cat.3992.jpg \n", + " inflating: training_set/training_set/cats/cat.3993.jpg \n", + " inflating: training_set/training_set/cats/cat.3994.jpg \n", + " inflating: training_set/training_set/cats/cat.3995.jpg \n", + " inflating: training_set/training_set/cats/cat.3996.jpg \n", + " inflating: training_set/training_set/cats/cat.3997.jpg \n", + " inflating: training_set/training_set/cats/cat.3998.jpg \n", + " inflating: training_set/training_set/cats/cat.3999.jpg \n", + " inflating: training_set/training_set/cats/cat.4.jpg \n", + " inflating: training_set/training_set/cats/cat.40.jpg \n", + " inflating: training_set/training_set/cats/cat.400.jpg \n", + " inflating: training_set/training_set/cats/cat.4000.jpg \n", + " inflating: training_set/training_set/cats/cat.401.jpg \n", + " inflating: training_set/training_set/cats/cat.402.jpg \n", + " inflating: training_set/training_set/cats/cat.403.jpg \n", + " inflating: training_set/training_set/cats/cat.404.jpg \n", + " inflating: training_set/training_set/cats/cat.405.jpg \n", + " inflating: training_set/training_set/cats/cat.406.jpg \n", + " inflating: training_set/training_set/cats/cat.407.jpg \n", + " inflating: training_set/training_set/cats/cat.408.jpg \n", + " inflating: training_set/training_set/cats/cat.409.jpg \n", + " inflating: training_set/training_set/cats/cat.41.jpg \n", + " inflating: training_set/training_set/cats/cat.410.jpg \n", + " inflating: training_set/training_set/cats/cat.411.jpg \n", + " inflating: training_set/training_set/cats/cat.412.jpg \n", + " inflating: training_set/training_set/cats/cat.413.jpg \n", + " inflating: training_set/training_set/cats/cat.414.jpg \n", + " inflating: training_set/training_set/cats/cat.415.jpg \n", + " inflating: training_set/training_set/cats/cat.416.jpg \n", + " inflating: training_set/training_set/cats/cat.417.jpg \n", + " inflating: training_set/training_set/cats/cat.418.jpg \n", + " inflating: training_set/training_set/cats/cat.419.jpg \n", + " inflating: training_set/training_set/cats/cat.42.jpg \n", + " inflating: training_set/training_set/cats/cat.420.jpg \n", + " inflating: training_set/training_set/cats/cat.421.jpg \n", + " inflating: training_set/training_set/cats/cat.422.jpg \n", + " inflating: training_set/training_set/cats/cat.423.jpg \n", + " inflating: training_set/training_set/cats/cat.424.jpg \n", + " inflating: training_set/training_set/cats/cat.425.jpg \n", + " inflating: training_set/training_set/cats/cat.426.jpg \n", + " inflating: training_set/training_set/cats/cat.427.jpg \n", + " inflating: training_set/training_set/cats/cat.428.jpg \n", + " inflating: training_set/training_set/cats/cat.429.jpg \n", + " inflating: training_set/training_set/cats/cat.43.jpg \n", + " inflating: training_set/training_set/cats/cat.430.jpg \n", + " inflating: training_set/training_set/cats/cat.431.jpg \n", + " inflating: training_set/training_set/cats/cat.432.jpg \n", + " inflating: training_set/training_set/cats/cat.433.jpg \n", + " inflating: training_set/training_set/cats/cat.434.jpg \n", + " inflating: training_set/training_set/cats/cat.435.jpg \n", + " inflating: training_set/training_set/cats/cat.436.jpg \n", + " inflating: training_set/training_set/cats/cat.437.jpg \n", + " inflating: training_set/training_set/cats/cat.438.jpg \n", + " inflating: training_set/training_set/cats/cat.439.jpg \n", + " inflating: training_set/training_set/cats/cat.44.jpg \n", + " inflating: training_set/training_set/cats/cat.440.jpg \n", + " inflating: training_set/training_set/cats/cat.441.jpg \n", + " inflating: training_set/training_set/cats/cat.442.jpg \n", + " inflating: training_set/training_set/cats/cat.443.jpg \n", + " inflating: training_set/training_set/cats/cat.444.jpg \n", + " inflating: training_set/training_set/cats/cat.445.jpg \n", + " inflating: training_set/training_set/cats/cat.446.jpg \n", + " inflating: training_set/training_set/cats/cat.447.jpg \n", + " inflating: training_set/training_set/cats/cat.448.jpg \n", + " inflating: training_set/training_set/cats/cat.449.jpg \n", + " inflating: training_set/training_set/cats/cat.45.jpg \n", + " inflating: training_set/training_set/cats/cat.450.jpg \n", + " inflating: training_set/training_set/cats/cat.451.jpg \n", + " inflating: training_set/training_set/cats/cat.452.jpg \n", + " inflating: training_set/training_set/cats/cat.453.jpg \n", + " inflating: training_set/training_set/cats/cat.454.jpg \n", + " inflating: training_set/training_set/cats/cat.455.jpg \n", + " inflating: training_set/training_set/cats/cat.456.jpg \n", + " inflating: training_set/training_set/cats/cat.457.jpg \n", + " inflating: training_set/training_set/cats/cat.458.jpg \n", + " inflating: training_set/training_set/cats/cat.459.jpg \n", + " inflating: training_set/training_set/cats/cat.46.jpg \n", + " inflating: training_set/training_set/cats/cat.460.jpg \n", + " inflating: training_set/training_set/cats/cat.461.jpg \n", + " inflating: training_set/training_set/cats/cat.462.jpg \n", + " inflating: training_set/training_set/cats/cat.463.jpg \n", + " inflating: training_set/training_set/cats/cat.464.jpg \n", + " inflating: training_set/training_set/cats/cat.465.jpg \n", + " inflating: training_set/training_set/cats/cat.466.jpg \n", + " inflating: training_set/training_set/cats/cat.467.jpg \n", + " inflating: training_set/training_set/cats/cat.468.jpg \n", + " inflating: training_set/training_set/cats/cat.469.jpg \n", + " inflating: training_set/training_set/cats/cat.47.jpg \n", + " inflating: training_set/training_set/cats/cat.470.jpg \n", + " inflating: training_set/training_set/cats/cat.471.jpg \n", + " inflating: training_set/training_set/cats/cat.472.jpg \n", + " inflating: training_set/training_set/cats/cat.473.jpg \n", + " inflating: training_set/training_set/cats/cat.474.jpg \n", + " inflating: training_set/training_set/cats/cat.475.jpg \n", + " inflating: training_set/training_set/cats/cat.476.jpg \n", + " inflating: training_set/training_set/cats/cat.477.jpg \n", + " inflating: training_set/training_set/cats/cat.478.jpg \n", + " inflating: training_set/training_set/cats/cat.479.jpg \n", + " inflating: training_set/training_set/cats/cat.48.jpg \n", + " inflating: training_set/training_set/cats/cat.480.jpg \n", + " inflating: training_set/training_set/cats/cat.481.jpg \n", + " inflating: training_set/training_set/cats/cat.482.jpg \n", + " inflating: training_set/training_set/cats/cat.483.jpg \n", + " inflating: training_set/training_set/cats/cat.484.jpg \n", + " inflating: training_set/training_set/cats/cat.485.jpg \n", + " inflating: training_set/training_set/cats/cat.486.jpg \n", + " inflating: training_set/training_set/cats/cat.487.jpg \n", + " inflating: training_set/training_set/cats/cat.488.jpg \n", + " inflating: training_set/training_set/cats/cat.489.jpg \n", + " inflating: training_set/training_set/cats/cat.49.jpg \n", + " inflating: training_set/training_set/cats/cat.490.jpg \n", + " inflating: training_set/training_set/cats/cat.491.jpg \n", + " inflating: training_set/training_set/cats/cat.492.jpg \n", + " inflating: training_set/training_set/cats/cat.493.jpg \n", + " inflating: training_set/training_set/cats/cat.494.jpg \n", + " inflating: training_set/training_set/cats/cat.495.jpg \n", + " inflating: training_set/training_set/cats/cat.496.jpg \n", + " inflating: training_set/training_set/cats/cat.497.jpg \n", + " inflating: training_set/training_set/cats/cat.498.jpg \n", + " inflating: training_set/training_set/cats/cat.499.jpg \n", + " inflating: training_set/training_set/cats/cat.5.jpg \n", + " inflating: training_set/training_set/cats/cat.50.jpg \n", + " inflating: training_set/training_set/cats/cat.500.jpg \n", + " inflating: training_set/training_set/cats/cat.501.jpg \n", + " inflating: training_set/training_set/cats/cat.502.jpg \n", + " inflating: training_set/training_set/cats/cat.503.jpg \n", + " inflating: training_set/training_set/cats/cat.504.jpg \n", + " inflating: training_set/training_set/cats/cat.505.jpg \n", + " inflating: training_set/training_set/cats/cat.506.jpg \n", + " inflating: training_set/training_set/cats/cat.507.jpg \n", + " inflating: training_set/training_set/cats/cat.508.jpg \n", + " inflating: training_set/training_set/cats/cat.509.jpg \n", + " inflating: training_set/training_set/cats/cat.51.jpg \n", + " inflating: training_set/training_set/cats/cat.510.jpg \n", + " inflating: training_set/training_set/cats/cat.511.jpg \n", + " inflating: training_set/training_set/cats/cat.512.jpg \n", + " inflating: training_set/training_set/cats/cat.513.jpg \n", + " inflating: training_set/training_set/cats/cat.514.jpg \n", + " inflating: training_set/training_set/cats/cat.515.jpg \n", + " inflating: training_set/training_set/cats/cat.516.jpg \n", + " inflating: training_set/training_set/cats/cat.517.jpg \n", + " inflating: training_set/training_set/cats/cat.518.jpg \n", + " inflating: training_set/training_set/cats/cat.519.jpg \n", + " inflating: training_set/training_set/cats/cat.52.jpg \n", + " inflating: training_set/training_set/cats/cat.520.jpg \n", + " inflating: training_set/training_set/cats/cat.521.jpg \n", + " inflating: training_set/training_set/cats/cat.522.jpg \n", + " inflating: training_set/training_set/cats/cat.523.jpg \n", + " inflating: training_set/training_set/cats/cat.524.jpg \n", + " inflating: training_set/training_set/cats/cat.525.jpg \n", + " inflating: training_set/training_set/cats/cat.526.jpg \n", + " inflating: training_set/training_set/cats/cat.527.jpg \n", + " inflating: training_set/training_set/cats/cat.528.jpg \n", + " inflating: training_set/training_set/cats/cat.529.jpg \n", + " inflating: training_set/training_set/cats/cat.53.jpg \n", + " inflating: training_set/training_set/cats/cat.530.jpg \n", + " inflating: training_set/training_set/cats/cat.531.jpg \n", + " inflating: training_set/training_set/cats/cat.532.jpg \n", + " inflating: training_set/training_set/cats/cat.533.jpg \n", + " inflating: training_set/training_set/cats/cat.534.jpg \n", + " inflating: training_set/training_set/cats/cat.535.jpg \n", + " inflating: training_set/training_set/cats/cat.536.jpg \n", + " inflating: training_set/training_set/cats/cat.537.jpg \n", + " inflating: training_set/training_set/cats/cat.538.jpg \n", + " inflating: training_set/training_set/cats/cat.539.jpg \n", + " inflating: training_set/training_set/cats/cat.54.jpg \n", + " inflating: training_set/training_set/cats/cat.540.jpg \n", + " inflating: training_set/training_set/cats/cat.541.jpg \n", + " inflating: training_set/training_set/cats/cat.542.jpg \n", + " inflating: training_set/training_set/cats/cat.543.jpg \n", + " inflating: training_set/training_set/cats/cat.544.jpg \n", + " inflating: training_set/training_set/cats/cat.545.jpg \n", + " inflating: training_set/training_set/cats/cat.546.jpg \n", + " inflating: training_set/training_set/cats/cat.547.jpg \n", + " inflating: training_set/training_set/cats/cat.548.jpg \n", + " inflating: training_set/training_set/cats/cat.549.jpg \n", + " inflating: training_set/training_set/cats/cat.55.jpg \n", + " inflating: training_set/training_set/cats/cat.550.jpg \n", + " inflating: training_set/training_set/cats/cat.551.jpg \n", + " inflating: training_set/training_set/cats/cat.552.jpg \n", + " inflating: training_set/training_set/cats/cat.553.jpg \n", + " inflating: training_set/training_set/cats/cat.554.jpg \n", + " inflating: training_set/training_set/cats/cat.555.jpg \n", + " inflating: training_set/training_set/cats/cat.556.jpg \n", + " inflating: training_set/training_set/cats/cat.557.jpg \n", + " inflating: training_set/training_set/cats/cat.558.jpg \n", + " inflating: training_set/training_set/cats/cat.559.jpg \n", + " inflating: training_set/training_set/cats/cat.56.jpg \n", + " inflating: training_set/training_set/cats/cat.560.jpg \n", + " inflating: training_set/training_set/cats/cat.561.jpg \n", + " inflating: training_set/training_set/cats/cat.562.jpg \n", + " inflating: training_set/training_set/cats/cat.563.jpg \n", + " inflating: training_set/training_set/cats/cat.564.jpg \n", + " inflating: training_set/training_set/cats/cat.565.jpg \n", + " inflating: training_set/training_set/cats/cat.566.jpg \n", + " inflating: training_set/training_set/cats/cat.567.jpg \n", + " inflating: training_set/training_set/cats/cat.568.jpg \n", + " inflating: training_set/training_set/cats/cat.569.jpg \n", + " inflating: training_set/training_set/cats/cat.57.jpg \n", + " inflating: training_set/training_set/cats/cat.570.jpg \n", + " inflating: training_set/training_set/cats/cat.571.jpg \n", + " inflating: training_set/training_set/cats/cat.572.jpg \n", + " inflating: training_set/training_set/cats/cat.573.jpg \n", + " inflating: training_set/training_set/cats/cat.574.jpg \n", + " inflating: training_set/training_set/cats/cat.575.jpg \n", + " inflating: training_set/training_set/cats/cat.576.jpg \n", + " inflating: training_set/training_set/cats/cat.577.jpg \n", + " inflating: training_set/training_set/cats/cat.578.jpg \n", + " inflating: training_set/training_set/cats/cat.579.jpg \n", + " inflating: training_set/training_set/cats/cat.58.jpg \n", + " inflating: training_set/training_set/cats/cat.580.jpg \n", + " inflating: training_set/training_set/cats/cat.581.jpg \n", + " inflating: training_set/training_set/cats/cat.582.jpg \n", + " inflating: training_set/training_set/cats/cat.583.jpg \n", + " inflating: training_set/training_set/cats/cat.584.jpg \n", + " inflating: training_set/training_set/cats/cat.585.jpg \n", + " inflating: training_set/training_set/cats/cat.586.jpg \n", + " inflating: training_set/training_set/cats/cat.587.jpg \n", + " inflating: training_set/training_set/cats/cat.588.jpg \n", + " inflating: training_set/training_set/cats/cat.589.jpg \n", + " inflating: training_set/training_set/cats/cat.59.jpg \n", + " inflating: training_set/training_set/cats/cat.590.jpg \n", + " inflating: training_set/training_set/cats/cat.591.jpg \n", + " inflating: training_set/training_set/cats/cat.592.jpg \n", + " inflating: training_set/training_set/cats/cat.593.jpg \n", + " inflating: training_set/training_set/cats/cat.594.jpg \n", + " inflating: training_set/training_set/cats/cat.595.jpg \n", + " inflating: training_set/training_set/cats/cat.596.jpg \n", + " inflating: training_set/training_set/cats/cat.597.jpg \n", + " inflating: training_set/training_set/cats/cat.598.jpg \n", + " inflating: training_set/training_set/cats/cat.599.jpg \n", + " inflating: training_set/training_set/cats/cat.6.jpg \n", + " inflating: training_set/training_set/cats/cat.60.jpg \n", + " inflating: training_set/training_set/cats/cat.600.jpg \n", + " inflating: training_set/training_set/cats/cat.601.jpg \n", + " inflating: training_set/training_set/cats/cat.602.jpg \n", + " inflating: training_set/training_set/cats/cat.603.jpg \n", + " inflating: training_set/training_set/cats/cat.604.jpg \n", + " inflating: training_set/training_set/cats/cat.605.jpg \n", + " inflating: training_set/training_set/cats/cat.606.jpg \n", + " inflating: training_set/training_set/cats/cat.607.jpg \n", + " inflating: training_set/training_set/cats/cat.608.jpg \n", + " inflating: training_set/training_set/cats/cat.609.jpg \n", + " inflating: training_set/training_set/cats/cat.61.jpg \n", + " inflating: training_set/training_set/cats/cat.610.jpg \n", + " inflating: training_set/training_set/cats/cat.611.jpg \n", + " inflating: training_set/training_set/cats/cat.612.jpg \n", + " inflating: training_set/training_set/cats/cat.613.jpg \n", + " inflating: training_set/training_set/cats/cat.614.jpg \n", + " inflating: training_set/training_set/cats/cat.615.jpg \n", + " inflating: training_set/training_set/cats/cat.616.jpg \n", + " inflating: training_set/training_set/cats/cat.617.jpg \n", + " inflating: training_set/training_set/cats/cat.618.jpg \n", + " inflating: training_set/training_set/cats/cat.619.jpg \n", + " inflating: training_set/training_set/cats/cat.62.jpg \n", + " inflating: training_set/training_set/cats/cat.620.jpg \n", + " inflating: training_set/training_set/cats/cat.621.jpg \n", + " inflating: training_set/training_set/cats/cat.622.jpg \n", + " inflating: training_set/training_set/cats/cat.623.jpg \n", + " inflating: training_set/training_set/cats/cat.624.jpg \n", + " inflating: training_set/training_set/cats/cat.625.jpg \n", + " inflating: training_set/training_set/cats/cat.626.jpg \n", + " inflating: training_set/training_set/cats/cat.627.jpg \n", + " inflating: training_set/training_set/cats/cat.628.jpg \n", + " inflating: training_set/training_set/cats/cat.629.jpg \n", + " inflating: training_set/training_set/cats/cat.63.jpg \n", + " inflating: training_set/training_set/cats/cat.630.jpg \n", + " inflating: training_set/training_set/cats/cat.631.jpg \n", + " inflating: training_set/training_set/cats/cat.632.jpg \n", + " inflating: training_set/training_set/cats/cat.633.jpg \n", + " inflating: training_set/training_set/cats/cat.634.jpg \n", + " inflating: training_set/training_set/cats/cat.635.jpg \n", + " inflating: training_set/training_set/cats/cat.636.jpg \n", + " inflating: training_set/training_set/cats/cat.637.jpg \n", + " inflating: training_set/training_set/cats/cat.638.jpg \n", + " inflating: training_set/training_set/cats/cat.639.jpg \n", + " inflating: training_set/training_set/cats/cat.64.jpg \n", + " inflating: training_set/training_set/cats/cat.640.jpg \n", + " inflating: training_set/training_set/cats/cat.641.jpg \n", + " inflating: training_set/training_set/cats/cat.642.jpg \n", + " inflating: training_set/training_set/cats/cat.643.jpg \n", + " inflating: training_set/training_set/cats/cat.644.jpg \n", + " inflating: training_set/training_set/cats/cat.645.jpg \n", + " inflating: training_set/training_set/cats/cat.646.jpg \n", + " inflating: training_set/training_set/cats/cat.647.jpg \n", + " inflating: training_set/training_set/cats/cat.648.jpg \n", + " inflating: training_set/training_set/cats/cat.649.jpg \n", + " inflating: training_set/training_set/cats/cat.65.jpg \n", + " inflating: training_set/training_set/cats/cat.650.jpg \n", + " inflating: training_set/training_set/cats/cat.651.jpg \n", + " inflating: training_set/training_set/cats/cat.652.jpg \n", + " inflating: training_set/training_set/cats/cat.653.jpg \n", + " inflating: training_set/training_set/cats/cat.654.jpg \n", + " inflating: training_set/training_set/cats/cat.655.jpg \n", + " inflating: training_set/training_set/cats/cat.656.jpg \n", + " inflating: training_set/training_set/cats/cat.657.jpg \n", + " inflating: training_set/training_set/cats/cat.658.jpg \n", + " inflating: training_set/training_set/cats/cat.659.jpg \n", + " inflating: training_set/training_set/cats/cat.66.jpg \n", + " inflating: training_set/training_set/cats/cat.660.jpg \n", + " inflating: training_set/training_set/cats/cat.661.jpg \n", + " inflating: training_set/training_set/cats/cat.662.jpg \n", + " inflating: training_set/training_set/cats/cat.663.jpg \n", + " inflating: training_set/training_set/cats/cat.664.jpg \n", + " inflating: training_set/training_set/cats/cat.665.jpg \n", + " inflating: training_set/training_set/cats/cat.666.jpg \n", + " inflating: training_set/training_set/cats/cat.667.jpg \n", + " inflating: training_set/training_set/cats/cat.668.jpg \n", + " inflating: training_set/training_set/cats/cat.669.jpg \n", + " inflating: training_set/training_set/cats/cat.67.jpg \n", + " inflating: training_set/training_set/cats/cat.670.jpg \n", + " inflating: training_set/training_set/cats/cat.671.jpg \n", + " inflating: training_set/training_set/cats/cat.672.jpg \n", + " inflating: training_set/training_set/cats/cat.673.jpg \n", + " inflating: training_set/training_set/cats/cat.674.jpg \n", + " inflating: training_set/training_set/cats/cat.675.jpg \n", + " inflating: training_set/training_set/cats/cat.676.jpg \n", + " inflating: training_set/training_set/cats/cat.677.jpg \n", + " inflating: training_set/training_set/cats/cat.678.jpg \n", + " inflating: training_set/training_set/cats/cat.679.jpg \n", + " inflating: training_set/training_set/cats/cat.68.jpg \n", + " inflating: training_set/training_set/cats/cat.680.jpg \n", + " inflating: training_set/training_set/cats/cat.681.jpg \n", + " inflating: training_set/training_set/cats/cat.682.jpg \n", + " inflating: training_set/training_set/cats/cat.683.jpg \n", + " inflating: training_set/training_set/cats/cat.684.jpg \n", + " inflating: training_set/training_set/cats/cat.685.jpg \n", + " inflating: training_set/training_set/cats/cat.686.jpg \n", + " inflating: training_set/training_set/cats/cat.687.jpg \n", + " inflating: training_set/training_set/cats/cat.688.jpg \n", + " inflating: training_set/training_set/cats/cat.689.jpg \n", + " inflating: training_set/training_set/cats/cat.69.jpg \n", + " inflating: training_set/training_set/cats/cat.690.jpg \n", + " inflating: training_set/training_set/cats/cat.691.jpg \n", + " inflating: training_set/training_set/cats/cat.692.jpg \n", + " inflating: training_set/training_set/cats/cat.693.jpg \n", + " inflating: training_set/training_set/cats/cat.694.jpg \n", + " inflating: training_set/training_set/cats/cat.695.jpg \n", + " inflating: training_set/training_set/cats/cat.696.jpg \n", + " inflating: training_set/training_set/cats/cat.697.jpg \n", + " inflating: training_set/training_set/cats/cat.698.jpg \n", + " inflating: training_set/training_set/cats/cat.699.jpg \n", + " inflating: training_set/training_set/cats/cat.7.jpg \n", + " inflating: training_set/training_set/cats/cat.70.jpg \n", + " inflating: training_set/training_set/cats/cat.700.jpg \n", + " inflating: training_set/training_set/cats/cat.701.jpg \n", + " inflating: training_set/training_set/cats/cat.702.jpg \n", + " inflating: training_set/training_set/cats/cat.703.jpg \n", + " inflating: training_set/training_set/cats/cat.704.jpg \n", + " inflating: training_set/training_set/cats/cat.705.jpg \n", + " inflating: training_set/training_set/cats/cat.706.jpg \n", + " inflating: training_set/training_set/cats/cat.707.jpg \n", + " inflating: training_set/training_set/cats/cat.708.jpg \n", + " inflating: training_set/training_set/cats/cat.709.jpg \n", + " inflating: training_set/training_set/cats/cat.71.jpg \n", + " inflating: training_set/training_set/cats/cat.710.jpg \n", + " inflating: training_set/training_set/cats/cat.711.jpg \n", + " inflating: training_set/training_set/cats/cat.712.jpg \n", + " inflating: training_set/training_set/cats/cat.713.jpg \n", + " inflating: training_set/training_set/cats/cat.714.jpg \n", + " inflating: training_set/training_set/cats/cat.715.jpg \n", + " inflating: training_set/training_set/cats/cat.716.jpg \n", + " inflating: training_set/training_set/cats/cat.717.jpg \n", + " inflating: training_set/training_set/cats/cat.718.jpg \n", + " inflating: training_set/training_set/cats/cat.719.jpg \n", + " inflating: training_set/training_set/cats/cat.72.jpg \n", + " inflating: training_set/training_set/cats/cat.720.jpg \n", + " inflating: training_set/training_set/cats/cat.721.jpg \n", + " inflating: training_set/training_set/cats/cat.722.jpg \n", + " inflating: training_set/training_set/cats/cat.723.jpg \n", + " inflating: training_set/training_set/cats/cat.724.jpg \n", + " inflating: training_set/training_set/cats/cat.725.jpg \n", + " inflating: training_set/training_set/cats/cat.726.jpg \n", + " inflating: training_set/training_set/cats/cat.727.jpg \n", + " inflating: training_set/training_set/cats/cat.728.jpg \n", + " inflating: training_set/training_set/cats/cat.729.jpg \n", + " inflating: training_set/training_set/cats/cat.73.jpg \n", + " inflating: training_set/training_set/cats/cat.730.jpg \n", + " inflating: training_set/training_set/cats/cat.731.jpg \n", + " inflating: training_set/training_set/cats/cat.732.jpg \n", + " inflating: training_set/training_set/cats/cat.733.jpg \n", + " inflating: training_set/training_set/cats/cat.734.jpg \n", + " inflating: training_set/training_set/cats/cat.735.jpg \n", + " inflating: training_set/training_set/cats/cat.736.jpg \n", + " inflating: training_set/training_set/cats/cat.737.jpg \n", + " inflating: training_set/training_set/cats/cat.738.jpg \n", + " inflating: training_set/training_set/cats/cat.739.jpg \n", + " inflating: training_set/training_set/cats/cat.74.jpg \n", + " inflating: training_set/training_set/cats/cat.740.jpg \n", + " inflating: training_set/training_set/cats/cat.741.jpg \n", + " inflating: training_set/training_set/cats/cat.742.jpg \n", + " inflating: training_set/training_set/cats/cat.743.jpg \n", + " inflating: training_set/training_set/cats/cat.744.jpg \n", + " inflating: training_set/training_set/cats/cat.745.jpg \n", + " inflating: training_set/training_set/cats/cat.746.jpg \n", + " inflating: training_set/training_set/cats/cat.747.jpg \n", + " inflating: training_set/training_set/cats/cat.748.jpg \n", + " inflating: training_set/training_set/cats/cat.749.jpg \n", + " inflating: training_set/training_set/cats/cat.75.jpg \n", + " inflating: training_set/training_set/cats/cat.750.jpg \n", + " inflating: training_set/training_set/cats/cat.751.jpg \n", + " inflating: training_set/training_set/cats/cat.752.jpg \n", + " inflating: training_set/training_set/cats/cat.753.jpg \n", + " inflating: training_set/training_set/cats/cat.754.jpg \n", + " inflating: training_set/training_set/cats/cat.755.jpg \n", + " inflating: training_set/training_set/cats/cat.756.jpg \n", + " inflating: training_set/training_set/cats/cat.757.jpg \n", + " inflating: training_set/training_set/cats/cat.758.jpg \n", + " inflating: training_set/training_set/cats/cat.759.jpg \n", + " inflating: training_set/training_set/cats/cat.76.jpg \n", + " inflating: training_set/training_set/cats/cat.760.jpg \n", + " inflating: training_set/training_set/cats/cat.761.jpg \n", + " inflating: training_set/training_set/cats/cat.762.jpg \n", + " inflating: training_set/training_set/cats/cat.763.jpg \n", + " inflating: training_set/training_set/cats/cat.764.jpg \n", + " inflating: training_set/training_set/cats/cat.765.jpg \n", + " inflating: training_set/training_set/cats/cat.766.jpg \n", + " inflating: training_set/training_set/cats/cat.767.jpg \n", + " inflating: training_set/training_set/cats/cat.768.jpg \n", + " inflating: training_set/training_set/cats/cat.769.jpg \n", + " inflating: training_set/training_set/cats/cat.77.jpg \n", + " inflating: training_set/training_set/cats/cat.770.jpg \n", + " inflating: training_set/training_set/cats/cat.771.jpg \n", + " inflating: training_set/training_set/cats/cat.772.jpg \n", + " inflating: training_set/training_set/cats/cat.773.jpg \n", + " inflating: training_set/training_set/cats/cat.774.jpg \n", + " inflating: training_set/training_set/cats/cat.775.jpg \n", + " inflating: training_set/training_set/cats/cat.776.jpg \n", + " inflating: training_set/training_set/cats/cat.777.jpg \n", + " inflating: training_set/training_set/cats/cat.778.jpg \n", + " inflating: training_set/training_set/cats/cat.779.jpg \n", + " inflating: training_set/training_set/cats/cat.78.jpg \n", + " inflating: training_set/training_set/cats/cat.780.jpg \n", + " inflating: training_set/training_set/cats/cat.781.jpg \n", + " inflating: training_set/training_set/cats/cat.782.jpg \n", + " inflating: training_set/training_set/cats/cat.783.jpg \n", + " inflating: training_set/training_set/cats/cat.784.jpg \n", + " inflating: training_set/training_set/cats/cat.785.jpg \n", + " inflating: training_set/training_set/cats/cat.786.jpg \n", + " inflating: training_set/training_set/cats/cat.787.jpg \n", + " inflating: training_set/training_set/cats/cat.788.jpg \n", + " inflating: training_set/training_set/cats/cat.789.jpg \n", + " inflating: training_set/training_set/cats/cat.79.jpg \n", + " inflating: training_set/training_set/cats/cat.790.jpg \n", + " inflating: training_set/training_set/cats/cat.791.jpg \n", + " inflating: training_set/training_set/cats/cat.792.jpg \n", + " inflating: training_set/training_set/cats/cat.793.jpg \n", + " inflating: training_set/training_set/cats/cat.794.jpg \n", + " inflating: training_set/training_set/cats/cat.795.jpg \n", + " inflating: training_set/training_set/cats/cat.796.jpg \n", + " inflating: training_set/training_set/cats/cat.797.jpg \n", + " inflating: training_set/training_set/cats/cat.798.jpg \n", + " inflating: training_set/training_set/cats/cat.799.jpg \n", + " inflating: training_set/training_set/cats/cat.8.jpg \n", + " inflating: training_set/training_set/cats/cat.80.jpg \n", + " inflating: training_set/training_set/cats/cat.800.jpg \n", + " inflating: training_set/training_set/cats/cat.801.jpg \n", + " inflating: training_set/training_set/cats/cat.802.jpg \n", + " inflating: training_set/training_set/cats/cat.803.jpg \n", + " inflating: training_set/training_set/cats/cat.804.jpg \n", + " inflating: training_set/training_set/cats/cat.805.jpg \n", + " inflating: training_set/training_set/cats/cat.806.jpg \n", + " inflating: training_set/training_set/cats/cat.807.jpg \n", + " inflating: training_set/training_set/cats/cat.808.jpg \n", + " inflating: training_set/training_set/cats/cat.809.jpg \n", + " inflating: training_set/training_set/cats/cat.81.jpg \n", + " inflating: training_set/training_set/cats/cat.810.jpg \n", + " inflating: training_set/training_set/cats/cat.811.jpg \n", + " inflating: training_set/training_set/cats/cat.812.jpg \n", + " inflating: training_set/training_set/cats/cat.813.jpg \n", + " inflating: training_set/training_set/cats/cat.814.jpg \n", + " inflating: training_set/training_set/cats/cat.815.jpg \n", + " inflating: training_set/training_set/cats/cat.816.jpg \n", + " inflating: training_set/training_set/cats/cat.817.jpg \n", + " inflating: training_set/training_set/cats/cat.818.jpg \n", + " inflating: training_set/training_set/cats/cat.819.jpg \n", + " inflating: training_set/training_set/cats/cat.82.jpg \n", + " inflating: training_set/training_set/cats/cat.820.jpg \n", + " inflating: training_set/training_set/cats/cat.821.jpg \n", + " inflating: training_set/training_set/cats/cat.822.jpg \n", + " inflating: training_set/training_set/cats/cat.823.jpg \n", + " inflating: training_set/training_set/cats/cat.824.jpg \n", + " inflating: training_set/training_set/cats/cat.825.jpg \n", + " inflating: training_set/training_set/cats/cat.826.jpg \n", + " inflating: training_set/training_set/cats/cat.827.jpg \n", + " inflating: training_set/training_set/cats/cat.828.jpg \n", + " inflating: training_set/training_set/cats/cat.829.jpg \n", + " inflating: training_set/training_set/cats/cat.83.jpg \n", + " inflating: training_set/training_set/cats/cat.830.jpg \n", + " inflating: training_set/training_set/cats/cat.831.jpg \n", + " inflating: training_set/training_set/cats/cat.832.jpg \n", + " inflating: training_set/training_set/cats/cat.833.jpg \n", + " inflating: training_set/training_set/cats/cat.834.jpg \n", + " inflating: training_set/training_set/cats/cat.835.jpg \n", + " inflating: training_set/training_set/cats/cat.836.jpg \n", + " inflating: training_set/training_set/cats/cat.837.jpg \n", + " inflating: training_set/training_set/cats/cat.838.jpg \n", + " inflating: training_set/training_set/cats/cat.839.jpg \n", + " inflating: training_set/training_set/cats/cat.84.jpg \n", + " inflating: training_set/training_set/cats/cat.840.jpg \n", + " inflating: training_set/training_set/cats/cat.841.jpg \n", + " inflating: training_set/training_set/cats/cat.842.jpg \n", + " inflating: training_set/training_set/cats/cat.843.jpg \n", + " inflating: training_set/training_set/cats/cat.844.jpg \n", + " inflating: training_set/training_set/cats/cat.845.jpg \n", + " inflating: training_set/training_set/cats/cat.846.jpg \n", + " inflating: training_set/training_set/cats/cat.847.jpg \n", + " inflating: training_set/training_set/cats/cat.848.jpg \n", + " inflating: training_set/training_set/cats/cat.849.jpg \n", + " inflating: training_set/training_set/cats/cat.85.jpg \n", + " inflating: training_set/training_set/cats/cat.850.jpg \n", + " inflating: training_set/training_set/cats/cat.851.jpg \n", + " inflating: training_set/training_set/cats/cat.852.jpg \n", + " inflating: training_set/training_set/cats/cat.853.jpg \n", + " inflating: training_set/training_set/cats/cat.854.jpg \n", + " inflating: training_set/training_set/cats/cat.855.jpg \n", + " inflating: training_set/training_set/cats/cat.856.jpg \n", + " inflating: training_set/training_set/cats/cat.857.jpg \n", + " inflating: training_set/training_set/cats/cat.858.jpg \n", + " inflating: training_set/training_set/cats/cat.859.jpg \n", + " inflating: training_set/training_set/cats/cat.86.jpg \n", + " inflating: training_set/training_set/cats/cat.860.jpg \n", + " inflating: training_set/training_set/cats/cat.861.jpg \n", + " inflating: training_set/training_set/cats/cat.862.jpg \n", + " inflating: training_set/training_set/cats/cat.863.jpg \n", + " inflating: training_set/training_set/cats/cat.864.jpg \n", + " inflating: training_set/training_set/cats/cat.865.jpg \n", + " inflating: training_set/training_set/cats/cat.866.jpg \n", + " inflating: training_set/training_set/cats/cat.867.jpg \n", + " inflating: training_set/training_set/cats/cat.868.jpg \n", + " inflating: training_set/training_set/cats/cat.869.jpg \n", + " inflating: training_set/training_set/cats/cat.87.jpg \n", + " inflating: training_set/training_set/cats/cat.870.jpg \n", + " inflating: training_set/training_set/cats/cat.871.jpg \n", + " inflating: training_set/training_set/cats/cat.872.jpg \n", + " inflating: training_set/training_set/cats/cat.873.jpg \n", + " inflating: training_set/training_set/cats/cat.874.jpg \n", + " inflating: training_set/training_set/cats/cat.875.jpg \n", + " inflating: training_set/training_set/cats/cat.876.jpg \n", + " inflating: training_set/training_set/cats/cat.877.jpg \n", + " inflating: training_set/training_set/cats/cat.878.jpg \n", + " inflating: training_set/training_set/cats/cat.879.jpg \n", + " inflating: training_set/training_set/cats/cat.88.jpg \n", + " inflating: training_set/training_set/cats/cat.880.jpg \n", + " inflating: training_set/training_set/cats/cat.881.jpg \n", + " inflating: training_set/training_set/cats/cat.882.jpg \n", + " inflating: training_set/training_set/cats/cat.883.jpg \n", + " inflating: training_set/training_set/cats/cat.884.jpg \n", + " inflating: training_set/training_set/cats/cat.885.jpg \n", + " inflating: training_set/training_set/cats/cat.886.jpg \n", + " inflating: training_set/training_set/cats/cat.887.jpg \n", + " inflating: training_set/training_set/cats/cat.888.jpg \n", + " inflating: training_set/training_set/cats/cat.889.jpg \n", + " inflating: training_set/training_set/cats/cat.89.jpg \n", + " inflating: training_set/training_set/cats/cat.890.jpg \n", + " inflating: training_set/training_set/cats/cat.891.jpg \n", + " inflating: training_set/training_set/cats/cat.892.jpg \n", + " inflating: training_set/training_set/cats/cat.893.jpg \n", + " inflating: training_set/training_set/cats/cat.894.jpg \n", + " inflating: training_set/training_set/cats/cat.895.jpg \n", + " inflating: training_set/training_set/cats/cat.896.jpg \n", + " inflating: training_set/training_set/cats/cat.897.jpg \n", + " inflating: training_set/training_set/cats/cat.898.jpg \n", + " inflating: training_set/training_set/cats/cat.899.jpg \n", + " inflating: training_set/training_set/cats/cat.9.jpg \n", + " inflating: training_set/training_set/cats/cat.90.jpg \n", + " inflating: training_set/training_set/cats/cat.900.jpg \n", + " inflating: training_set/training_set/cats/cat.901.jpg \n", + " inflating: training_set/training_set/cats/cat.902.jpg \n", + " inflating: training_set/training_set/cats/cat.903.jpg \n", + " inflating: training_set/training_set/cats/cat.904.jpg \n", + " inflating: training_set/training_set/cats/cat.905.jpg \n", + " inflating: training_set/training_set/cats/cat.906.jpg \n", + " inflating: training_set/training_set/cats/cat.907.jpg \n", + " inflating: training_set/training_set/cats/cat.908.jpg \n", + " inflating: training_set/training_set/cats/cat.909.jpg \n", + " inflating: training_set/training_set/cats/cat.91.jpg \n", + " inflating: training_set/training_set/cats/cat.910.jpg \n", + " inflating: training_set/training_set/cats/cat.911.jpg \n", + " inflating: training_set/training_set/cats/cat.912.jpg \n", + " inflating: training_set/training_set/cats/cat.913.jpg \n", + " inflating: training_set/training_set/cats/cat.914.jpg \n", + " inflating: training_set/training_set/cats/cat.915.jpg \n", + " inflating: training_set/training_set/cats/cat.916.jpg \n", + " inflating: training_set/training_set/cats/cat.917.jpg \n", + " inflating: training_set/training_set/cats/cat.918.jpg \n", + " inflating: training_set/training_set/cats/cat.919.jpg \n", + " inflating: training_set/training_set/cats/cat.92.jpg \n", + " inflating: training_set/training_set/cats/cat.920.jpg \n", + " inflating: training_set/training_set/cats/cat.921.jpg \n", + " inflating: training_set/training_set/cats/cat.922.jpg \n", + " inflating: training_set/training_set/cats/cat.923.jpg \n", + " inflating: training_set/training_set/cats/cat.924.jpg \n", + " inflating: training_set/training_set/cats/cat.925.jpg \n", + " inflating: training_set/training_set/cats/cat.926.jpg \n", + " inflating: training_set/training_set/cats/cat.927.jpg \n", + " inflating: training_set/training_set/cats/cat.928.jpg \n", + " inflating: training_set/training_set/cats/cat.929.jpg \n", + " inflating: training_set/training_set/cats/cat.93.jpg \n", + " inflating: training_set/training_set/cats/cat.930.jpg \n", + " inflating: training_set/training_set/cats/cat.931.jpg \n", + " inflating: training_set/training_set/cats/cat.932.jpg \n", + " inflating: training_set/training_set/cats/cat.933.jpg \n", + " inflating: training_set/training_set/cats/cat.934.jpg \n", + " inflating: training_set/training_set/cats/cat.935.jpg \n", + " inflating: training_set/training_set/cats/cat.936.jpg \n", + " inflating: training_set/training_set/cats/cat.937.jpg \n", + " inflating: training_set/training_set/cats/cat.938.jpg \n", + " inflating: training_set/training_set/cats/cat.939.jpg \n", + " inflating: training_set/training_set/cats/cat.94.jpg \n", + " inflating: training_set/training_set/cats/cat.940.jpg \n", + " inflating: training_set/training_set/cats/cat.941.jpg \n", + " inflating: training_set/training_set/cats/cat.942.jpg \n", + " inflating: training_set/training_set/cats/cat.943.jpg \n", + " inflating: training_set/training_set/cats/cat.944.jpg \n", + " inflating: training_set/training_set/cats/cat.945.jpg \n", + " inflating: training_set/training_set/cats/cat.946.jpg \n", + " inflating: training_set/training_set/cats/cat.947.jpg \n", + " inflating: training_set/training_set/cats/cat.948.jpg \n", + " inflating: training_set/training_set/cats/cat.949.jpg \n", + " inflating: training_set/training_set/cats/cat.95.jpg \n", + " inflating: training_set/training_set/cats/cat.950.jpg \n", + " inflating: training_set/training_set/cats/cat.951.jpg \n", + " inflating: training_set/training_set/cats/cat.952.jpg \n", + " inflating: training_set/training_set/cats/cat.953.jpg \n", + " inflating: training_set/training_set/cats/cat.954.jpg \n", + " inflating: training_set/training_set/cats/cat.955.jpg \n", + " inflating: training_set/training_set/cats/cat.956.jpg \n", + " inflating: training_set/training_set/cats/cat.957.jpg \n", + " inflating: training_set/training_set/cats/cat.958.jpg \n", + " inflating: training_set/training_set/cats/cat.959.jpg \n", + " inflating: training_set/training_set/cats/cat.96.jpg \n", + " inflating: training_set/training_set/cats/cat.960.jpg \n", + " inflating: training_set/training_set/cats/cat.961.jpg \n", + " inflating: training_set/training_set/cats/cat.962.jpg \n", + " inflating: training_set/training_set/cats/cat.963.jpg \n", + " inflating: training_set/training_set/cats/cat.964.jpg \n", + " inflating: training_set/training_set/cats/cat.965.jpg \n", + " inflating: training_set/training_set/cats/cat.966.jpg \n", + " inflating: training_set/training_set/cats/cat.967.jpg \n", + " inflating: training_set/training_set/cats/cat.968.jpg \n", + " inflating: training_set/training_set/cats/cat.969.jpg \n", + " inflating: training_set/training_set/cats/cat.97.jpg \n", + " inflating: training_set/training_set/cats/cat.970.jpg \n", + " inflating: training_set/training_set/cats/cat.971.jpg \n", + " inflating: training_set/training_set/cats/cat.972.jpg \n", + " inflating: training_set/training_set/cats/cat.973.jpg \n", + " inflating: training_set/training_set/cats/cat.974.jpg \n", + " inflating: training_set/training_set/cats/cat.975.jpg \n", + " inflating: training_set/training_set/cats/cat.976.jpg \n", + " inflating: training_set/training_set/cats/cat.977.jpg \n", + " inflating: training_set/training_set/cats/cat.978.jpg \n", + " inflating: training_set/training_set/cats/cat.979.jpg \n", + " inflating: training_set/training_set/cats/cat.98.jpg \n", + " inflating: training_set/training_set/cats/cat.980.jpg \n", + " inflating: training_set/training_set/cats/cat.981.jpg \n", + " inflating: training_set/training_set/cats/cat.982.jpg \n", + " inflating: training_set/training_set/cats/cat.983.jpg \n", + " inflating: training_set/training_set/cats/cat.984.jpg \n", + " inflating: training_set/training_set/cats/cat.985.jpg \n", + " inflating: training_set/training_set/cats/cat.986.jpg \n", + " inflating: training_set/training_set/cats/cat.987.jpg \n", + " inflating: training_set/training_set/cats/cat.988.jpg \n", + " inflating: training_set/training_set/cats/cat.989.jpg \n", + " inflating: training_set/training_set/cats/cat.99.jpg \n", + " inflating: training_set/training_set/cats/cat.990.jpg \n", + " inflating: training_set/training_set/cats/cat.991.jpg \n", + " inflating: training_set/training_set/cats/cat.992.jpg \n", + " inflating: training_set/training_set/cats/cat.993.jpg \n", + " inflating: training_set/training_set/cats/cat.994.jpg \n", + " inflating: training_set/training_set/cats/cat.995.jpg \n", + " inflating: training_set/training_set/cats/cat.996.jpg \n", + " inflating: training_set/training_set/cats/cat.997.jpg \n", + " inflating: training_set/training_set/cats/cat.998.jpg \n", + " inflating: training_set/training_set/cats/cat.999.jpg \n", + " inflating: training_set/training_set/dogs/_DS_Store \n", + " inflating: training_set/training_set/dogs/dog.1.jpg \n", + " inflating: training_set/training_set/dogs/dog.10.jpg \n", + " inflating: training_set/training_set/dogs/dog.100.jpg \n", + " inflating: training_set/training_set/dogs/dog.1000.jpg \n", + " inflating: training_set/training_set/dogs/dog.1001.jpg \n", + " inflating: training_set/training_set/dogs/dog.1002.jpg \n", + " inflating: training_set/training_set/dogs/dog.1003.jpg \n", + " inflating: training_set/training_set/dogs/dog.1004.jpg \n", + " inflating: training_set/training_set/dogs/dog.1005.jpg \n", + " inflating: training_set/training_set/dogs/dog.1006.jpg \n", + " inflating: training_set/training_set/dogs/dog.1007.jpg \n", + " inflating: training_set/training_set/dogs/dog.1008.jpg \n", + " inflating: training_set/training_set/dogs/dog.1009.jpg \n", + " inflating: training_set/training_set/dogs/dog.101.jpg \n", + " inflating: training_set/training_set/dogs/dog.1010.jpg \n", + " inflating: training_set/training_set/dogs/dog.1011.jpg \n", + " inflating: training_set/training_set/dogs/dog.1012.jpg \n", + " inflating: training_set/training_set/dogs/dog.1013.jpg \n", + " inflating: training_set/training_set/dogs/dog.1014.jpg \n", + " inflating: training_set/training_set/dogs/dog.1015.jpg \n", + " inflating: training_set/training_set/dogs/dog.1016.jpg \n", + " inflating: training_set/training_set/dogs/dog.1017.jpg \n", + " inflating: training_set/training_set/dogs/dog.1018.jpg \n", + " inflating: training_set/training_set/dogs/dog.1019.jpg \n", + " inflating: training_set/training_set/dogs/dog.102.jpg \n", + " inflating: training_set/training_set/dogs/dog.1020.jpg \n", + " inflating: training_set/training_set/dogs/dog.1021.jpg \n", + " inflating: training_set/training_set/dogs/dog.1022.jpg \n", + " inflating: training_set/training_set/dogs/dog.1023.jpg \n", + " inflating: training_set/training_set/dogs/dog.1024.jpg \n", + " inflating: training_set/training_set/dogs/dog.1025.jpg \n", + " inflating: training_set/training_set/dogs/dog.1026.jpg \n", + " inflating: training_set/training_set/dogs/dog.1027.jpg \n", + " inflating: training_set/training_set/dogs/dog.1028.jpg \n", + " inflating: training_set/training_set/dogs/dog.1029.jpg \n", + " inflating: training_set/training_set/dogs/dog.103.jpg \n", + " inflating: training_set/training_set/dogs/dog.1030.jpg \n", + " inflating: training_set/training_set/dogs/dog.1031.jpg \n", + " inflating: training_set/training_set/dogs/dog.1032.jpg \n", + " inflating: training_set/training_set/dogs/dog.1033.jpg \n", + " inflating: training_set/training_set/dogs/dog.1034.jpg \n", + " inflating: training_set/training_set/dogs/dog.1035.jpg \n", + " inflating: training_set/training_set/dogs/dog.1036.jpg \n", + " inflating: training_set/training_set/dogs/dog.1037.jpg \n", + " inflating: training_set/training_set/dogs/dog.1038.jpg \n", + " inflating: training_set/training_set/dogs/dog.1039.jpg \n", + " inflating: training_set/training_set/dogs/dog.104.jpg \n", + " inflating: training_set/training_set/dogs/dog.1040.jpg \n", + " inflating: training_set/training_set/dogs/dog.1041.jpg \n", + " inflating: training_set/training_set/dogs/dog.1042.jpg \n", + " inflating: training_set/training_set/dogs/dog.1043.jpg \n", + " inflating: training_set/training_set/dogs/dog.1044.jpg \n", + " inflating: training_set/training_set/dogs/dog.1045.jpg \n", + " inflating: training_set/training_set/dogs/dog.1046.jpg \n", + " inflating: training_set/training_set/dogs/dog.1047.jpg \n", + " inflating: training_set/training_set/dogs/dog.1048.jpg \n", + " inflating: training_set/training_set/dogs/dog.1049.jpg \n", + " inflating: training_set/training_set/dogs/dog.105.jpg \n", + " inflating: training_set/training_set/dogs/dog.1050.jpg \n", + " inflating: training_set/training_set/dogs/dog.1051.jpg \n", + " inflating: training_set/training_set/dogs/dog.1052.jpg \n", + " inflating: training_set/training_set/dogs/dog.1053.jpg \n", + " inflating: training_set/training_set/dogs/dog.1054.jpg \n", + " inflating: training_set/training_set/dogs/dog.1055.jpg \n", + " inflating: training_set/training_set/dogs/dog.1056.jpg \n", + " inflating: training_set/training_set/dogs/dog.1057.jpg \n", + " inflating: training_set/training_set/dogs/dog.1058.jpg \n", + " inflating: training_set/training_set/dogs/dog.1059.jpg \n", + " inflating: training_set/training_set/dogs/dog.106.jpg \n", + " inflating: training_set/training_set/dogs/dog.1060.jpg \n", + " inflating: training_set/training_set/dogs/dog.1061.jpg \n", + " inflating: training_set/training_set/dogs/dog.1062.jpg \n", + " inflating: training_set/training_set/dogs/dog.1063.jpg \n", + " inflating: training_set/training_set/dogs/dog.1064.jpg \n", + " inflating: training_set/training_set/dogs/dog.1065.jpg \n", + " inflating: training_set/training_set/dogs/dog.1066.jpg \n", + " inflating: training_set/training_set/dogs/dog.1067.jpg \n", + " inflating: training_set/training_set/dogs/dog.1068.jpg \n", + " inflating: training_set/training_set/dogs/dog.1069.jpg \n", + " inflating: training_set/training_set/dogs/dog.107.jpg \n", + " inflating: training_set/training_set/dogs/dog.1070.jpg \n", + " inflating: training_set/training_set/dogs/dog.1071.jpg \n", + " inflating: training_set/training_set/dogs/dog.1072.jpg \n", + " inflating: training_set/training_set/dogs/dog.1073.jpg \n", + " inflating: training_set/training_set/dogs/dog.1074.jpg \n", + " inflating: training_set/training_set/dogs/dog.1075.jpg \n", + " inflating: training_set/training_set/dogs/dog.1076.jpg \n", + " inflating: training_set/training_set/dogs/dog.1077.jpg \n", + " inflating: training_set/training_set/dogs/dog.1078.jpg \n", + " inflating: training_set/training_set/dogs/dog.1079.jpg \n", + " inflating: training_set/training_set/dogs/dog.108.jpg \n", + " inflating: training_set/training_set/dogs/dog.1080.jpg \n", + " inflating: training_set/training_set/dogs/dog.1081.jpg \n", + " inflating: training_set/training_set/dogs/dog.1082.jpg \n", + " inflating: training_set/training_set/dogs/dog.1083.jpg \n", + " inflating: training_set/training_set/dogs/dog.1084.jpg \n", + " inflating: training_set/training_set/dogs/dog.1085.jpg \n", + " inflating: training_set/training_set/dogs/dog.1086.jpg \n", + " inflating: training_set/training_set/dogs/dog.1087.jpg \n", + " inflating: training_set/training_set/dogs/dog.1088.jpg \n", + " inflating: training_set/training_set/dogs/dog.1089.jpg \n", + " inflating: training_set/training_set/dogs/dog.109.jpg \n", + " inflating: training_set/training_set/dogs/dog.1090.jpg \n", + " inflating: training_set/training_set/dogs/dog.1091.jpg \n", + " inflating: training_set/training_set/dogs/dog.1092.jpg \n", + " inflating: training_set/training_set/dogs/dog.1093.jpg \n", + " inflating: training_set/training_set/dogs/dog.1094.jpg \n", + " inflating: training_set/training_set/dogs/dog.1095.jpg \n", + " inflating: training_set/training_set/dogs/dog.1096.jpg \n", + " inflating: training_set/training_set/dogs/dog.1097.jpg \n", + " inflating: training_set/training_set/dogs/dog.1098.jpg \n", + " inflating: training_set/training_set/dogs/dog.1099.jpg \n", + " inflating: training_set/training_set/dogs/dog.11.jpg \n", + " inflating: training_set/training_set/dogs/dog.110.jpg \n", + " inflating: training_set/training_set/dogs/dog.1100.jpg \n", + " inflating: training_set/training_set/dogs/dog.1101.jpg \n", + " inflating: training_set/training_set/dogs/dog.1102.jpg \n", + " inflating: training_set/training_set/dogs/dog.1103.jpg \n", + " inflating: training_set/training_set/dogs/dog.1104.jpg \n", + " inflating: training_set/training_set/dogs/dog.1105.jpg \n", + " inflating: training_set/training_set/dogs/dog.1106.jpg \n", + " inflating: training_set/training_set/dogs/dog.1107.jpg \n", + " inflating: training_set/training_set/dogs/dog.1108.jpg \n", + " inflating: training_set/training_set/dogs/dog.1109.jpg \n", + " inflating: training_set/training_set/dogs/dog.111.jpg \n", + " inflating: training_set/training_set/dogs/dog.1110.jpg \n", + " inflating: training_set/training_set/dogs/dog.1111.jpg \n", + " inflating: training_set/training_set/dogs/dog.1112.jpg \n", + " inflating: training_set/training_set/dogs/dog.1113.jpg \n", + " inflating: training_set/training_set/dogs/dog.1114.jpg \n", + " inflating: training_set/training_set/dogs/dog.1115.jpg \n", + " inflating: training_set/training_set/dogs/dog.1116.jpg \n", + " inflating: training_set/training_set/dogs/dog.1117.jpg \n", + " inflating: training_set/training_set/dogs/dog.1118.jpg \n", + " inflating: training_set/training_set/dogs/dog.1119.jpg \n", + " inflating: training_set/training_set/dogs/dog.112.jpg \n", + " inflating: training_set/training_set/dogs/dog.1120.jpg \n", + " inflating: training_set/training_set/dogs/dog.1121.jpg \n", + " inflating: training_set/training_set/dogs/dog.1122.jpg \n", + " inflating: training_set/training_set/dogs/dog.1123.jpg \n", + " inflating: training_set/training_set/dogs/dog.1124.jpg \n", + " inflating: training_set/training_set/dogs/dog.1125.jpg \n", + " inflating: training_set/training_set/dogs/dog.1126.jpg \n", + " inflating: training_set/training_set/dogs/dog.1127.jpg \n", + " inflating: training_set/training_set/dogs/dog.1128.jpg \n", + " inflating: training_set/training_set/dogs/dog.1129.jpg \n", + " inflating: training_set/training_set/dogs/dog.113.jpg \n", + " inflating: training_set/training_set/dogs/dog.1130.jpg \n", + " inflating: training_set/training_set/dogs/dog.1131.jpg \n", + " inflating: training_set/training_set/dogs/dog.1132.jpg \n", + " inflating: training_set/training_set/dogs/dog.1133.jpg \n", + " inflating: training_set/training_set/dogs/dog.1134.jpg \n", + " inflating: training_set/training_set/dogs/dog.1135.jpg \n", + " inflating: training_set/training_set/dogs/dog.1136.jpg \n", + " inflating: training_set/training_set/dogs/dog.1137.jpg \n", + " inflating: training_set/training_set/dogs/dog.1138.jpg \n", + " inflating: training_set/training_set/dogs/dog.1139.jpg \n", + " inflating: training_set/training_set/dogs/dog.114.jpg \n", + " inflating: training_set/training_set/dogs/dog.1140.jpg \n", + " inflating: training_set/training_set/dogs/dog.1141.jpg \n", + " inflating: training_set/training_set/dogs/dog.1142.jpg \n", + " inflating: training_set/training_set/dogs/dog.1143.jpg \n", + " inflating: training_set/training_set/dogs/dog.1144.jpg \n", + " inflating: training_set/training_set/dogs/dog.1145.jpg \n", + " inflating: training_set/training_set/dogs/dog.1146.jpg \n", + " inflating: training_set/training_set/dogs/dog.1147.jpg \n", + " inflating: training_set/training_set/dogs/dog.1148.jpg \n", + " inflating: training_set/training_set/dogs/dog.1149.jpg \n", + " inflating: training_set/training_set/dogs/dog.115.jpg \n", + " inflating: training_set/training_set/dogs/dog.1150.jpg \n", + " inflating: training_set/training_set/dogs/dog.1151.jpg \n", + " inflating: training_set/training_set/dogs/dog.1152.jpg \n", + " inflating: training_set/training_set/dogs/dog.1153.jpg \n", + " inflating: training_set/training_set/dogs/dog.1154.jpg \n", + " inflating: training_set/training_set/dogs/dog.1155.jpg \n", + " inflating: training_set/training_set/dogs/dog.1156.jpg \n", + " inflating: training_set/training_set/dogs/dog.1157.jpg \n", + " inflating: training_set/training_set/dogs/dog.1158.jpg \n", + " inflating: training_set/training_set/dogs/dog.1159.jpg \n", + " inflating: training_set/training_set/dogs/dog.116.jpg \n", + " inflating: training_set/training_set/dogs/dog.1160.jpg \n", + " inflating: training_set/training_set/dogs/dog.1161.jpg \n", + " inflating: training_set/training_set/dogs/dog.1162.jpg \n", + " inflating: training_set/training_set/dogs/dog.1163.jpg \n", + " inflating: training_set/training_set/dogs/dog.1164.jpg \n", + " inflating: training_set/training_set/dogs/dog.1165.jpg \n", + " inflating: training_set/training_set/dogs/dog.1166.jpg \n", + " inflating: training_set/training_set/dogs/dog.1167.jpg \n", + " inflating: training_set/training_set/dogs/dog.1168.jpg \n", + " inflating: training_set/training_set/dogs/dog.1169.jpg \n", + " inflating: training_set/training_set/dogs/dog.117.jpg \n", + " inflating: training_set/training_set/dogs/dog.1170.jpg \n", + " inflating: training_set/training_set/dogs/dog.1171.jpg \n", + " inflating: training_set/training_set/dogs/dog.1172.jpg \n", + " inflating: training_set/training_set/dogs/dog.1173.jpg \n", + " inflating: training_set/training_set/dogs/dog.1174.jpg \n", + " inflating: training_set/training_set/dogs/dog.1175.jpg \n", + " inflating: training_set/training_set/dogs/dog.1176.jpg \n", + " inflating: training_set/training_set/dogs/dog.1177.jpg \n", + " inflating: training_set/training_set/dogs/dog.1178.jpg \n", + " inflating: training_set/training_set/dogs/dog.1179.jpg \n", + " inflating: training_set/training_set/dogs/dog.118.jpg \n", + " inflating: training_set/training_set/dogs/dog.1180.jpg \n", + " inflating: training_set/training_set/dogs/dog.1181.jpg \n", + " inflating: training_set/training_set/dogs/dog.1182.jpg \n", + " inflating: training_set/training_set/dogs/dog.1183.jpg \n", + " inflating: training_set/training_set/dogs/dog.1184.jpg \n", + " inflating: training_set/training_set/dogs/dog.1185.jpg \n", + " inflating: training_set/training_set/dogs/dog.1186.jpg \n", + " inflating: training_set/training_set/dogs/dog.1187.jpg \n", + " inflating: training_set/training_set/dogs/dog.1188.jpg \n", + " inflating: training_set/training_set/dogs/dog.1189.jpg \n", + " inflating: training_set/training_set/dogs/dog.119.jpg \n", + " inflating: training_set/training_set/dogs/dog.1190.jpg \n", + " inflating: training_set/training_set/dogs/dog.1191.jpg \n", + " inflating: training_set/training_set/dogs/dog.1192.jpg \n", + " inflating: training_set/training_set/dogs/dog.1193.jpg \n", + " inflating: training_set/training_set/dogs/dog.1194.jpg \n", + " inflating: training_set/training_set/dogs/dog.1195.jpg \n", + " inflating: training_set/training_set/dogs/dog.1196.jpg \n", + " inflating: training_set/training_set/dogs/dog.1197.jpg \n", + " inflating: training_set/training_set/dogs/dog.1198.jpg \n", + " inflating: training_set/training_set/dogs/dog.1199.jpg \n", + " inflating: training_set/training_set/dogs/dog.12.jpg \n", + " inflating: training_set/training_set/dogs/dog.120.jpg \n", + " inflating: training_set/training_set/dogs/dog.1200.jpg \n", + " inflating: training_set/training_set/dogs/dog.1201.jpg \n", + " inflating: training_set/training_set/dogs/dog.1202.jpg \n", + " inflating: training_set/training_set/dogs/dog.1203.jpg \n", + " inflating: training_set/training_set/dogs/dog.1204.jpg \n", + " inflating: training_set/training_set/dogs/dog.1205.jpg \n", + " inflating: training_set/training_set/dogs/dog.1206.jpg \n", + " inflating: training_set/training_set/dogs/dog.1207.jpg \n", + " inflating: training_set/training_set/dogs/dog.1208.jpg \n", + " inflating: training_set/training_set/dogs/dog.1209.jpg \n", + " inflating: training_set/training_set/dogs/dog.121.jpg \n", + " inflating: training_set/training_set/dogs/dog.1210.jpg \n", + " inflating: training_set/training_set/dogs/dog.1211.jpg \n", + " inflating: training_set/training_set/dogs/dog.1212.jpg \n", + " inflating: training_set/training_set/dogs/dog.1213.jpg \n", + " inflating: training_set/training_set/dogs/dog.1214.jpg \n", + " inflating: training_set/training_set/dogs/dog.1215.jpg \n", + " inflating: training_set/training_set/dogs/dog.1216.jpg \n", + " inflating: training_set/training_set/dogs/dog.1217.jpg \n", + " inflating: training_set/training_set/dogs/dog.1218.jpg \n", + " inflating: training_set/training_set/dogs/dog.1219.jpg \n", + " inflating: training_set/training_set/dogs/dog.122.jpg \n", + " inflating: training_set/training_set/dogs/dog.1220.jpg \n", + " inflating: training_set/training_set/dogs/dog.1221.jpg \n", + " inflating: training_set/training_set/dogs/dog.1222.jpg \n", + " inflating: training_set/training_set/dogs/dog.1223.jpg \n", + " inflating: training_set/training_set/dogs/dog.1224.jpg \n", + " inflating: training_set/training_set/dogs/dog.1225.jpg \n", + " inflating: training_set/training_set/dogs/dog.1226.jpg \n", + " inflating: training_set/training_set/dogs/dog.1227.jpg \n", + " inflating: training_set/training_set/dogs/dog.1228.jpg \n", + " inflating: training_set/training_set/dogs/dog.1229.jpg \n", + " inflating: training_set/training_set/dogs/dog.123.jpg \n", + " inflating: training_set/training_set/dogs/dog.1230.jpg \n", + " inflating: training_set/training_set/dogs/dog.1231.jpg \n", + " inflating: training_set/training_set/dogs/dog.1232.jpg \n", + " inflating: training_set/training_set/dogs/dog.1233.jpg \n", + " inflating: training_set/training_set/dogs/dog.1234.jpg \n", + " inflating: training_set/training_set/dogs/dog.1235.jpg \n", + " inflating: training_set/training_set/dogs/dog.1236.jpg \n", + " inflating: training_set/training_set/dogs/dog.1237.jpg \n", + " inflating: training_set/training_set/dogs/dog.1238.jpg \n", + " inflating: training_set/training_set/dogs/dog.1239.jpg \n", + " inflating: training_set/training_set/dogs/dog.124.jpg \n", + " inflating: training_set/training_set/dogs/dog.1240.jpg \n", + " inflating: training_set/training_set/dogs/dog.1241.jpg \n", + " inflating: training_set/training_set/dogs/dog.1242.jpg \n", + " inflating: training_set/training_set/dogs/dog.1243.jpg \n", + " inflating: training_set/training_set/dogs/dog.1244.jpg \n", + " inflating: training_set/training_set/dogs/dog.1245.jpg \n", + " inflating: training_set/training_set/dogs/dog.1246.jpg \n", + " inflating: training_set/training_set/dogs/dog.1247.jpg \n", + " inflating: training_set/training_set/dogs/dog.1248.jpg \n", + " inflating: training_set/training_set/dogs/dog.1249.jpg \n", + " inflating: training_set/training_set/dogs/dog.125.jpg \n", + " inflating: training_set/training_set/dogs/dog.1250.jpg \n", + " inflating: training_set/training_set/dogs/dog.1251.jpg \n", + " inflating: training_set/training_set/dogs/dog.1252.jpg \n", + " inflating: training_set/training_set/dogs/dog.1253.jpg \n", + " inflating: training_set/training_set/dogs/dog.1254.jpg \n", + " inflating: training_set/training_set/dogs/dog.1255.jpg \n", + " inflating: training_set/training_set/dogs/dog.1256.jpg \n", + " inflating: training_set/training_set/dogs/dog.1257.jpg \n", + " inflating: training_set/training_set/dogs/dog.1258.jpg \n", + " inflating: training_set/training_set/dogs/dog.1259.jpg \n", + " inflating: training_set/training_set/dogs/dog.126.jpg \n", + " inflating: training_set/training_set/dogs/dog.1260.jpg \n", + " inflating: training_set/training_set/dogs/dog.1261.jpg \n", + " inflating: training_set/training_set/dogs/dog.1262.jpg \n", + " inflating: training_set/training_set/dogs/dog.1263.jpg \n", + " inflating: training_set/training_set/dogs/dog.1264.jpg \n", + " inflating: training_set/training_set/dogs/dog.1265.jpg \n", + " inflating: training_set/training_set/dogs/dog.1266.jpg \n", + " inflating: training_set/training_set/dogs/dog.1267.jpg \n", + " inflating: training_set/training_set/dogs/dog.1268.jpg \n", + " inflating: training_set/training_set/dogs/dog.1269.jpg \n", + " inflating: training_set/training_set/dogs/dog.127.jpg \n", + " inflating: training_set/training_set/dogs/dog.1270.jpg \n", + " inflating: training_set/training_set/dogs/dog.1271.jpg \n", + " inflating: training_set/training_set/dogs/dog.1272.jpg \n", + " inflating: training_set/training_set/dogs/dog.1273.jpg \n", + " inflating: training_set/training_set/dogs/dog.1274.jpg \n", + " inflating: training_set/training_set/dogs/dog.1275.jpg \n", + " inflating: training_set/training_set/dogs/dog.1276.jpg \n", + " inflating: training_set/training_set/dogs/dog.1277.jpg \n", + " inflating: training_set/training_set/dogs/dog.1278.jpg \n", + " inflating: training_set/training_set/dogs/dog.1279.jpg \n", + " inflating: training_set/training_set/dogs/dog.128.jpg \n", + " inflating: training_set/training_set/dogs/dog.1280.jpg \n", + " inflating: training_set/training_set/dogs/dog.1281.jpg \n", + " inflating: training_set/training_set/dogs/dog.1282.jpg \n", + " inflating: training_set/training_set/dogs/dog.1283.jpg \n", + " inflating: training_set/training_set/dogs/dog.1284.jpg \n", + " inflating: training_set/training_set/dogs/dog.1285.jpg \n", + " inflating: training_set/training_set/dogs/dog.1286.jpg \n", + " inflating: training_set/training_set/dogs/dog.1287.jpg \n", + " inflating: training_set/training_set/dogs/dog.1288.jpg \n", + " inflating: training_set/training_set/dogs/dog.1289.jpg \n", + " inflating: training_set/training_set/dogs/dog.129.jpg \n", + " inflating: training_set/training_set/dogs/dog.1290.jpg \n", + " inflating: training_set/training_set/dogs/dog.1291.jpg \n", + " inflating: training_set/training_set/dogs/dog.1292.jpg \n", + " inflating: training_set/training_set/dogs/dog.1293.jpg \n", + " inflating: training_set/training_set/dogs/dog.1294.jpg \n", + " inflating: training_set/training_set/dogs/dog.1295.jpg \n", + " inflating: training_set/training_set/dogs/dog.1296.jpg \n", + " inflating: training_set/training_set/dogs/dog.1297.jpg \n", + " inflating: training_set/training_set/dogs/dog.1298.jpg \n", + " inflating: training_set/training_set/dogs/dog.1299.jpg \n", + " inflating: training_set/training_set/dogs/dog.13.jpg \n", + " inflating: training_set/training_set/dogs/dog.130.jpg \n", + " inflating: training_set/training_set/dogs/dog.1300.jpg \n", + " inflating: training_set/training_set/dogs/dog.1301.jpg \n", + " inflating: training_set/training_set/dogs/dog.1302.jpg \n", + " inflating: training_set/training_set/dogs/dog.1303.jpg \n", + " inflating: training_set/training_set/dogs/dog.1304.jpg \n", + " inflating: training_set/training_set/dogs/dog.1305.jpg \n", + " inflating: training_set/training_set/dogs/dog.1306.jpg \n", + " inflating: training_set/training_set/dogs/dog.1307.jpg \n", + " inflating: training_set/training_set/dogs/dog.1308.jpg \n", + " inflating: training_set/training_set/dogs/dog.1309.jpg \n", + " inflating: training_set/training_set/dogs/dog.131.jpg \n", + " inflating: training_set/training_set/dogs/dog.1310.jpg \n", + " inflating: training_set/training_set/dogs/dog.1311.jpg \n", + " inflating: training_set/training_set/dogs/dog.1312.jpg \n", + " inflating: training_set/training_set/dogs/dog.1313.jpg \n", + " inflating: training_set/training_set/dogs/dog.1314.jpg \n", + " inflating: training_set/training_set/dogs/dog.1315.jpg \n", + " inflating: training_set/training_set/dogs/dog.1316.jpg \n", + " inflating: training_set/training_set/dogs/dog.1317.jpg \n", + " inflating: training_set/training_set/dogs/dog.1318.jpg \n", + " inflating: training_set/training_set/dogs/dog.1319.jpg \n", + " inflating: training_set/training_set/dogs/dog.132.jpg \n", + " inflating: training_set/training_set/dogs/dog.1320.jpg \n", + " inflating: training_set/training_set/dogs/dog.1321.jpg \n", + " inflating: training_set/training_set/dogs/dog.1322.jpg \n", + " inflating: training_set/training_set/dogs/dog.1323.jpg \n", + " inflating: training_set/training_set/dogs/dog.1324.jpg \n", + " inflating: training_set/training_set/dogs/dog.1325.jpg \n", + " inflating: training_set/training_set/dogs/dog.1326.jpg \n", + " inflating: training_set/training_set/dogs/dog.1327.jpg \n", + " inflating: training_set/training_set/dogs/dog.1328.jpg \n", + " inflating: training_set/training_set/dogs/dog.1329.jpg \n", + " inflating: training_set/training_set/dogs/dog.133.jpg \n", + " inflating: training_set/training_set/dogs/dog.1330.jpg \n", + " inflating: training_set/training_set/dogs/dog.1331.jpg \n", + " inflating: training_set/training_set/dogs/dog.1332.jpg \n", + " inflating: training_set/training_set/dogs/dog.1333.jpg \n", + " inflating: training_set/training_set/dogs/dog.1334.jpg \n", + " inflating: training_set/training_set/dogs/dog.1335.jpg \n", + " inflating: training_set/training_set/dogs/dog.1336.jpg \n", + " inflating: training_set/training_set/dogs/dog.1337.jpg \n", + " inflating: training_set/training_set/dogs/dog.1338.jpg \n", + " inflating: training_set/training_set/dogs/dog.1339.jpg \n", + " inflating: training_set/training_set/dogs/dog.134.jpg \n", + " inflating: training_set/training_set/dogs/dog.1340.jpg \n", + " inflating: training_set/training_set/dogs/dog.1341.jpg \n", + " inflating: training_set/training_set/dogs/dog.1342.jpg \n", + " inflating: training_set/training_set/dogs/dog.1343.jpg \n", + " inflating: training_set/training_set/dogs/dog.1344.jpg \n", + " inflating: training_set/training_set/dogs/dog.1345.jpg \n", + " inflating: training_set/training_set/dogs/dog.1346.jpg \n", + " inflating: training_set/training_set/dogs/dog.1347.jpg \n", + " inflating: training_set/training_set/dogs/dog.1348.jpg \n", + " inflating: training_set/training_set/dogs/dog.1349.jpg \n", + " inflating: training_set/training_set/dogs/dog.135.jpg \n", + " inflating: training_set/training_set/dogs/dog.1350.jpg \n", + " inflating: training_set/training_set/dogs/dog.1351.jpg \n", + " inflating: training_set/training_set/dogs/dog.1352.jpg \n", + " inflating: training_set/training_set/dogs/dog.1353.jpg \n", + " inflating: training_set/training_set/dogs/dog.1354.jpg \n", + " inflating: training_set/training_set/dogs/dog.1355.jpg \n", + " inflating: training_set/training_set/dogs/dog.1356.jpg \n", + " inflating: training_set/training_set/dogs/dog.1357.jpg \n", + " inflating: training_set/training_set/dogs/dog.1358.jpg \n", + " inflating: training_set/training_set/dogs/dog.1359.jpg \n", + " inflating: training_set/training_set/dogs/dog.136.jpg \n", + " inflating: training_set/training_set/dogs/dog.1360.jpg \n", + " inflating: training_set/training_set/dogs/dog.1361.jpg \n", + " inflating: training_set/training_set/dogs/dog.1362.jpg \n", + " inflating: training_set/training_set/dogs/dog.1363.jpg \n", + " inflating: training_set/training_set/dogs/dog.1364.jpg \n", + " inflating: training_set/training_set/dogs/dog.1365.jpg \n", + " inflating: training_set/training_set/dogs/dog.1366.jpg \n", + " inflating: training_set/training_set/dogs/dog.1367.jpg \n", + " inflating: training_set/training_set/dogs/dog.1368.jpg \n", + " inflating: training_set/training_set/dogs/dog.1369.jpg \n", + " inflating: training_set/training_set/dogs/dog.137.jpg \n", + " inflating: training_set/training_set/dogs/dog.1370.jpg \n", + " inflating: training_set/training_set/dogs/dog.1371.jpg \n", + " inflating: training_set/training_set/dogs/dog.1372.jpg \n", + " inflating: training_set/training_set/dogs/dog.1373.jpg \n", + " inflating: training_set/training_set/dogs/dog.1374.jpg \n", + " inflating: training_set/training_set/dogs/dog.1375.jpg \n", + " inflating: training_set/training_set/dogs/dog.1376.jpg \n", + " inflating: training_set/training_set/dogs/dog.1377.jpg \n", + " inflating: training_set/training_set/dogs/dog.1378.jpg \n", + " inflating: training_set/training_set/dogs/dog.1379.jpg \n", + " inflating: training_set/training_set/dogs/dog.138.jpg \n", + " inflating: training_set/training_set/dogs/dog.1380.jpg \n", + " inflating: training_set/training_set/dogs/dog.1381.jpg \n", + " inflating: training_set/training_set/dogs/dog.1382.jpg \n", + " inflating: training_set/training_set/dogs/dog.1383.jpg \n", + " inflating: training_set/training_set/dogs/dog.1384.jpg \n", + " inflating: training_set/training_set/dogs/dog.1385.jpg \n", + " inflating: training_set/training_set/dogs/dog.1386.jpg \n", + " inflating: training_set/training_set/dogs/dog.1387.jpg \n", + " inflating: training_set/training_set/dogs/dog.1388.jpg \n", + " inflating: training_set/training_set/dogs/dog.1389.jpg \n", + " inflating: training_set/training_set/dogs/dog.139.jpg \n", + " inflating: training_set/training_set/dogs/dog.1390.jpg \n", + " inflating: training_set/training_set/dogs/dog.1391.jpg \n", + " inflating: training_set/training_set/dogs/dog.1392.jpg \n", + " inflating: training_set/training_set/dogs/dog.1393.jpg \n", + " inflating: training_set/training_set/dogs/dog.1394.jpg \n", + " inflating: training_set/training_set/dogs/dog.1395.jpg \n", + " inflating: training_set/training_set/dogs/dog.1396.jpg \n", + " inflating: training_set/training_set/dogs/dog.1397.jpg \n", + " inflating: training_set/training_set/dogs/dog.1398.jpg \n", + " inflating: training_set/training_set/dogs/dog.1399.jpg \n", + " inflating: training_set/training_set/dogs/dog.14.jpg \n", + " inflating: training_set/training_set/dogs/dog.140.jpg \n", + " inflating: training_set/training_set/dogs/dog.1400.jpg \n", + " inflating: training_set/training_set/dogs/dog.1401.jpg \n", + " inflating: training_set/training_set/dogs/dog.1402.jpg \n", + " inflating: training_set/training_set/dogs/dog.1403.jpg \n", + " inflating: training_set/training_set/dogs/dog.1404.jpg \n", + " inflating: training_set/training_set/dogs/dog.1405.jpg \n", + " inflating: training_set/training_set/dogs/dog.1406.jpg \n", + " inflating: training_set/training_set/dogs/dog.1407.jpg \n", + " inflating: training_set/training_set/dogs/dog.1408.jpg \n", + " inflating: training_set/training_set/dogs/dog.1409.jpg \n", + " inflating: training_set/training_set/dogs/dog.141.jpg \n", + " inflating: training_set/training_set/dogs/dog.1410.jpg \n", + " inflating: training_set/training_set/dogs/dog.1411.jpg \n", + " inflating: training_set/training_set/dogs/dog.1412.jpg \n", + " inflating: training_set/training_set/dogs/dog.1413.jpg \n", + " inflating: training_set/training_set/dogs/dog.1414.jpg \n", + " inflating: training_set/training_set/dogs/dog.1415.jpg \n", + " inflating: training_set/training_set/dogs/dog.1416.jpg \n", + " inflating: training_set/training_set/dogs/dog.1417.jpg \n", + " inflating: training_set/training_set/dogs/dog.1418.jpg \n", + " inflating: training_set/training_set/dogs/dog.1419.jpg \n", + " inflating: training_set/training_set/dogs/dog.142.jpg \n", + " inflating: training_set/training_set/dogs/dog.1420.jpg \n", + " inflating: training_set/training_set/dogs/dog.1421.jpg \n", + " inflating: training_set/training_set/dogs/dog.1422.jpg \n", + " inflating: training_set/training_set/dogs/dog.1423.jpg \n", + " inflating: training_set/training_set/dogs/dog.1424.jpg \n", + " inflating: training_set/training_set/dogs/dog.1425.jpg \n", + " inflating: training_set/training_set/dogs/dog.1426.jpg \n", + " inflating: training_set/training_set/dogs/dog.1427.jpg \n", + " inflating: training_set/training_set/dogs/dog.1428.jpg \n", + " inflating: training_set/training_set/dogs/dog.1429.jpg \n", + " inflating: training_set/training_set/dogs/dog.143.jpg \n", + " inflating: training_set/training_set/dogs/dog.1430.jpg \n", + " inflating: training_set/training_set/dogs/dog.1431.jpg \n", + " inflating: training_set/training_set/dogs/dog.1432.jpg \n", + " inflating: training_set/training_set/dogs/dog.1433.jpg \n", + " inflating: training_set/training_set/dogs/dog.1434.jpg \n", + " inflating: training_set/training_set/dogs/dog.1435.jpg \n", + " inflating: training_set/training_set/dogs/dog.1436.jpg \n", + " inflating: training_set/training_set/dogs/dog.1437.jpg \n", + " inflating: training_set/training_set/dogs/dog.1438.jpg \n", + " inflating: training_set/training_set/dogs/dog.1439.jpg \n", + " inflating: training_set/training_set/dogs/dog.144.jpg \n", + " inflating: training_set/training_set/dogs/dog.1440.jpg \n", + " inflating: training_set/training_set/dogs/dog.1441.jpg \n", + " inflating: training_set/training_set/dogs/dog.1442.jpg \n", + " inflating: training_set/training_set/dogs/dog.1443.jpg \n", + " inflating: training_set/training_set/dogs/dog.1444.jpg \n", + " inflating: training_set/training_set/dogs/dog.1445.jpg \n", + " inflating: training_set/training_set/dogs/dog.1446.jpg \n", + " inflating: training_set/training_set/dogs/dog.1447.jpg \n", + " inflating: training_set/training_set/dogs/dog.1448.jpg \n", + " inflating: training_set/training_set/dogs/dog.1449.jpg \n", + " inflating: training_set/training_set/dogs/dog.145.jpg \n", + " inflating: training_set/training_set/dogs/dog.1450.jpg \n", + " inflating: training_set/training_set/dogs/dog.1451.jpg \n", + " inflating: training_set/training_set/dogs/dog.1452.jpg \n", + " inflating: training_set/training_set/dogs/dog.1453.jpg \n", + " inflating: training_set/training_set/dogs/dog.1454.jpg \n", + " inflating: training_set/training_set/dogs/dog.1455.jpg \n", + " inflating: training_set/training_set/dogs/dog.1456.jpg \n", + " inflating: training_set/training_set/dogs/dog.1457.jpg \n", + " inflating: training_set/training_set/dogs/dog.1458.jpg \n", + " inflating: training_set/training_set/dogs/dog.1459.jpg \n", + " inflating: training_set/training_set/dogs/dog.146.jpg \n", + " inflating: training_set/training_set/dogs/dog.1460.jpg \n", + " inflating: training_set/training_set/dogs/dog.1461.jpg \n", + " inflating: training_set/training_set/dogs/dog.1462.jpg \n", + " inflating: training_set/training_set/dogs/dog.1463.jpg \n", + " inflating: training_set/training_set/dogs/dog.1464.jpg \n", + " inflating: training_set/training_set/dogs/dog.1465.jpg \n", + " inflating: training_set/training_set/dogs/dog.1466.jpg \n", + " inflating: training_set/training_set/dogs/dog.1467.jpg \n", + " inflating: training_set/training_set/dogs/dog.1468.jpg \n", + " inflating: training_set/training_set/dogs/dog.1469.jpg \n", + " inflating: training_set/training_set/dogs/dog.147.jpg \n", + " inflating: training_set/training_set/dogs/dog.1470.jpg \n", + " inflating: training_set/training_set/dogs/dog.1471.jpg \n", + " inflating: training_set/training_set/dogs/dog.1472.jpg \n", + " inflating: training_set/training_set/dogs/dog.1473.jpg \n", + " inflating: training_set/training_set/dogs/dog.1474.jpg \n", + " inflating: training_set/training_set/dogs/dog.1475.jpg \n", + " inflating: training_set/training_set/dogs/dog.1476.jpg \n", + " inflating: training_set/training_set/dogs/dog.1477.jpg \n", + " inflating: training_set/training_set/dogs/dog.1478.jpg \n", + " inflating: training_set/training_set/dogs/dog.1479.jpg \n", + " inflating: training_set/training_set/dogs/dog.148.jpg \n", + " inflating: training_set/training_set/dogs/dog.1480.jpg \n", + " inflating: training_set/training_set/dogs/dog.1481.jpg \n", + " inflating: training_set/training_set/dogs/dog.1482.jpg \n", + " inflating: training_set/training_set/dogs/dog.1483.jpg \n", + " inflating: training_set/training_set/dogs/dog.1484.jpg \n", + " inflating: training_set/training_set/dogs/dog.1485.jpg \n", + " inflating: training_set/training_set/dogs/dog.1486.jpg \n", + " inflating: training_set/training_set/dogs/dog.1487.jpg \n", + " inflating: training_set/training_set/dogs/dog.1488.jpg \n", + " inflating: training_set/training_set/dogs/dog.1489.jpg \n", + " inflating: training_set/training_set/dogs/dog.149.jpg \n", + " inflating: training_set/training_set/dogs/dog.1490.jpg \n", + " inflating: training_set/training_set/dogs/dog.1491.jpg \n", + " inflating: training_set/training_set/dogs/dog.1492.jpg \n", + " inflating: training_set/training_set/dogs/dog.1493.jpg \n", + " inflating: training_set/training_set/dogs/dog.1494.jpg \n", + " inflating: training_set/training_set/dogs/dog.1495.jpg \n", + " inflating: training_set/training_set/dogs/dog.1496.jpg \n", + " inflating: training_set/training_set/dogs/dog.1497.jpg \n", + " inflating: training_set/training_set/dogs/dog.1498.jpg \n", + " inflating: training_set/training_set/dogs/dog.1499.jpg \n", + " inflating: training_set/training_set/dogs/dog.15.jpg \n", + " inflating: training_set/training_set/dogs/dog.150.jpg \n", + " inflating: training_set/training_set/dogs/dog.1500.jpg \n", + " inflating: training_set/training_set/dogs/dog.1501.jpg \n", + " inflating: training_set/training_set/dogs/dog.1502.jpg \n", + " inflating: training_set/training_set/dogs/dog.1503.jpg \n", + " inflating: training_set/training_set/dogs/dog.1504.jpg \n", + " inflating: training_set/training_set/dogs/dog.1505.jpg \n", + " inflating: training_set/training_set/dogs/dog.1506.jpg \n", + " inflating: training_set/training_set/dogs/dog.1507.jpg \n", + " inflating: training_set/training_set/dogs/dog.1508.jpg \n", + " inflating: training_set/training_set/dogs/dog.1509.jpg \n", + " inflating: training_set/training_set/dogs/dog.151.jpg \n", + " inflating: training_set/training_set/dogs/dog.1510.jpg \n", + " inflating: training_set/training_set/dogs/dog.1511.jpg \n", + " inflating: training_set/training_set/dogs/dog.1512.jpg \n", + " inflating: training_set/training_set/dogs/dog.1513.jpg \n", + " inflating: training_set/training_set/dogs/dog.1514.jpg \n", + " inflating: training_set/training_set/dogs/dog.1515.jpg \n", + " inflating: training_set/training_set/dogs/dog.1516.jpg \n", + " inflating: training_set/training_set/dogs/dog.1517.jpg \n", + " inflating: training_set/training_set/dogs/dog.1518.jpg \n", + " inflating: training_set/training_set/dogs/dog.1519.jpg \n", + " inflating: training_set/training_set/dogs/dog.152.jpg \n", + " inflating: training_set/training_set/dogs/dog.1520.jpg \n", + " inflating: training_set/training_set/dogs/dog.1521.jpg \n", + " inflating: training_set/training_set/dogs/dog.1522.jpg \n", + " inflating: training_set/training_set/dogs/dog.1523.jpg \n", + " inflating: training_set/training_set/dogs/dog.1524.jpg \n", + " inflating: training_set/training_set/dogs/dog.1525.jpg \n", + " inflating: training_set/training_set/dogs/dog.1526.jpg \n", + " inflating: training_set/training_set/dogs/dog.1527.jpg \n", + " inflating: training_set/training_set/dogs/dog.1528.jpg \n", + " inflating: training_set/training_set/dogs/dog.1529.jpg \n", + " inflating: training_set/training_set/dogs/dog.153.jpg \n", + " inflating: training_set/training_set/dogs/dog.1530.jpg \n", + " inflating: training_set/training_set/dogs/dog.1531.jpg \n", + " inflating: training_set/training_set/dogs/dog.1532.jpg \n", + " inflating: training_set/training_set/dogs/dog.1533.jpg \n", + " inflating: training_set/training_set/dogs/dog.1534.jpg \n", + " inflating: training_set/training_set/dogs/dog.1535.jpg \n", + " inflating: training_set/training_set/dogs/dog.1536.jpg \n", + " inflating: training_set/training_set/dogs/dog.1537.jpg \n", + " inflating: training_set/training_set/dogs/dog.1538.jpg \n", + " inflating: training_set/training_set/dogs/dog.1539.jpg \n", + " inflating: training_set/training_set/dogs/dog.154.jpg \n", + " inflating: training_set/training_set/dogs/dog.1540.jpg \n", + " inflating: training_set/training_set/dogs/dog.1541.jpg \n", + " inflating: training_set/training_set/dogs/dog.1542.jpg \n", + " inflating: training_set/training_set/dogs/dog.1543.jpg \n", + " inflating: training_set/training_set/dogs/dog.1544.jpg \n", + " inflating: training_set/training_set/dogs/dog.1545.jpg \n", + " inflating: training_set/training_set/dogs/dog.1546.jpg \n", + " inflating: training_set/training_set/dogs/dog.1547.jpg \n", + " inflating: training_set/training_set/dogs/dog.1548.jpg \n", + " inflating: training_set/training_set/dogs/dog.1549.jpg \n", + " inflating: training_set/training_set/dogs/dog.155.jpg \n", + " inflating: training_set/training_set/dogs/dog.1550.jpg \n", + " inflating: training_set/training_set/dogs/dog.1551.jpg \n", + " inflating: training_set/training_set/dogs/dog.1552.jpg \n", + " inflating: training_set/training_set/dogs/dog.1553.jpg \n", + " inflating: training_set/training_set/dogs/dog.1554.jpg \n", + " inflating: training_set/training_set/dogs/dog.1555.jpg \n", + " inflating: training_set/training_set/dogs/dog.1556.jpg \n", + " inflating: training_set/training_set/dogs/dog.1557.jpg \n", + " inflating: training_set/training_set/dogs/dog.1558.jpg \n", + " inflating: training_set/training_set/dogs/dog.1559.jpg \n", + " inflating: training_set/training_set/dogs/dog.156.jpg \n", + " inflating: training_set/training_set/dogs/dog.1560.jpg \n", + " inflating: training_set/training_set/dogs/dog.1561.jpg \n", + " inflating: training_set/training_set/dogs/dog.1562.jpg \n", + " inflating: training_set/training_set/dogs/dog.1563.jpg \n", + " inflating: training_set/training_set/dogs/dog.1564.jpg \n", + " inflating: training_set/training_set/dogs/dog.1565.jpg \n", + " inflating: training_set/training_set/dogs/dog.1566.jpg \n", + " inflating: training_set/training_set/dogs/dog.1567.jpg \n", + " inflating: training_set/training_set/dogs/dog.1568.jpg \n", + " inflating: training_set/training_set/dogs/dog.1569.jpg \n", + " inflating: training_set/training_set/dogs/dog.157.jpg \n", + " inflating: training_set/training_set/dogs/dog.1570.jpg \n", + " inflating: training_set/training_set/dogs/dog.1571.jpg \n", + " inflating: training_set/training_set/dogs/dog.1572.jpg \n", + " inflating: training_set/training_set/dogs/dog.1573.jpg \n", + " inflating: training_set/training_set/dogs/dog.1574.jpg \n", + " inflating: training_set/training_set/dogs/dog.1575.jpg \n", + " inflating: training_set/training_set/dogs/dog.1576.jpg \n", + " inflating: training_set/training_set/dogs/dog.1577.jpg \n", + " inflating: training_set/training_set/dogs/dog.1578.jpg \n", + " inflating: training_set/training_set/dogs/dog.1579.jpg \n", + " inflating: training_set/training_set/dogs/dog.158.jpg \n", + " inflating: training_set/training_set/dogs/dog.1580.jpg \n", + " inflating: training_set/training_set/dogs/dog.1581.jpg \n", + " inflating: training_set/training_set/dogs/dog.1582.jpg \n", + " inflating: training_set/training_set/dogs/dog.1583.jpg \n", + " inflating: training_set/training_set/dogs/dog.1584.jpg \n", + " inflating: training_set/training_set/dogs/dog.1585.jpg \n", + " inflating: training_set/training_set/dogs/dog.1586.jpg \n", + " inflating: training_set/training_set/dogs/dog.1587.jpg \n", + " inflating: training_set/training_set/dogs/dog.1588.jpg \n", + " inflating: training_set/training_set/dogs/dog.1589.jpg \n", + " inflating: training_set/training_set/dogs/dog.159.jpg \n", + " inflating: training_set/training_set/dogs/dog.1590.jpg \n", + " inflating: training_set/training_set/dogs/dog.1591.jpg \n", + " inflating: training_set/training_set/dogs/dog.1592.jpg \n", + " inflating: training_set/training_set/dogs/dog.1593.jpg \n", + " inflating: training_set/training_set/dogs/dog.1594.jpg \n", + " inflating: training_set/training_set/dogs/dog.1595.jpg \n", + " inflating: training_set/training_set/dogs/dog.1596.jpg \n", + " inflating: training_set/training_set/dogs/dog.1597.jpg \n", + " inflating: training_set/training_set/dogs/dog.1598.jpg \n", + " inflating: training_set/training_set/dogs/dog.1599.jpg \n", + " inflating: training_set/training_set/dogs/dog.16.jpg \n", + " inflating: training_set/training_set/dogs/dog.160.jpg \n", + " inflating: training_set/training_set/dogs/dog.1600.jpg \n", + " inflating: training_set/training_set/dogs/dog.1601.jpg \n", + " inflating: training_set/training_set/dogs/dog.1602.jpg \n", + " inflating: training_set/training_set/dogs/dog.1603.jpg \n", + " inflating: training_set/training_set/dogs/dog.1604.jpg \n", + " inflating: training_set/training_set/dogs/dog.1605.jpg \n", + " inflating: training_set/training_set/dogs/dog.1606.jpg \n", + " inflating: training_set/training_set/dogs/dog.1607.jpg \n", + " inflating: training_set/training_set/dogs/dog.1608.jpg \n", + " inflating: training_set/training_set/dogs/dog.1609.jpg \n", + " inflating: training_set/training_set/dogs/dog.161.jpg \n", + " inflating: training_set/training_set/dogs/dog.1610.jpg \n", + " inflating: training_set/training_set/dogs/dog.1611.jpg \n", + " inflating: training_set/training_set/dogs/dog.1612.jpg \n", + " inflating: training_set/training_set/dogs/dog.1613.jpg \n", + " inflating: training_set/training_set/dogs/dog.1614.jpg \n", + " inflating: training_set/training_set/dogs/dog.1615.jpg \n", + " inflating: training_set/training_set/dogs/dog.1616.jpg \n", + " inflating: training_set/training_set/dogs/dog.1617.jpg \n", + " inflating: training_set/training_set/dogs/dog.1618.jpg \n", + " inflating: training_set/training_set/dogs/dog.1619.jpg \n", + " inflating: training_set/training_set/dogs/dog.162.jpg \n", + " inflating: training_set/training_set/dogs/dog.1620.jpg \n", + " inflating: training_set/training_set/dogs/dog.1621.jpg \n", + " inflating: training_set/training_set/dogs/dog.1622.jpg \n", + " inflating: training_set/training_set/dogs/dog.1623.jpg \n", + " inflating: training_set/training_set/dogs/dog.1624.jpg \n", + " inflating: training_set/training_set/dogs/dog.1625.jpg \n", + " inflating: training_set/training_set/dogs/dog.1626.jpg \n", + " inflating: training_set/training_set/dogs/dog.1627.jpg \n", + " inflating: training_set/training_set/dogs/dog.1628.jpg \n", + " inflating: training_set/training_set/dogs/dog.1629.jpg \n", + " inflating: training_set/training_set/dogs/dog.163.jpg \n", + " inflating: training_set/training_set/dogs/dog.1630.jpg \n", + " inflating: training_set/training_set/dogs/dog.1631.jpg \n", + " inflating: training_set/training_set/dogs/dog.1632.jpg \n", + " inflating: training_set/training_set/dogs/dog.1633.jpg \n", + " inflating: training_set/training_set/dogs/dog.1634.jpg \n", + " inflating: training_set/training_set/dogs/dog.1635.jpg \n", + " inflating: training_set/training_set/dogs/dog.1636.jpg \n", + " inflating: training_set/training_set/dogs/dog.1637.jpg \n", + " inflating: training_set/training_set/dogs/dog.1638.jpg \n", + " inflating: training_set/training_set/dogs/dog.1639.jpg \n", + " inflating: training_set/training_set/dogs/dog.164.jpg \n", + " inflating: training_set/training_set/dogs/dog.1640.jpg \n", + " inflating: training_set/training_set/dogs/dog.1641.jpg \n", + " inflating: training_set/training_set/dogs/dog.1642(1).jpg \n", + " inflating: training_set/training_set/dogs/dog.1642.jpg \n", + " inflating: training_set/training_set/dogs/dog.1643.jpg \n", + " inflating: training_set/training_set/dogs/dog.1644.jpg \n", + " inflating: training_set/training_set/dogs/dog.1645.jpg \n", + " inflating: training_set/training_set/dogs/dog.1646.jpg \n", + " inflating: training_set/training_set/dogs/dog.1647.jpg \n", + " inflating: training_set/training_set/dogs/dog.1648.jpg \n", + " inflating: training_set/training_set/dogs/dog.1649.jpg \n", + " inflating: training_set/training_set/dogs/dog.165.jpg \n", + " inflating: training_set/training_set/dogs/dog.1650.jpg \n", + " inflating: training_set/training_set/dogs/dog.1651.jpg \n", + " inflating: training_set/training_set/dogs/dog.1652.jpg \n", + " inflating: training_set/training_set/dogs/dog.1653.jpg \n", + " inflating: training_set/training_set/dogs/dog.1654.jpg \n", + " inflating: training_set/training_set/dogs/dog.1655.jpg \n", + " inflating: training_set/training_set/dogs/dog.1656.jpg \n", + " inflating: training_set/training_set/dogs/dog.1657.jpg \n", + " inflating: training_set/training_set/dogs/dog.1658.jpg \n", + " inflating: training_set/training_set/dogs/dog.1659.jpg \n", + " inflating: training_set/training_set/dogs/dog.166.jpg \n", + " inflating: training_set/training_set/dogs/dog.1660.jpg \n", + " inflating: training_set/training_set/dogs/dog.1661.jpg \n", + " inflating: training_set/training_set/dogs/dog.1662.jpg \n", + " inflating: training_set/training_set/dogs/dog.1663.jpg \n", + " inflating: training_set/training_set/dogs/dog.1664.jpg \n", + " inflating: training_set/training_set/dogs/dog.1665.jpg \n", + " inflating: training_set/training_set/dogs/dog.1666.jpg \n", + " inflating: training_set/training_set/dogs/dog.1667.jpg \n", + " inflating: training_set/training_set/dogs/dog.1668.jpg \n", + " inflating: training_set/training_set/dogs/dog.1669.jpg \n", + " inflating: training_set/training_set/dogs/dog.167.jpg \n", + " inflating: training_set/training_set/dogs/dog.1670.jpg \n", + " inflating: training_set/training_set/dogs/dog.1671.jpg \n", + " inflating: training_set/training_set/dogs/dog.1672.jpg \n", + " inflating: training_set/training_set/dogs/dog.1673.jpg \n", + " inflating: training_set/training_set/dogs/dog.1674.jpg \n", + " inflating: training_set/training_set/dogs/dog.1675.jpg \n", + " inflating: training_set/training_set/dogs/dog.1676.jpg \n", + " inflating: training_set/training_set/dogs/dog.1677.jpg \n", + " inflating: training_set/training_set/dogs/dog.1678.jpg \n", + " inflating: training_set/training_set/dogs/dog.1679.jpg \n", + " inflating: training_set/training_set/dogs/dog.168.jpg \n", + " inflating: training_set/training_set/dogs/dog.1680.jpg \n", + " inflating: training_set/training_set/dogs/dog.1681.jpg \n", + " inflating: training_set/training_set/dogs/dog.1682.jpg \n", + " inflating: training_set/training_set/dogs/dog.1683.jpg \n", + " inflating: training_set/training_set/dogs/dog.1684.jpg \n", + " inflating: training_set/training_set/dogs/dog.1685.jpg \n", + " inflating: training_set/training_set/dogs/dog.1686.jpg \n", + " inflating: training_set/training_set/dogs/dog.1687.jpg \n", + " inflating: training_set/training_set/dogs/dog.1688.jpg \n", + " inflating: training_set/training_set/dogs/dog.1689.jpg \n", + " inflating: training_set/training_set/dogs/dog.169.jpg \n", + " inflating: training_set/training_set/dogs/dog.1690.jpg \n", + " inflating: training_set/training_set/dogs/dog.1691.jpg \n", + " inflating: training_set/training_set/dogs/dog.1692.jpg \n", + " inflating: training_set/training_set/dogs/dog.1693.jpg \n", + " inflating: training_set/training_set/dogs/dog.1694.jpg \n", + " inflating: training_set/training_set/dogs/dog.1695.jpg \n", + " inflating: training_set/training_set/dogs/dog.1696.jpg \n", + " inflating: training_set/training_set/dogs/dog.1697.jpg \n", + " inflating: training_set/training_set/dogs/dog.1698.jpg \n", + " inflating: training_set/training_set/dogs/dog.1699.jpg \n", + " inflating: training_set/training_set/dogs/dog.17.jpg \n", + " inflating: training_set/training_set/dogs/dog.170.jpg \n", + " inflating: training_set/training_set/dogs/dog.1700.jpg \n", + " inflating: training_set/training_set/dogs/dog.1701.jpg \n", + " inflating: training_set/training_set/dogs/dog.1702.jpg \n", + " inflating: training_set/training_set/dogs/dog.1703.jpg \n", + " inflating: training_set/training_set/dogs/dog.1704.jpg \n", + " inflating: training_set/training_set/dogs/dog.1705.jpg \n", + " inflating: training_set/training_set/dogs/dog.1706.jpg \n", + " inflating: training_set/training_set/dogs/dog.1707.jpg \n", + " inflating: training_set/training_set/dogs/dog.1708.jpg \n", + " inflating: training_set/training_set/dogs/dog.1709.jpg \n", + " inflating: training_set/training_set/dogs/dog.171.jpg \n", + " inflating: training_set/training_set/dogs/dog.1710.jpg \n", + " inflating: training_set/training_set/dogs/dog.1711.jpg \n", + " inflating: training_set/training_set/dogs/dog.1712.jpg \n", + " inflating: training_set/training_set/dogs/dog.1713.jpg \n", + " inflating: training_set/training_set/dogs/dog.1714.jpg \n", + " inflating: training_set/training_set/dogs/dog.1715.jpg \n", + " inflating: training_set/training_set/dogs/dog.1716.jpg \n", + " inflating: training_set/training_set/dogs/dog.1717.jpg \n", + " inflating: training_set/training_set/dogs/dog.1718.jpg \n", + " inflating: training_set/training_set/dogs/dog.1719.jpg \n", + " inflating: training_set/training_set/dogs/dog.172.jpg \n", + " inflating: training_set/training_set/dogs/dog.1720.jpg \n", + " inflating: training_set/training_set/dogs/dog.1721.jpg \n", + " inflating: training_set/training_set/dogs/dog.1722.jpg \n", + " inflating: training_set/training_set/dogs/dog.1723.jpg \n", + " inflating: training_set/training_set/dogs/dog.1724.jpg \n", + " inflating: training_set/training_set/dogs/dog.1725.jpg \n", + " inflating: training_set/training_set/dogs/dog.1726.jpg \n", + " inflating: training_set/training_set/dogs/dog.1727.jpg \n", + " inflating: training_set/training_set/dogs/dog.1728.jpg \n", + " inflating: training_set/training_set/dogs/dog.1729.jpg \n", + " inflating: training_set/training_set/dogs/dog.173.jpg \n", + " inflating: training_set/training_set/dogs/dog.1730.jpg \n", + " inflating: training_set/training_set/dogs/dog.1731.jpg \n", + " inflating: training_set/training_set/dogs/dog.1732.jpg \n", + " inflating: training_set/training_set/dogs/dog.1733.jpg \n", + " inflating: training_set/training_set/dogs/dog.1734.jpg \n", + " inflating: training_set/training_set/dogs/dog.1735.jpg \n", + " inflating: training_set/training_set/dogs/dog.1736.jpg \n", + " inflating: training_set/training_set/dogs/dog.1737.jpg \n", + " inflating: training_set/training_set/dogs/dog.1738.jpg \n", + " inflating: training_set/training_set/dogs/dog.1739.jpg \n", + " inflating: training_set/training_set/dogs/dog.174.jpg \n", + " inflating: training_set/training_set/dogs/dog.1740.jpg \n", + " inflating: training_set/training_set/dogs/dog.1741.jpg \n", + " inflating: training_set/training_set/dogs/dog.1742.jpg \n", + " inflating: training_set/training_set/dogs/dog.1743.jpg \n", + " inflating: training_set/training_set/dogs/dog.1744.jpg \n", + " inflating: training_set/training_set/dogs/dog.1745.jpg \n", + " inflating: training_set/training_set/dogs/dog.1746.jpg \n", + " inflating: training_set/training_set/dogs/dog.1747.jpg \n", + " inflating: training_set/training_set/dogs/dog.1748.jpg \n", + " inflating: training_set/training_set/dogs/dog.1749.jpg \n", + " inflating: training_set/training_set/dogs/dog.175.jpg \n", + " inflating: training_set/training_set/dogs/dog.1750.jpg \n", + " inflating: training_set/training_set/dogs/dog.1751.jpg \n", + " inflating: training_set/training_set/dogs/dog.1752.jpg \n", + " inflating: training_set/training_set/dogs/dog.1753.jpg \n", + " inflating: training_set/training_set/dogs/dog.1754.jpg \n", + " inflating: training_set/training_set/dogs/dog.1755.jpg \n", + " inflating: training_set/training_set/dogs/dog.1756.jpg \n", + " inflating: training_set/training_set/dogs/dog.1757.jpg \n", + " inflating: training_set/training_set/dogs/dog.1758.jpg \n", + " inflating: training_set/training_set/dogs/dog.1759.jpg \n", + " inflating: training_set/training_set/dogs/dog.176.jpg \n", + " inflating: training_set/training_set/dogs/dog.1760.jpg \n", + " inflating: training_set/training_set/dogs/dog.1761.jpg \n", + " inflating: training_set/training_set/dogs/dog.1762.jpg \n", + " inflating: training_set/training_set/dogs/dog.1763.jpg \n", + " inflating: training_set/training_set/dogs/dog.1764.jpg \n", + " inflating: training_set/training_set/dogs/dog.1765.jpg \n", + " inflating: training_set/training_set/dogs/dog.1766.jpg \n", + " inflating: training_set/training_set/dogs/dog.1767.jpg \n", + " inflating: training_set/training_set/dogs/dog.1768.jpg \n", + " inflating: training_set/training_set/dogs/dog.1769.jpg \n", + " inflating: training_set/training_set/dogs/dog.177.jpg \n", + " inflating: training_set/training_set/dogs/dog.1770.jpg \n", + " inflating: training_set/training_set/dogs/dog.1771.jpg \n", + " inflating: training_set/training_set/dogs/dog.1772.jpg \n", + " inflating: training_set/training_set/dogs/dog.1773.jpg \n", + " inflating: training_set/training_set/dogs/dog.1774.jpg \n", + " inflating: training_set/training_set/dogs/dog.1775.jpg \n", + " inflating: training_set/training_set/dogs/dog.1776.jpg \n", + " inflating: training_set/training_set/dogs/dog.1777.jpg \n", + " inflating: training_set/training_set/dogs/dog.1778.jpg \n", + " inflating: training_set/training_set/dogs/dog.1779.jpg \n", + " inflating: training_set/training_set/dogs/dog.178.jpg \n", + " inflating: training_set/training_set/dogs/dog.1780.jpg \n", + " inflating: training_set/training_set/dogs/dog.1781.jpg \n", + " inflating: training_set/training_set/dogs/dog.1782.jpg \n", + " inflating: training_set/training_set/dogs/dog.1783.jpg \n", + " inflating: training_set/training_set/dogs/dog.1784.jpg \n", + " inflating: training_set/training_set/dogs/dog.1785.jpg \n", + " inflating: training_set/training_set/dogs/dog.1786.jpg \n", + " inflating: training_set/training_set/dogs/dog.1787.jpg \n", + " inflating: training_set/training_set/dogs/dog.1788.jpg \n", + " inflating: training_set/training_set/dogs/dog.1789.jpg \n", + " inflating: training_set/training_set/dogs/dog.179.jpg \n", + " inflating: training_set/training_set/dogs/dog.1790.jpg \n", + " inflating: training_set/training_set/dogs/dog.1791.jpg \n", + " inflating: training_set/training_set/dogs/dog.1792.jpg \n", + " inflating: training_set/training_set/dogs/dog.1793.jpg \n", + " inflating: training_set/training_set/dogs/dog.1794.jpg \n", + " inflating: training_set/training_set/dogs/dog.1795.jpg \n", + " inflating: training_set/training_set/dogs/dog.1796.jpg \n", + " inflating: training_set/training_set/dogs/dog.1797.jpg \n", + " inflating: training_set/training_set/dogs/dog.1798.jpg \n", + " inflating: training_set/training_set/dogs/dog.1799.jpg \n", + " inflating: training_set/training_set/dogs/dog.18.jpg \n", + " inflating: training_set/training_set/dogs/dog.180.jpg \n", + " inflating: training_set/training_set/dogs/dog.1800.jpg \n", + " inflating: training_set/training_set/dogs/dog.1801.jpg \n", + " inflating: training_set/training_set/dogs/dog.1802.jpg \n", + " inflating: training_set/training_set/dogs/dog.1803.jpg \n", + " inflating: training_set/training_set/dogs/dog.1804.jpg \n", + " inflating: training_set/training_set/dogs/dog.1805.jpg \n", + " inflating: training_set/training_set/dogs/dog.1806.jpg \n", + " inflating: training_set/training_set/dogs/dog.1807.jpg \n", + " inflating: training_set/training_set/dogs/dog.1808.jpg \n", + " inflating: training_set/training_set/dogs/dog.1809.jpg \n", + " inflating: training_set/training_set/dogs/dog.181.jpg \n", + " inflating: training_set/training_set/dogs/dog.1810.jpg \n", + " inflating: training_set/training_set/dogs/dog.1811.jpg \n", + " inflating: training_set/training_set/dogs/dog.1812.jpg \n", + " inflating: training_set/training_set/dogs/dog.1813.jpg \n", + " inflating: training_set/training_set/dogs/dog.1814.jpg \n", + " inflating: training_set/training_set/dogs/dog.1815.jpg \n", + " inflating: training_set/training_set/dogs/dog.1816.jpg \n", + " inflating: training_set/training_set/dogs/dog.1817.jpg \n", + " inflating: training_set/training_set/dogs/dog.1818.jpg \n", + " inflating: training_set/training_set/dogs/dog.1819.jpg \n", + " inflating: training_set/training_set/dogs/dog.182.jpg \n", + " inflating: training_set/training_set/dogs/dog.1820.jpg \n", + " inflating: training_set/training_set/dogs/dog.1821.jpg \n", + " inflating: training_set/training_set/dogs/dog.1822.jpg \n", + " inflating: training_set/training_set/dogs/dog.1823.jpg \n", + " inflating: training_set/training_set/dogs/dog.1824.jpg \n", + " inflating: training_set/training_set/dogs/dog.1825.jpg \n", + " inflating: training_set/training_set/dogs/dog.1826.jpg \n", + " inflating: training_set/training_set/dogs/dog.1827.jpg \n", + " inflating: training_set/training_set/dogs/dog.1828.jpg \n", + " inflating: training_set/training_set/dogs/dog.1829.jpg \n", + " inflating: training_set/training_set/dogs/dog.183.jpg \n", + " inflating: training_set/training_set/dogs/dog.1830.jpg \n", + " inflating: training_set/training_set/dogs/dog.1831.jpg \n", + " inflating: training_set/training_set/dogs/dog.1832.jpg \n", + " inflating: training_set/training_set/dogs/dog.1833.jpg \n", + " inflating: training_set/training_set/dogs/dog.1834.jpg \n", + " inflating: training_set/training_set/dogs/dog.1835.jpg \n", + " inflating: training_set/training_set/dogs/dog.1836.jpg \n", + " inflating: training_set/training_set/dogs/dog.1837.jpg \n", + " inflating: training_set/training_set/dogs/dog.1838.jpg \n", + " inflating: training_set/training_set/dogs/dog.1839.jpg \n", + " inflating: training_set/training_set/dogs/dog.184.jpg \n", + " inflating: training_set/training_set/dogs/dog.1840.jpg \n", + " inflating: training_set/training_set/dogs/dog.1841.jpg \n", + " inflating: training_set/training_set/dogs/dog.1842.jpg \n", + " inflating: training_set/training_set/dogs/dog.1843.jpg \n", + " inflating: training_set/training_set/dogs/dog.1844.jpg \n", + " inflating: training_set/training_set/dogs/dog.1845.jpg \n", + " inflating: training_set/training_set/dogs/dog.1846.jpg \n", + " inflating: training_set/training_set/dogs/dog.1847.jpg \n", + " inflating: training_set/training_set/dogs/dog.1848.jpg \n", + " inflating: training_set/training_set/dogs/dog.1849.jpg \n", + " inflating: training_set/training_set/dogs/dog.185.jpg \n", + " inflating: training_set/training_set/dogs/dog.1850.jpg \n", + " inflating: training_set/training_set/dogs/dog.1851.jpg \n", + " inflating: training_set/training_set/dogs/dog.1852.jpg \n", + " inflating: training_set/training_set/dogs/dog.1853.jpg \n", + " inflating: training_set/training_set/dogs/dog.1854.jpg \n", + " inflating: training_set/training_set/dogs/dog.1855.jpg \n", + " inflating: training_set/training_set/dogs/dog.1856.jpg \n", + " inflating: training_set/training_set/dogs/dog.1857.jpg \n", + " inflating: training_set/training_set/dogs/dog.1858.jpg \n", + " inflating: training_set/training_set/dogs/dog.1859.jpg \n", + " inflating: training_set/training_set/dogs/dog.186.jpg \n", + " inflating: training_set/training_set/dogs/dog.1860.jpg \n", + " inflating: training_set/training_set/dogs/dog.1861.jpg \n", + " inflating: training_set/training_set/dogs/dog.1862.jpg \n", + " inflating: training_set/training_set/dogs/dog.1863.jpg \n", + " inflating: training_set/training_set/dogs/dog.1864.jpg \n", + " inflating: training_set/training_set/dogs/dog.1865.jpg \n", + " inflating: training_set/training_set/dogs/dog.1866.jpg \n", + " inflating: training_set/training_set/dogs/dog.1867.jpg \n", + " inflating: training_set/training_set/dogs/dog.1868.jpg \n", + " inflating: training_set/training_set/dogs/dog.1869.jpg \n", + " inflating: training_set/training_set/dogs/dog.187.jpg \n", + " inflating: training_set/training_set/dogs/dog.1870.jpg \n", + " inflating: training_set/training_set/dogs/dog.1871.jpg \n", + " inflating: training_set/training_set/dogs/dog.1872.jpg \n", + " inflating: training_set/training_set/dogs/dog.1873.jpg \n", + " inflating: training_set/training_set/dogs/dog.1874.jpg \n", + " inflating: training_set/training_set/dogs/dog.1875.jpg \n", + " inflating: training_set/training_set/dogs/dog.1876.jpg \n", + " inflating: training_set/training_set/dogs/dog.1877.jpg \n", + " inflating: training_set/training_set/dogs/dog.1878.jpg \n", + " inflating: training_set/training_set/dogs/dog.1879.jpg \n", + " inflating: training_set/training_set/dogs/dog.188.jpg \n", + " inflating: training_set/training_set/dogs/dog.1880.jpg \n", + " inflating: training_set/training_set/dogs/dog.1881.jpg \n", + " inflating: training_set/training_set/dogs/dog.1882.jpg \n", + " inflating: training_set/training_set/dogs/dog.1883.jpg \n", + " inflating: training_set/training_set/dogs/dog.1884.jpg \n", + " inflating: training_set/training_set/dogs/dog.1885.jpg \n", + " inflating: training_set/training_set/dogs/dog.1886.jpg \n", + " inflating: training_set/training_set/dogs/dog.1887.jpg \n", + " inflating: training_set/training_set/dogs/dog.1888.jpg \n", + " inflating: training_set/training_set/dogs/dog.1889.jpg \n", + " inflating: training_set/training_set/dogs/dog.189.jpg \n", + " inflating: training_set/training_set/dogs/dog.1890.jpg \n", + " inflating: training_set/training_set/dogs/dog.1891.jpg \n", + " inflating: training_set/training_set/dogs/dog.1892.jpg \n", + " inflating: training_set/training_set/dogs/dog.1893.jpg \n", + " inflating: training_set/training_set/dogs/dog.1894.jpg \n", + " inflating: training_set/training_set/dogs/dog.1895.jpg \n", + " inflating: training_set/training_set/dogs/dog.1896.jpg \n", + " inflating: training_set/training_set/dogs/dog.1897.jpg \n", + " inflating: training_set/training_set/dogs/dog.1898.jpg \n", + " inflating: training_set/training_set/dogs/dog.1899.jpg \n", + " inflating: training_set/training_set/dogs/dog.19.jpg \n", + " inflating: training_set/training_set/dogs/dog.190.jpg \n", + " inflating: training_set/training_set/dogs/dog.1900.jpg \n", + " inflating: training_set/training_set/dogs/dog.1901.jpg \n", + " inflating: training_set/training_set/dogs/dog.1902.jpg \n", + " inflating: training_set/training_set/dogs/dog.1903.jpg \n", + " inflating: training_set/training_set/dogs/dog.1904.jpg \n", + " inflating: training_set/training_set/dogs/dog.1905.jpg \n", + " inflating: training_set/training_set/dogs/dog.1906.jpg \n", + " inflating: training_set/training_set/dogs/dog.1907.jpg \n", + " inflating: training_set/training_set/dogs/dog.1908.jpg \n", + " inflating: training_set/training_set/dogs/dog.1909.jpg \n", + " inflating: training_set/training_set/dogs/dog.191.jpg \n", + " inflating: training_set/training_set/dogs/dog.1910.jpg \n", + " inflating: training_set/training_set/dogs/dog.1911.jpg \n", + " inflating: training_set/training_set/dogs/dog.1912.jpg \n", + " inflating: training_set/training_set/dogs/dog.1913.jpg \n", + " inflating: training_set/training_set/dogs/dog.1914.jpg \n", + " inflating: training_set/training_set/dogs/dog.1915.jpg \n", + " inflating: training_set/training_set/dogs/dog.1916.jpg \n", + " inflating: training_set/training_set/dogs/dog.1917.jpg \n", + " inflating: training_set/training_set/dogs/dog.1918.jpg \n", + " inflating: training_set/training_set/dogs/dog.1919.jpg \n", + " inflating: training_set/training_set/dogs/dog.192.jpg \n", + " inflating: training_set/training_set/dogs/dog.1920.jpg \n", + " inflating: training_set/training_set/dogs/dog.1921.jpg \n", + " inflating: training_set/training_set/dogs/dog.1922.jpg \n", + " inflating: training_set/training_set/dogs/dog.1923.jpg \n", + " inflating: training_set/training_set/dogs/dog.1924.jpg \n", + " inflating: training_set/training_set/dogs/dog.1925.jpg \n", + " inflating: training_set/training_set/dogs/dog.1926.jpg \n", + " inflating: training_set/training_set/dogs/dog.1927.jpg \n", + " inflating: training_set/training_set/dogs/dog.1928.jpg \n", + " inflating: training_set/training_set/dogs/dog.1929.jpg \n", + " inflating: training_set/training_set/dogs/dog.193.jpg \n", + " inflating: training_set/training_set/dogs/dog.1930.jpg \n", + " inflating: training_set/training_set/dogs/dog.1931.jpg \n", + " inflating: training_set/training_set/dogs/dog.1932.jpg \n", + " inflating: training_set/training_set/dogs/dog.1933.jpg \n", + " inflating: training_set/training_set/dogs/dog.1934.jpg \n", + " inflating: training_set/training_set/dogs/dog.1935.jpg \n", + " inflating: training_set/training_set/dogs/dog.1936.jpg \n", + " inflating: training_set/training_set/dogs/dog.1937.jpg \n", + " inflating: training_set/training_set/dogs/dog.1938.jpg \n", + " inflating: training_set/training_set/dogs/dog.1939.jpg \n", + " inflating: training_set/training_set/dogs/dog.194.jpg \n", + " inflating: training_set/training_set/dogs/dog.1940.jpg \n", + " inflating: training_set/training_set/dogs/dog.1941.jpg \n", + " inflating: training_set/training_set/dogs/dog.1942.jpg \n", + " inflating: training_set/training_set/dogs/dog.1943.jpg \n", + " inflating: training_set/training_set/dogs/dog.1944.jpg \n", + " inflating: training_set/training_set/dogs/dog.1945.jpg \n", + " inflating: training_set/training_set/dogs/dog.1946.jpg \n", + " inflating: training_set/training_set/dogs/dog.1947.jpg \n", + " inflating: training_set/training_set/dogs/dog.1948.jpg \n", + " inflating: training_set/training_set/dogs/dog.1949.jpg \n", + " inflating: training_set/training_set/dogs/dog.195.jpg \n", + " inflating: training_set/training_set/dogs/dog.1950.jpg \n", + " inflating: training_set/training_set/dogs/dog.1951.jpg \n", + " inflating: training_set/training_set/dogs/dog.1952.jpg \n", + " inflating: training_set/training_set/dogs/dog.1953.jpg \n", + " inflating: training_set/training_set/dogs/dog.1954.jpg \n", + " inflating: training_set/training_set/dogs/dog.1955.jpg \n", + " inflating: training_set/training_set/dogs/dog.1956.jpg \n", + " inflating: training_set/training_set/dogs/dog.1957.jpg \n", + " inflating: training_set/training_set/dogs/dog.1958.jpg \n", + " inflating: training_set/training_set/dogs/dog.1959.jpg \n", + " inflating: training_set/training_set/dogs/dog.196.jpg \n", + " inflating: training_set/training_set/dogs/dog.1960.jpg \n", + " inflating: training_set/training_set/dogs/dog.1961.jpg \n", + " inflating: training_set/training_set/dogs/dog.1962.jpg \n", + " inflating: training_set/training_set/dogs/dog.1963.jpg \n", + " inflating: training_set/training_set/dogs/dog.1964.jpg \n", + " inflating: training_set/training_set/dogs/dog.1965.jpg \n", + " inflating: training_set/training_set/dogs/dog.1966.jpg \n", + " inflating: training_set/training_set/dogs/dog.1967.jpg \n", + " inflating: training_set/training_set/dogs/dog.1968.jpg \n", + " inflating: training_set/training_set/dogs/dog.1969.jpg \n", + " inflating: training_set/training_set/dogs/dog.197.jpg \n", + " inflating: training_set/training_set/dogs/dog.1970.jpg \n", + " inflating: training_set/training_set/dogs/dog.1971.jpg \n", + " inflating: training_set/training_set/dogs/dog.1972.jpg \n", + " inflating: training_set/training_set/dogs/dog.1973.jpg \n", + " inflating: training_set/training_set/dogs/dog.1974.jpg \n", + " inflating: training_set/training_set/dogs/dog.1975.jpg \n", + " inflating: training_set/training_set/dogs/dog.1976.jpg \n", + " inflating: training_set/training_set/dogs/dog.1977.jpg \n", + " inflating: training_set/training_set/dogs/dog.1978.jpg \n", + " inflating: training_set/training_set/dogs/dog.1979.jpg \n", + " inflating: training_set/training_set/dogs/dog.198.jpg \n", + " inflating: training_set/training_set/dogs/dog.1980.jpg \n", + " inflating: training_set/training_set/dogs/dog.1981.jpg \n", + " inflating: training_set/training_set/dogs/dog.1982.jpg \n", + " inflating: training_set/training_set/dogs/dog.1983.jpg \n", + " inflating: training_set/training_set/dogs/dog.1984.jpg \n", + " inflating: training_set/training_set/dogs/dog.1985.jpg \n", + " inflating: training_set/training_set/dogs/dog.1986.jpg \n", + " inflating: training_set/training_set/dogs/dog.1987.jpg \n", + " inflating: training_set/training_set/dogs/dog.1988.jpg \n", + " inflating: training_set/training_set/dogs/dog.1989.jpg \n", + " inflating: training_set/training_set/dogs/dog.199.jpg \n", + " inflating: training_set/training_set/dogs/dog.1990.jpg \n", + " inflating: training_set/training_set/dogs/dog.1991.jpg \n", + " inflating: training_set/training_set/dogs/dog.1992.jpg \n", + " inflating: training_set/training_set/dogs/dog.1993.jpg \n", + " inflating: training_set/training_set/dogs/dog.1994.jpg \n", + " inflating: training_set/training_set/dogs/dog.1995.jpg \n", + " inflating: training_set/training_set/dogs/dog.1996.jpg \n", + " inflating: training_set/training_set/dogs/dog.1997.jpg \n", + " inflating: training_set/training_set/dogs/dog.1998.jpg \n", + " inflating: training_set/training_set/dogs/dog.1999.jpg \n", + " inflating: training_set/training_set/dogs/dog.2.jpg \n", + " inflating: training_set/training_set/dogs/dog.20.jpg \n", + " inflating: training_set/training_set/dogs/dog.200.jpg \n", + " inflating: training_set/training_set/dogs/dog.2000.jpg \n", + " inflating: training_set/training_set/dogs/dog.2001.jpg \n", + " inflating: training_set/training_set/dogs/dog.2002.jpg \n", + " inflating: training_set/training_set/dogs/dog.2003.jpg \n", + " inflating: training_set/training_set/dogs/dog.2004.jpg \n", + " inflating: training_set/training_set/dogs/dog.2005.jpg \n", + " inflating: training_set/training_set/dogs/dog.2006.jpg \n", + " inflating: training_set/training_set/dogs/dog.2007.jpg \n", + " inflating: training_set/training_set/dogs/dog.2008.jpg \n", + " inflating: training_set/training_set/dogs/dog.2009.jpg \n", + " inflating: training_set/training_set/dogs/dog.201.jpg \n", + " inflating: training_set/training_set/dogs/dog.2010.jpg \n", + " inflating: training_set/training_set/dogs/dog.2011.jpg \n", + " inflating: training_set/training_set/dogs/dog.2012.jpg \n", + " inflating: training_set/training_set/dogs/dog.2013.jpg \n", + " inflating: training_set/training_set/dogs/dog.2014.jpg \n", + " inflating: training_set/training_set/dogs/dog.2015.jpg \n", + " inflating: training_set/training_set/dogs/dog.2016.jpg \n", + " inflating: training_set/training_set/dogs/dog.2017.jpg \n", + " inflating: training_set/training_set/dogs/dog.2018.jpg \n", + " inflating: training_set/training_set/dogs/dog.2019.jpg \n", + " inflating: training_set/training_set/dogs/dog.202.jpg \n", + " inflating: training_set/training_set/dogs/dog.2020.jpg \n", + " inflating: training_set/training_set/dogs/dog.2021.jpg \n", + " inflating: training_set/training_set/dogs/dog.2022.jpg \n", + " inflating: training_set/training_set/dogs/dog.2023.jpg \n", + " inflating: training_set/training_set/dogs/dog.2024.jpg \n", + " inflating: training_set/training_set/dogs/dog.2025.jpg \n", + " inflating: training_set/training_set/dogs/dog.2026.jpg \n", + " inflating: training_set/training_set/dogs/dog.2027.jpg \n", + " inflating: training_set/training_set/dogs/dog.2028.jpg \n", + " inflating: training_set/training_set/dogs/dog.2029.jpg \n", + " inflating: training_set/training_set/dogs/dog.203.jpg \n", + " inflating: training_set/training_set/dogs/dog.2030.jpg \n", + " inflating: training_set/training_set/dogs/dog.2031.jpg \n", + " inflating: training_set/training_set/dogs/dog.2032.jpg \n", + " inflating: training_set/training_set/dogs/dog.2033.jpg \n", + " inflating: training_set/training_set/dogs/dog.2034.jpg \n", + " inflating: training_set/training_set/dogs/dog.2035.jpg \n", + " inflating: training_set/training_set/dogs/dog.2036.jpg \n", + " inflating: training_set/training_set/dogs/dog.2037.jpg \n", + " inflating: training_set/training_set/dogs/dog.2038.jpg \n", + " inflating: training_set/training_set/dogs/dog.2039.jpg \n", + " inflating: training_set/training_set/dogs/dog.204.jpg \n", + " inflating: training_set/training_set/dogs/dog.2040.jpg \n", + " inflating: training_set/training_set/dogs/dog.2041.jpg \n", + " inflating: training_set/training_set/dogs/dog.2042.jpg \n", + " inflating: training_set/training_set/dogs/dog.2043.jpg \n", + " inflating: training_set/training_set/dogs/dog.2044.jpg \n", + " inflating: training_set/training_set/dogs/dog.2045.jpg \n", + " inflating: training_set/training_set/dogs/dog.2046.jpg \n", + " inflating: training_set/training_set/dogs/dog.2047.jpg \n", + " inflating: training_set/training_set/dogs/dog.2048.jpg \n", + " inflating: training_set/training_set/dogs/dog.2049.jpg \n", + " inflating: training_set/training_set/dogs/dog.205.jpg \n", + " inflating: training_set/training_set/dogs/dog.2050.jpg \n", + " inflating: training_set/training_set/dogs/dog.2051.jpg \n", + " inflating: training_set/training_set/dogs/dog.2052.jpg \n", + " inflating: training_set/training_set/dogs/dog.2053.jpg \n", + " inflating: training_set/training_set/dogs/dog.2054.jpg \n", + " inflating: training_set/training_set/dogs/dog.2055.jpg \n", + " inflating: training_set/training_set/dogs/dog.2056.jpg \n", + " inflating: training_set/training_set/dogs/dog.2057.jpg \n", + " inflating: training_set/training_set/dogs/dog.2058.jpg \n", + " inflating: training_set/training_set/dogs/dog.2059.jpg \n", + " inflating: training_set/training_set/dogs/dog.206.jpg \n", + " inflating: training_set/training_set/dogs/dog.2060.jpg \n", + " inflating: training_set/training_set/dogs/dog.2061.jpg \n", + " inflating: training_set/training_set/dogs/dog.2062.jpg \n", + " inflating: training_set/training_set/dogs/dog.2063.jpg \n", + " inflating: training_set/training_set/dogs/dog.2064.jpg \n", + " inflating: training_set/training_set/dogs/dog.2065.jpg \n", + " inflating: training_set/training_set/dogs/dog.2066.jpg \n", + " inflating: training_set/training_set/dogs/dog.2067.jpg \n", + " inflating: training_set/training_set/dogs/dog.2068.jpg \n", + " inflating: training_set/training_set/dogs/dog.2069.jpg \n", + " inflating: training_set/training_set/dogs/dog.207.jpg \n", + " inflating: training_set/training_set/dogs/dog.2070.jpg \n", + " inflating: training_set/training_set/dogs/dog.2071.jpg \n", + " inflating: training_set/training_set/dogs/dog.2072.jpg \n", + " inflating: training_set/training_set/dogs/dog.2073.jpg \n", + " inflating: training_set/training_set/dogs/dog.2074.jpg \n", + " inflating: training_set/training_set/dogs/dog.2075.jpg \n", + " inflating: training_set/training_set/dogs/dog.2076.jpg \n", + " inflating: training_set/training_set/dogs/dog.2077.jpg \n", + " inflating: training_set/training_set/dogs/dog.2078.jpg \n", + " inflating: training_set/training_set/dogs/dog.2079.jpg \n", + " inflating: training_set/training_set/dogs/dog.208.jpg \n", + " inflating: training_set/training_set/dogs/dog.2080.jpg \n", + " inflating: training_set/training_set/dogs/dog.2081.jpg \n", + " inflating: training_set/training_set/dogs/dog.2082.jpg \n", + " inflating: training_set/training_set/dogs/dog.2083.jpg \n", + " inflating: training_set/training_set/dogs/dog.2084.jpg \n", + " inflating: training_set/training_set/dogs/dog.2085.jpg \n", + " inflating: training_set/training_set/dogs/dog.2086.jpg \n", + " inflating: training_set/training_set/dogs/dog.2087.jpg \n", + " inflating: training_set/training_set/dogs/dog.2088.jpg \n", + " inflating: training_set/training_set/dogs/dog.2089.jpg \n", + " inflating: training_set/training_set/dogs/dog.209.jpg \n", + " inflating: training_set/training_set/dogs/dog.2090.jpg \n", + " inflating: training_set/training_set/dogs/dog.2091.jpg \n", + " inflating: training_set/training_set/dogs/dog.2092.jpg \n", + " inflating: training_set/training_set/dogs/dog.2093.jpg \n", + " inflating: training_set/training_set/dogs/dog.2094.jpg \n", + " inflating: training_set/training_set/dogs/dog.2095.jpg \n", + " inflating: training_set/training_set/dogs/dog.2096.jpg \n", + " inflating: training_set/training_set/dogs/dog.2097.jpg \n", + " inflating: training_set/training_set/dogs/dog.2098.jpg \n", + " inflating: training_set/training_set/dogs/dog.2099.jpg \n", + " inflating: training_set/training_set/dogs/dog.21.jpg \n", + " inflating: training_set/training_set/dogs/dog.210.jpg \n", + " inflating: training_set/training_set/dogs/dog.2100.jpg \n", + " inflating: training_set/training_set/dogs/dog.2101.jpg \n", + " inflating: training_set/training_set/dogs/dog.2102.jpg \n", + " inflating: training_set/training_set/dogs/dog.2103.jpg \n", + " inflating: training_set/training_set/dogs/dog.2104.jpg \n", + " inflating: training_set/training_set/dogs/dog.2105.jpg \n", + " inflating: training_set/training_set/dogs/dog.2106.jpg \n", + " inflating: training_set/training_set/dogs/dog.2107.jpg \n", + " inflating: training_set/training_set/dogs/dog.2108.jpg \n", + " inflating: training_set/training_set/dogs/dog.2109.jpg \n", + " inflating: training_set/training_set/dogs/dog.211.jpg \n", + " inflating: training_set/training_set/dogs/dog.2110.jpg \n", + " inflating: training_set/training_set/dogs/dog.2111.jpg \n", + " inflating: training_set/training_set/dogs/dog.2112.jpg \n", + " inflating: training_set/training_set/dogs/dog.2113.jpg \n", + " inflating: training_set/training_set/dogs/dog.2114.jpg \n", + " inflating: training_set/training_set/dogs/dog.2115.jpg \n", + " inflating: training_set/training_set/dogs/dog.2116.jpg \n", + " inflating: training_set/training_set/dogs/dog.2117.jpg \n", + " inflating: training_set/training_set/dogs/dog.2118.jpg \n", + " inflating: training_set/training_set/dogs/dog.2119.jpg \n", + " inflating: training_set/training_set/dogs/dog.212.jpg \n", + " inflating: training_set/training_set/dogs/dog.2120.jpg \n", + " inflating: training_set/training_set/dogs/dog.2121.jpg \n", + " inflating: training_set/training_set/dogs/dog.2122.jpg \n", + " inflating: training_set/training_set/dogs/dog.2123.jpg \n", + " inflating: training_set/training_set/dogs/dog.2124.jpg \n", + " inflating: training_set/training_set/dogs/dog.2125.jpg \n", + " inflating: training_set/training_set/dogs/dog.2126.jpg \n", + " inflating: training_set/training_set/dogs/dog.2127.jpg \n", + " inflating: training_set/training_set/dogs/dog.2128.jpg \n", + " inflating: training_set/training_set/dogs/dog.2129.jpg \n", + " inflating: training_set/training_set/dogs/dog.213.jpg \n", + " inflating: training_set/training_set/dogs/dog.2130.jpg \n", + " inflating: training_set/training_set/dogs/dog.2131.jpg \n", + " inflating: training_set/training_set/dogs/dog.2132.jpg \n", + " inflating: training_set/training_set/dogs/dog.2133.jpg \n", + " inflating: training_set/training_set/dogs/dog.2134.jpg \n", + " inflating: training_set/training_set/dogs/dog.2135.jpg \n", + " inflating: training_set/training_set/dogs/dog.2136.jpg \n", + " inflating: training_set/training_set/dogs/dog.2137.jpg \n", + " inflating: training_set/training_set/dogs/dog.2138.jpg \n", + " inflating: training_set/training_set/dogs/dog.2139.jpg \n", + " inflating: training_set/training_set/dogs/dog.214.jpg \n", + " inflating: training_set/training_set/dogs/dog.2140.jpg \n", + " inflating: training_set/training_set/dogs/dog.2141.jpg \n", + " inflating: training_set/training_set/dogs/dog.2142.jpg \n", + " inflating: training_set/training_set/dogs/dog.2143.jpg \n", + " inflating: training_set/training_set/dogs/dog.2144.jpg \n", + " inflating: training_set/training_set/dogs/dog.2145.jpg \n", + " inflating: training_set/training_set/dogs/dog.2146.jpg \n", + " inflating: training_set/training_set/dogs/dog.2147.jpg \n", + " inflating: training_set/training_set/dogs/dog.2148.jpg \n", + " inflating: training_set/training_set/dogs/dog.2149.jpg \n", + " inflating: training_set/training_set/dogs/dog.215.jpg \n", + " inflating: training_set/training_set/dogs/dog.2150.jpg \n", + " inflating: training_set/training_set/dogs/dog.2151.jpg \n", + " inflating: training_set/training_set/dogs/dog.2152.jpg \n", + " inflating: training_set/training_set/dogs/dog.2153.jpg \n", + " inflating: training_set/training_set/dogs/dog.2154.jpg \n", + " inflating: training_set/training_set/dogs/dog.2155.jpg \n", + " inflating: training_set/training_set/dogs/dog.2156.jpg \n", + " inflating: training_set/training_set/dogs/dog.2157.jpg \n", + " inflating: training_set/training_set/dogs/dog.2158.jpg \n", + " inflating: training_set/training_set/dogs/dog.2159.jpg \n", + " inflating: training_set/training_set/dogs/dog.216.jpg \n", + " inflating: training_set/training_set/dogs/dog.2160.jpg \n", + " inflating: training_set/training_set/dogs/dog.2161.jpg \n", + " inflating: training_set/training_set/dogs/dog.2162.jpg \n", + " inflating: training_set/training_set/dogs/dog.2163.jpg \n", + " inflating: training_set/training_set/dogs/dog.2164.jpg \n", + " inflating: training_set/training_set/dogs/dog.2165.jpg \n", + " inflating: training_set/training_set/dogs/dog.2166.jpg \n", + " inflating: training_set/training_set/dogs/dog.2167.jpg \n", + " inflating: training_set/training_set/dogs/dog.2168.jpg \n", + " inflating: training_set/training_set/dogs/dog.2169.jpg \n", + " inflating: training_set/training_set/dogs/dog.217.jpg \n", + " inflating: training_set/training_set/dogs/dog.2170.jpg \n", + " inflating: training_set/training_set/dogs/dog.2171.jpg \n", + " inflating: training_set/training_set/dogs/dog.2172.jpg \n", + " inflating: training_set/training_set/dogs/dog.2173.jpg \n", + " inflating: training_set/training_set/dogs/dog.2174.jpg \n", + " inflating: training_set/training_set/dogs/dog.2175.jpg \n", + " inflating: training_set/training_set/dogs/dog.2176.jpg \n", + " inflating: training_set/training_set/dogs/dog.2177.jpg \n", + " inflating: training_set/training_set/dogs/dog.2178.jpg \n", + " inflating: training_set/training_set/dogs/dog.2179.jpg \n", + " inflating: training_set/training_set/dogs/dog.218.jpg \n", + " inflating: training_set/training_set/dogs/dog.2180.jpg \n", + " inflating: training_set/training_set/dogs/dog.2181.jpg \n", + " inflating: training_set/training_set/dogs/dog.2182.jpg \n", + " inflating: training_set/training_set/dogs/dog.2183.jpg \n", + " inflating: training_set/training_set/dogs/dog.2184.jpg \n", + " inflating: training_set/training_set/dogs/dog.2185.jpg \n", + " inflating: training_set/training_set/dogs/dog.2186.jpg \n", + " inflating: training_set/training_set/dogs/dog.2187.jpg \n", + " inflating: training_set/training_set/dogs/dog.2188.jpg \n", + " inflating: training_set/training_set/dogs/dog.2189.jpg \n", + " inflating: training_set/training_set/dogs/dog.219.jpg \n", + " inflating: training_set/training_set/dogs/dog.2190.jpg \n", + " inflating: training_set/training_set/dogs/dog.2191.jpg \n", + " inflating: training_set/training_set/dogs/dog.2192.jpg \n", + " inflating: training_set/training_set/dogs/dog.2193.jpg \n", + " inflating: training_set/training_set/dogs/dog.2194.jpg \n", + " inflating: training_set/training_set/dogs/dog.2195.jpg \n", + " inflating: training_set/training_set/dogs/dog.2196.jpg \n", + " inflating: training_set/training_set/dogs/dog.2197.jpg \n", + " inflating: training_set/training_set/dogs/dog.2198.jpg \n", + " inflating: training_set/training_set/dogs/dog.2199.jpg \n", + " inflating: training_set/training_set/dogs/dog.22.jpg \n", + " inflating: training_set/training_set/dogs/dog.220.jpg \n", + " inflating: training_set/training_set/dogs/dog.2200.jpg \n", + " inflating: training_set/training_set/dogs/dog.2201.jpg \n", + " inflating: training_set/training_set/dogs/dog.2202.jpg \n", + " inflating: training_set/training_set/dogs/dog.2203.jpg \n", + " inflating: training_set/training_set/dogs/dog.2204.jpg \n", + " inflating: training_set/training_set/dogs/dog.2205.jpg \n", + " inflating: training_set/training_set/dogs/dog.2206.jpg \n", + " inflating: training_set/training_set/dogs/dog.2207.jpg \n", + " inflating: training_set/training_set/dogs/dog.2208.jpg \n", + " inflating: training_set/training_set/dogs/dog.2209.jpg \n", + " inflating: training_set/training_set/dogs/dog.221.jpg \n", + " inflating: training_set/training_set/dogs/dog.2210.jpg \n", + " inflating: training_set/training_set/dogs/dog.2211.jpg \n", + " inflating: training_set/training_set/dogs/dog.2212.jpg \n", + " inflating: training_set/training_set/dogs/dog.2213.jpg \n", + " inflating: training_set/training_set/dogs/dog.2214.jpg \n", + " inflating: training_set/training_set/dogs/dog.2215.jpg \n", + " inflating: training_set/training_set/dogs/dog.2216.jpg \n", + " inflating: training_set/training_set/dogs/dog.2217.jpg \n", + " inflating: training_set/training_set/dogs/dog.2218.jpg \n", + " inflating: training_set/training_set/dogs/dog.2219.jpg \n", + " inflating: training_set/training_set/dogs/dog.222.jpg \n", + " inflating: training_set/training_set/dogs/dog.2220.jpg \n", + " inflating: training_set/training_set/dogs/dog.2221.jpg \n", + " inflating: training_set/training_set/dogs/dog.2222.jpg \n", + " inflating: training_set/training_set/dogs/dog.2223.jpg \n", + " inflating: training_set/training_set/dogs/dog.2224.jpg \n", + " inflating: training_set/training_set/dogs/dog.2225.jpg \n", + " inflating: training_set/training_set/dogs/dog.2226.jpg \n", + " inflating: training_set/training_set/dogs/dog.2227.jpg \n", + " inflating: training_set/training_set/dogs/dog.2228.jpg \n", + " inflating: training_set/training_set/dogs/dog.2229.jpg \n", + " inflating: training_set/training_set/dogs/dog.223.jpg \n", + " inflating: training_set/training_set/dogs/dog.2230.jpg \n", + " inflating: training_set/training_set/dogs/dog.2231.jpg \n", + " inflating: training_set/training_set/dogs/dog.2232.jpg \n", + " inflating: training_set/training_set/dogs/dog.2233.jpg \n", + " inflating: training_set/training_set/dogs/dog.2234.jpg \n", + " inflating: training_set/training_set/dogs/dog.2235.jpg \n", + " inflating: training_set/training_set/dogs/dog.2236.jpg \n", + " inflating: training_set/training_set/dogs/dog.2237.jpg \n", + " inflating: training_set/training_set/dogs/dog.2238.jpg \n", + " inflating: training_set/training_set/dogs/dog.2239.jpg \n", + " inflating: training_set/training_set/dogs/dog.224.jpg \n", + " inflating: training_set/training_set/dogs/dog.2240.jpg \n", + " inflating: training_set/training_set/dogs/dog.2241.jpg \n", + " inflating: training_set/training_set/dogs/dog.2242.jpg \n", + " inflating: training_set/training_set/dogs/dog.2243.jpg \n", + " inflating: training_set/training_set/dogs/dog.2244.jpg \n", + " inflating: training_set/training_set/dogs/dog.2245.jpg \n", + " inflating: training_set/training_set/dogs/dog.2246.jpg \n", + " inflating: training_set/training_set/dogs/dog.2247.jpg \n", + " inflating: training_set/training_set/dogs/dog.2248.jpg \n", + " inflating: training_set/training_set/dogs/dog.2249.jpg \n", + " inflating: training_set/training_set/dogs/dog.225.jpg \n", + " inflating: training_set/training_set/dogs/dog.2250.jpg \n", + " inflating: training_set/training_set/dogs/dog.2251.jpg \n", + " inflating: training_set/training_set/dogs/dog.2252.jpg \n", + " inflating: training_set/training_set/dogs/dog.2253.jpg \n", + " inflating: training_set/training_set/dogs/dog.2254.jpg \n", + " inflating: training_set/training_set/dogs/dog.2255.jpg \n", + " inflating: training_set/training_set/dogs/dog.2256.jpg \n", + " inflating: training_set/training_set/dogs/dog.2257.jpg \n", + " inflating: training_set/training_set/dogs/dog.2258.jpg \n", + " inflating: training_set/training_set/dogs/dog.2259.jpg \n", + " inflating: training_set/training_set/dogs/dog.226.jpg \n", + " inflating: training_set/training_set/dogs/dog.2260.jpg \n", + " inflating: training_set/training_set/dogs/dog.2261.jpg \n", + " inflating: training_set/training_set/dogs/dog.2262.jpg \n", + " inflating: training_set/training_set/dogs/dog.2263.jpg \n", + " inflating: training_set/training_set/dogs/dog.2264.jpg \n", + " inflating: training_set/training_set/dogs/dog.2265.jpg \n", + " inflating: training_set/training_set/dogs/dog.2266.jpg \n", + " inflating: training_set/training_set/dogs/dog.2267.jpg \n", + " inflating: training_set/training_set/dogs/dog.2268.jpg \n", + " inflating: training_set/training_set/dogs/dog.2269.jpg \n", + " inflating: training_set/training_set/dogs/dog.227.jpg \n", + " inflating: training_set/training_set/dogs/dog.2270.jpg \n", + " inflating: training_set/training_set/dogs/dog.2271.jpg \n", + " inflating: training_set/training_set/dogs/dog.2272.jpg \n", + " inflating: training_set/training_set/dogs/dog.2273.jpg \n", + " inflating: training_set/training_set/dogs/dog.2274.jpg \n", + " inflating: training_set/training_set/dogs/dog.2275.jpg \n", + " inflating: training_set/training_set/dogs/dog.2276.jpg \n", + " inflating: training_set/training_set/dogs/dog.2277.jpg \n", + " inflating: training_set/training_set/dogs/dog.2278.jpg \n", + " inflating: training_set/training_set/dogs/dog.2279.jpg \n", + " inflating: training_set/training_set/dogs/dog.228.jpg \n", + " inflating: training_set/training_set/dogs/dog.2280.jpg \n", + " inflating: training_set/training_set/dogs/dog.2281.jpg \n", + " inflating: training_set/training_set/dogs/dog.2282.jpg \n", + " inflating: training_set/training_set/dogs/dog.2283.jpg \n", + " inflating: training_set/training_set/dogs/dog.2284.jpg \n", + " inflating: training_set/training_set/dogs/dog.2285.jpg \n", + " inflating: training_set/training_set/dogs/dog.2286.jpg \n", + " inflating: training_set/training_set/dogs/dog.2287.jpg \n", + " inflating: training_set/training_set/dogs/dog.2288.jpg \n", + " inflating: training_set/training_set/dogs/dog.2289.jpg \n", + " inflating: training_set/training_set/dogs/dog.229.jpg \n", + " inflating: training_set/training_set/dogs/dog.2290.jpg \n", + " inflating: training_set/training_set/dogs/dog.2291.jpg \n", + " inflating: training_set/training_set/dogs/dog.2292.jpg \n", + " inflating: training_set/training_set/dogs/dog.2293.jpg \n", + " inflating: training_set/training_set/dogs/dog.2294.jpg \n", + " inflating: training_set/training_set/dogs/dog.2295.jpg \n", + " inflating: training_set/training_set/dogs/dog.2296.jpg \n", + " inflating: training_set/training_set/dogs/dog.2297.jpg \n", + " inflating: training_set/training_set/dogs/dog.2298.jpg \n", + " inflating: training_set/training_set/dogs/dog.2299.jpg \n", + " inflating: training_set/training_set/dogs/dog.23.jpg \n", + " inflating: training_set/training_set/dogs/dog.230.jpg \n", + " inflating: training_set/training_set/dogs/dog.2300.jpg \n", + " inflating: training_set/training_set/dogs/dog.2301.jpg \n", + " inflating: training_set/training_set/dogs/dog.2302.jpg \n", + " inflating: training_set/training_set/dogs/dog.2303.jpg \n", + " inflating: training_set/training_set/dogs/dog.2304.jpg \n", + " inflating: training_set/training_set/dogs/dog.2305.jpg \n", + " inflating: training_set/training_set/dogs/dog.2306.jpg \n", + " inflating: training_set/training_set/dogs/dog.2307.jpg \n", + " inflating: training_set/training_set/dogs/dog.2308.jpg \n", + " inflating: training_set/training_set/dogs/dog.2309.jpg \n", + " inflating: training_set/training_set/dogs/dog.231.jpg \n", + " inflating: training_set/training_set/dogs/dog.2310.jpg \n", + " inflating: training_set/training_set/dogs/dog.2311.jpg \n", + " inflating: training_set/training_set/dogs/dog.2312.jpg \n", + " inflating: training_set/training_set/dogs/dog.2313.jpg \n", + " inflating: training_set/training_set/dogs/dog.2314.jpg \n", + " inflating: training_set/training_set/dogs/dog.2315.jpg \n", + " inflating: training_set/training_set/dogs/dog.2316.jpg \n", + " inflating: training_set/training_set/dogs/dog.2317.jpg \n", + " inflating: training_set/training_set/dogs/dog.2318.jpg \n", + " inflating: training_set/training_set/dogs/dog.2319.jpg \n", + " inflating: training_set/training_set/dogs/dog.232.jpg \n", + " inflating: training_set/training_set/dogs/dog.2320.jpg \n", + " inflating: training_set/training_set/dogs/dog.2321.jpg \n", + " inflating: training_set/training_set/dogs/dog.2322.jpg \n", + " inflating: training_set/training_set/dogs/dog.2323.jpg \n", + " inflating: training_set/training_set/dogs/dog.2324.jpg \n", + " inflating: training_set/training_set/dogs/dog.2325.jpg \n", + " inflating: training_set/training_set/dogs/dog.2326.jpg \n", + " inflating: training_set/training_set/dogs/dog.2327.jpg \n", + " inflating: training_set/training_set/dogs/dog.2328.jpg \n", + " inflating: training_set/training_set/dogs/dog.2329.jpg \n", + " inflating: training_set/training_set/dogs/dog.233.jpg \n", + " inflating: training_set/training_set/dogs/dog.2330.jpg \n", + " inflating: training_set/training_set/dogs/dog.2331.jpg \n", + " inflating: training_set/training_set/dogs/dog.2332.jpg \n", + " inflating: training_set/training_set/dogs/dog.2333.jpg \n", + " inflating: training_set/training_set/dogs/dog.2334.jpg \n", + " inflating: training_set/training_set/dogs/dog.2335.jpg \n", + " inflating: training_set/training_set/dogs/dog.2336.jpg \n", + " inflating: training_set/training_set/dogs/dog.2337.jpg \n", + " inflating: training_set/training_set/dogs/dog.2338.jpg \n", + " inflating: training_set/training_set/dogs/dog.2339.jpg \n", + " inflating: training_set/training_set/dogs/dog.234.jpg \n", + " inflating: training_set/training_set/dogs/dog.2340.jpg \n", + " inflating: training_set/training_set/dogs/dog.2341.jpg \n", + " inflating: training_set/training_set/dogs/dog.2342.jpg \n", + " inflating: training_set/training_set/dogs/dog.2343.jpg \n", + " inflating: training_set/training_set/dogs/dog.2344.jpg \n", + " inflating: training_set/training_set/dogs/dog.2345.jpg \n", + " inflating: training_set/training_set/dogs/dog.2346.jpg \n", + " inflating: training_set/training_set/dogs/dog.2347.jpg \n", + " inflating: training_set/training_set/dogs/dog.2348.jpg \n", + " inflating: training_set/training_set/dogs/dog.2349.jpg \n", + " inflating: training_set/training_set/dogs/dog.235.jpg \n", + " inflating: training_set/training_set/dogs/dog.2350.jpg \n", + " inflating: training_set/training_set/dogs/dog.2351.jpg \n", + " inflating: training_set/training_set/dogs/dog.2352.jpg \n", + " inflating: training_set/training_set/dogs/dog.2353.jpg \n", + " inflating: training_set/training_set/dogs/dog.2354.jpg \n", + " inflating: training_set/training_set/dogs/dog.2355.jpg \n", + " inflating: training_set/training_set/dogs/dog.2356.jpg \n", + " inflating: training_set/training_set/dogs/dog.2357.jpg \n", + " inflating: training_set/training_set/dogs/dog.2358.jpg \n", + " inflating: training_set/training_set/dogs/dog.2359.jpg \n", + " inflating: training_set/training_set/dogs/dog.236.jpg \n", + " inflating: training_set/training_set/dogs/dog.2360.jpg \n", + " inflating: training_set/training_set/dogs/dog.2361.jpg \n", + " inflating: training_set/training_set/dogs/dog.2362.jpg \n", + " inflating: training_set/training_set/dogs/dog.2363.jpg \n", + " inflating: training_set/training_set/dogs/dog.2364.jpg \n", + " inflating: training_set/training_set/dogs/dog.2365.jpg \n", + " inflating: training_set/training_set/dogs/dog.2366.jpg \n", + " inflating: training_set/training_set/dogs/dog.2367.jpg \n", + " inflating: training_set/training_set/dogs/dog.2368.jpg \n", + " inflating: training_set/training_set/dogs/dog.2369.jpg \n", + " inflating: training_set/training_set/dogs/dog.237.jpg \n", + " inflating: training_set/training_set/dogs/dog.2370.jpg \n", + " inflating: training_set/training_set/dogs/dog.2371.jpg \n", + " inflating: training_set/training_set/dogs/dog.2372.jpg \n", + " inflating: training_set/training_set/dogs/dog.2373.jpg \n", + " inflating: training_set/training_set/dogs/dog.2374.jpg \n", + " inflating: training_set/training_set/dogs/dog.2375.jpg \n", + " inflating: training_set/training_set/dogs/dog.2376.jpg \n", + " inflating: training_set/training_set/dogs/dog.2377.jpg \n", + " inflating: training_set/training_set/dogs/dog.2378.jpg \n", + " inflating: training_set/training_set/dogs/dog.2379.jpg \n", + " inflating: training_set/training_set/dogs/dog.238.jpg \n", + " inflating: training_set/training_set/dogs/dog.2380.jpg \n", + " inflating: training_set/training_set/dogs/dog.2381.jpg \n", + " inflating: training_set/training_set/dogs/dog.2382.jpg \n", + " inflating: training_set/training_set/dogs/dog.2383.jpg \n", + " inflating: training_set/training_set/dogs/dog.2384.jpg \n", + " inflating: training_set/training_set/dogs/dog.2385.jpg \n", + " inflating: training_set/training_set/dogs/dog.2386.jpg \n", + " inflating: training_set/training_set/dogs/dog.2387.jpg \n", + " inflating: training_set/training_set/dogs/dog.2388.jpg \n", + " inflating: training_set/training_set/dogs/dog.2389.jpg \n", + " inflating: training_set/training_set/dogs/dog.239.jpg \n", + " inflating: training_set/training_set/dogs/dog.2390.jpg \n", + " inflating: training_set/training_set/dogs/dog.2391.jpg \n", + " inflating: training_set/training_set/dogs/dog.2392.jpg \n", + " inflating: training_set/training_set/dogs/dog.2393.jpg \n", + " inflating: training_set/training_set/dogs/dog.2394.jpg \n", + " inflating: training_set/training_set/dogs/dog.2395.jpg \n", + " inflating: training_set/training_set/dogs/dog.2396.jpg \n", + " inflating: training_set/training_set/dogs/dog.2397.jpg \n", + " inflating: training_set/training_set/dogs/dog.2398.jpg \n", + " inflating: training_set/training_set/dogs/dog.2399.jpg \n", + " inflating: training_set/training_set/dogs/dog.24.jpg \n", + " inflating: training_set/training_set/dogs/dog.240.jpg \n", + " inflating: training_set/training_set/dogs/dog.2400.jpg \n", + " inflating: training_set/training_set/dogs/dog.2401.jpg \n", + " inflating: training_set/training_set/dogs/dog.2402.jpg \n", + " inflating: training_set/training_set/dogs/dog.2403.jpg \n", + " inflating: training_set/training_set/dogs/dog.2404.jpg \n", + " inflating: training_set/training_set/dogs/dog.2405.jpg \n", + " inflating: training_set/training_set/dogs/dog.2406.jpg \n", + " inflating: training_set/training_set/dogs/dog.2407.jpg \n", + " inflating: training_set/training_set/dogs/dog.2408.jpg \n", + " inflating: training_set/training_set/dogs/dog.2409.jpg \n", + " inflating: training_set/training_set/dogs/dog.241.jpg \n", + " inflating: training_set/training_set/dogs/dog.2410.jpg \n", + " inflating: training_set/training_set/dogs/dog.2411.jpg \n", + " inflating: training_set/training_set/dogs/dog.2412.jpg \n", + " inflating: training_set/training_set/dogs/dog.2413.jpg \n", + " inflating: training_set/training_set/dogs/dog.2414.jpg \n", + " inflating: training_set/training_set/dogs/dog.2415.jpg \n", + " inflating: training_set/training_set/dogs/dog.2416.jpg \n", + " inflating: training_set/training_set/dogs/dog.2417.jpg \n", + " inflating: training_set/training_set/dogs/dog.2418.jpg \n", + " inflating: training_set/training_set/dogs/dog.2419.jpg \n", + " inflating: training_set/training_set/dogs/dog.242.jpg \n", + " inflating: training_set/training_set/dogs/dog.2420.jpg \n", + " inflating: training_set/training_set/dogs/dog.2421.jpg \n", + " inflating: training_set/training_set/dogs/dog.2422.jpg \n", + " inflating: training_set/training_set/dogs/dog.2423.jpg \n", + " inflating: training_set/training_set/dogs/dog.2424.jpg \n", + " inflating: training_set/training_set/dogs/dog.2425.jpg \n", + " inflating: training_set/training_set/dogs/dog.2426.jpg \n", + " inflating: training_set/training_set/dogs/dog.2427.jpg \n", + " inflating: training_set/training_set/dogs/dog.2428.jpg \n", + " inflating: training_set/training_set/dogs/dog.2429.jpg \n", + " inflating: training_set/training_set/dogs/dog.243.jpg \n", + " inflating: training_set/training_set/dogs/dog.2430.jpg \n", + " inflating: training_set/training_set/dogs/dog.2431.jpg \n", + " inflating: training_set/training_set/dogs/dog.2432.jpg \n", + " inflating: training_set/training_set/dogs/dog.2433.jpg \n", + " inflating: training_set/training_set/dogs/dog.2434.jpg \n", + " inflating: training_set/training_set/dogs/dog.2435.jpg \n", + " inflating: training_set/training_set/dogs/dog.2436.jpg \n", + " inflating: training_set/training_set/dogs/dog.2437.jpg \n", + " inflating: training_set/training_set/dogs/dog.2438.jpg \n", + " inflating: training_set/training_set/dogs/dog.2439.jpg \n", + " inflating: training_set/training_set/dogs/dog.244.jpg \n", + " inflating: training_set/training_set/dogs/dog.2440.jpg \n", + " inflating: training_set/training_set/dogs/dog.2441.jpg \n", + " inflating: training_set/training_set/dogs/dog.2442.jpg \n", + " inflating: training_set/training_set/dogs/dog.2443.jpg \n", + " inflating: training_set/training_set/dogs/dog.2444.jpg \n", + " inflating: training_set/training_set/dogs/dog.2445.jpg \n", + " inflating: training_set/training_set/dogs/dog.2446.jpg \n", + " inflating: training_set/training_set/dogs/dog.2447.jpg \n", + " inflating: training_set/training_set/dogs/dog.2448.jpg \n", + " inflating: training_set/training_set/dogs/dog.2449.jpg \n", + " inflating: training_set/training_set/dogs/dog.245.jpg \n", + " inflating: training_set/training_set/dogs/dog.2450.jpg \n", + " inflating: training_set/training_set/dogs/dog.2451.jpg \n", + " inflating: training_set/training_set/dogs/dog.2452.jpg \n", + " inflating: training_set/training_set/dogs/dog.2453.jpg \n", + " inflating: training_set/training_set/dogs/dog.2454.jpg \n", + " inflating: training_set/training_set/dogs/dog.2455.jpg \n", + " inflating: training_set/training_set/dogs/dog.2456.jpg \n", + " inflating: training_set/training_set/dogs/dog.2457.jpg \n", + " inflating: training_set/training_set/dogs/dog.2458.jpg \n", + " inflating: training_set/training_set/dogs/dog.2459.jpg \n", + " inflating: training_set/training_set/dogs/dog.246.jpg \n", + " inflating: training_set/training_set/dogs/dog.2460.jpg \n", + " inflating: training_set/training_set/dogs/dog.2461.jpg \n", + " inflating: training_set/training_set/dogs/dog.2462.jpg \n", + " inflating: training_set/training_set/dogs/dog.2463.jpg \n", + " inflating: training_set/training_set/dogs/dog.2464.jpg \n", + " inflating: training_set/training_set/dogs/dog.2465.jpg \n", + " inflating: training_set/training_set/dogs/dog.2466.jpg \n", + " inflating: training_set/training_set/dogs/dog.2467.jpg \n", + " inflating: training_set/training_set/dogs/dog.2468.jpg \n", + " inflating: training_set/training_set/dogs/dog.2469.jpg \n", + " inflating: training_set/training_set/dogs/dog.247.jpg \n", + " inflating: training_set/training_set/dogs/dog.2470.jpg \n", + " inflating: training_set/training_set/dogs/dog.2471.jpg \n", + " inflating: training_set/training_set/dogs/dog.2472.jpg \n", + " inflating: training_set/training_set/dogs/dog.2473.jpg \n", + " inflating: training_set/training_set/dogs/dog.2474.jpg \n", + " inflating: training_set/training_set/dogs/dog.2475.jpg \n", + " inflating: training_set/training_set/dogs/dog.2476.jpg \n", + " inflating: training_set/training_set/dogs/dog.2477.jpg \n", + " inflating: training_set/training_set/dogs/dog.2478.jpg \n", + " inflating: training_set/training_set/dogs/dog.2479.jpg \n", + " inflating: training_set/training_set/dogs/dog.248.jpg \n", + " inflating: training_set/training_set/dogs/dog.2480.jpg \n", + " inflating: training_set/training_set/dogs/dog.2481.jpg \n", + " inflating: training_set/training_set/dogs/dog.2482.jpg \n", + " inflating: training_set/training_set/dogs/dog.2483.jpg \n", + " inflating: training_set/training_set/dogs/dog.2484.jpg \n", + " inflating: training_set/training_set/dogs/dog.2485.jpg \n", + " inflating: training_set/training_set/dogs/dog.2486.jpg \n", + " inflating: training_set/training_set/dogs/dog.2487.jpg \n", + " inflating: training_set/training_set/dogs/dog.2488.jpg \n", + " inflating: training_set/training_set/dogs/dog.2489.jpg \n", + " inflating: training_set/training_set/dogs/dog.249.jpg \n", + " inflating: training_set/training_set/dogs/dog.2490.jpg \n", + " inflating: training_set/training_set/dogs/dog.2491.jpg \n", + " inflating: training_set/training_set/dogs/dog.2492.jpg \n", + " inflating: training_set/training_set/dogs/dog.2493.jpg \n", + " inflating: training_set/training_set/dogs/dog.2494.jpg \n", + " inflating: training_set/training_set/dogs/dog.2495.jpg \n", + " inflating: training_set/training_set/dogs/dog.2496.jpg \n", + " inflating: training_set/training_set/dogs/dog.2497.jpg \n", + " inflating: training_set/training_set/dogs/dog.2498.jpg \n", + " inflating: training_set/training_set/dogs/dog.2499.jpg \n", + " inflating: training_set/training_set/dogs/dog.25.jpg \n", + " inflating: training_set/training_set/dogs/dog.250.jpg \n", + " inflating: training_set/training_set/dogs/dog.2500.jpg \n", + " inflating: training_set/training_set/dogs/dog.2501.jpg \n", + " inflating: training_set/training_set/dogs/dog.2502.jpg \n", + " inflating: training_set/training_set/dogs/dog.2503.jpg \n", + " inflating: training_set/training_set/dogs/dog.2504.jpg \n", + " inflating: training_set/training_set/dogs/dog.2505.jpg \n", + " inflating: training_set/training_set/dogs/dog.2506.jpg \n", + " inflating: training_set/training_set/dogs/dog.2507.jpg \n", + " inflating: training_set/training_set/dogs/dog.2508.jpg \n", + " inflating: training_set/training_set/dogs/dog.2509.jpg \n", + " inflating: training_set/training_set/dogs/dog.251.jpg \n", + " inflating: training_set/training_set/dogs/dog.2510.jpg \n", + " inflating: training_set/training_set/dogs/dog.2511.jpg \n", + " inflating: training_set/training_set/dogs/dog.2512.jpg \n", + " inflating: training_set/training_set/dogs/dog.2513.jpg \n", + " inflating: training_set/training_set/dogs/dog.2514.jpg \n", + " inflating: training_set/training_set/dogs/dog.2515.jpg \n", + " inflating: training_set/training_set/dogs/dog.2516.jpg \n", + " inflating: training_set/training_set/dogs/dog.2517.jpg \n", + " inflating: training_set/training_set/dogs/dog.2518.jpg \n", + " inflating: training_set/training_set/dogs/dog.2519.jpg \n", + " inflating: training_set/training_set/dogs/dog.252.jpg \n", + " inflating: training_set/training_set/dogs/dog.2520.jpg \n", + " inflating: training_set/training_set/dogs/dog.2521.jpg \n", + " inflating: training_set/training_set/dogs/dog.2522.jpg \n", + " inflating: training_set/training_set/dogs/dog.2523.jpg \n", + " inflating: training_set/training_set/dogs/dog.2524.jpg \n", + " inflating: training_set/training_set/dogs/dog.2525.jpg \n", + " inflating: training_set/training_set/dogs/dog.2526.jpg \n", + " inflating: training_set/training_set/dogs/dog.2527.jpg \n", + " inflating: training_set/training_set/dogs/dog.2528.jpg \n", + " inflating: training_set/training_set/dogs/dog.2529.jpg \n", + " inflating: training_set/training_set/dogs/dog.253.jpg \n", + " inflating: training_set/training_set/dogs/dog.2530.jpg \n", + " inflating: training_set/training_set/dogs/dog.2531.jpg \n", + " inflating: training_set/training_set/dogs/dog.2532.jpg \n", + " inflating: training_set/training_set/dogs/dog.2533.jpg \n", + " inflating: training_set/training_set/dogs/dog.2534.jpg \n", + " inflating: training_set/training_set/dogs/dog.2535.jpg \n", + " inflating: training_set/training_set/dogs/dog.2536.jpg \n", + " inflating: training_set/training_set/dogs/dog.2537.jpg \n", + " inflating: training_set/training_set/dogs/dog.2538.jpg \n", + " inflating: training_set/training_set/dogs/dog.2539.jpg \n", + " inflating: training_set/training_set/dogs/dog.254.jpg \n", + " inflating: training_set/training_set/dogs/dog.2540.jpg \n", + " inflating: training_set/training_set/dogs/dog.2541.jpg \n", + " inflating: training_set/training_set/dogs/dog.2542.jpg \n", + " inflating: training_set/training_set/dogs/dog.2543.jpg \n", + " inflating: training_set/training_set/dogs/dog.2544.jpg \n", + " inflating: training_set/training_set/dogs/dog.2545.jpg \n", + " inflating: training_set/training_set/dogs/dog.2546.jpg \n", + " inflating: training_set/training_set/dogs/dog.2547.jpg \n", + " inflating: training_set/training_set/dogs/dog.2548.jpg \n", + " inflating: training_set/training_set/dogs/dog.2549.jpg \n", + " inflating: training_set/training_set/dogs/dog.255.jpg \n", + " inflating: training_set/training_set/dogs/dog.2550.jpg \n", + " inflating: training_set/training_set/dogs/dog.2551.jpg \n", + " inflating: training_set/training_set/dogs/dog.2552.jpg \n", + " inflating: training_set/training_set/dogs/dog.2553.jpg \n", + " inflating: training_set/training_set/dogs/dog.2554.jpg \n", + " inflating: training_set/training_set/dogs/dog.2555.jpg \n", + " inflating: training_set/training_set/dogs/dog.2556.jpg \n", + " inflating: training_set/training_set/dogs/dog.2557.jpg \n", + " inflating: training_set/training_set/dogs/dog.2558.jpg \n", + " inflating: training_set/training_set/dogs/dog.2559.jpg \n", + " inflating: training_set/training_set/dogs/dog.256.jpg \n", + " inflating: training_set/training_set/dogs/dog.2560.jpg \n", + " inflating: training_set/training_set/dogs/dog.2561.jpg \n", + " inflating: training_set/training_set/dogs/dog.2562.jpg \n", + " inflating: training_set/training_set/dogs/dog.2563.jpg \n", + " inflating: training_set/training_set/dogs/dog.2564.jpg \n", + " inflating: training_set/training_set/dogs/dog.2565.jpg \n", + " inflating: training_set/training_set/dogs/dog.2566.jpg \n", + " inflating: training_set/training_set/dogs/dog.2567.jpg \n", + " inflating: training_set/training_set/dogs/dog.2568.jpg \n", + " inflating: training_set/training_set/dogs/dog.2569.jpg \n", + " inflating: training_set/training_set/dogs/dog.257.jpg \n", + " inflating: training_set/training_set/dogs/dog.2570.jpg \n", + " inflating: training_set/training_set/dogs/dog.2571.jpg \n", + " inflating: training_set/training_set/dogs/dog.2572.jpg \n", + " inflating: training_set/training_set/dogs/dog.2573.jpg \n", + " inflating: training_set/training_set/dogs/dog.2574.jpg \n", + " inflating: training_set/training_set/dogs/dog.2575.jpg \n", + " inflating: training_set/training_set/dogs/dog.2576.jpg \n", + " inflating: training_set/training_set/dogs/dog.2577.jpg \n", + " inflating: training_set/training_set/dogs/dog.2578.jpg \n", + " inflating: training_set/training_set/dogs/dog.2579.jpg \n", + " inflating: training_set/training_set/dogs/dog.258.jpg \n", + " inflating: training_set/training_set/dogs/dog.2580.jpg \n", + " inflating: training_set/training_set/dogs/dog.2581.jpg \n", + " inflating: training_set/training_set/dogs/dog.2582.jpg \n", + " inflating: training_set/training_set/dogs/dog.2583.jpg \n", + " inflating: training_set/training_set/dogs/dog.2584.jpg \n", + " inflating: training_set/training_set/dogs/dog.2585.jpg \n", + " inflating: training_set/training_set/dogs/dog.2586.jpg \n", + " inflating: training_set/training_set/dogs/dog.2587.jpg \n", + " inflating: training_set/training_set/dogs/dog.2588.jpg \n", + " inflating: training_set/training_set/dogs/dog.2589.jpg \n", + " inflating: training_set/training_set/dogs/dog.259.jpg \n", + " inflating: training_set/training_set/dogs/dog.2590.jpg \n", + " inflating: training_set/training_set/dogs/dog.2591.jpg \n", + " inflating: training_set/training_set/dogs/dog.2592.jpg \n", + " inflating: training_set/training_set/dogs/dog.2593.jpg \n", + " inflating: training_set/training_set/dogs/dog.2594.jpg \n", + " inflating: training_set/training_set/dogs/dog.2595.jpg \n", + " inflating: training_set/training_set/dogs/dog.2596.jpg \n", + " inflating: training_set/training_set/dogs/dog.2597.jpg \n", + " inflating: training_set/training_set/dogs/dog.2598.jpg \n", + " inflating: training_set/training_set/dogs/dog.2599.jpg \n", + " inflating: training_set/training_set/dogs/dog.26.jpg \n", + " inflating: training_set/training_set/dogs/dog.260.jpg \n", + " inflating: training_set/training_set/dogs/dog.2600.jpg \n", + " inflating: training_set/training_set/dogs/dog.2601.jpg \n", + " inflating: training_set/training_set/dogs/dog.2602.jpg \n", + " inflating: training_set/training_set/dogs/dog.2603.jpg \n", + " inflating: training_set/training_set/dogs/dog.2604.jpg \n", + " inflating: training_set/training_set/dogs/dog.2605.jpg \n", + " inflating: training_set/training_set/dogs/dog.2606.jpg \n", + " inflating: training_set/training_set/dogs/dog.2607.jpg \n", + " inflating: training_set/training_set/dogs/dog.2608.jpg \n", + " inflating: training_set/training_set/dogs/dog.2609.jpg \n", + " inflating: training_set/training_set/dogs/dog.261.jpg \n", + " inflating: training_set/training_set/dogs/dog.2610.jpg \n", + " inflating: training_set/training_set/dogs/dog.2611.jpg \n", + " inflating: training_set/training_set/dogs/dog.2612.jpg \n", + " inflating: training_set/training_set/dogs/dog.2613.jpg \n", + " inflating: training_set/training_set/dogs/dog.2614.jpg \n", + " inflating: training_set/training_set/dogs/dog.2615.jpg \n", + " inflating: training_set/training_set/dogs/dog.2616.jpg \n", + " inflating: training_set/training_set/dogs/dog.2617.jpg \n", + " inflating: training_set/training_set/dogs/dog.2618.jpg \n", + " inflating: training_set/training_set/dogs/dog.2619.jpg \n", + " inflating: training_set/training_set/dogs/dog.262.jpg \n", + " inflating: training_set/training_set/dogs/dog.2620.jpg \n", + " inflating: training_set/training_set/dogs/dog.2621.jpg \n", + " inflating: training_set/training_set/dogs/dog.2622.jpg \n", + " inflating: training_set/training_set/dogs/dog.2623.jpg \n", + " inflating: training_set/training_set/dogs/dog.2624.jpg \n", + " inflating: training_set/training_set/dogs/dog.2625.jpg \n", + " inflating: training_set/training_set/dogs/dog.2626.jpg \n", + " inflating: training_set/training_set/dogs/dog.2627.jpg \n", + " inflating: training_set/training_set/dogs/dog.2628.jpg \n", + " inflating: training_set/training_set/dogs/dog.2629.jpg \n", + " inflating: training_set/training_set/dogs/dog.263.jpg \n", + " inflating: training_set/training_set/dogs/dog.2630.jpg \n", + " inflating: training_set/training_set/dogs/dog.2631.jpg \n", + " inflating: training_set/training_set/dogs/dog.2632.jpg \n", + " inflating: training_set/training_set/dogs/dog.2633.jpg \n", + " inflating: training_set/training_set/dogs/dog.2634.jpg \n", + " inflating: training_set/training_set/dogs/dog.2635.jpg \n", + " inflating: training_set/training_set/dogs/dog.2636.jpg \n", + " inflating: training_set/training_set/dogs/dog.2637.jpg \n", + " inflating: training_set/training_set/dogs/dog.2638.jpg \n", + " inflating: training_set/training_set/dogs/dog.2639.jpg \n", + " inflating: training_set/training_set/dogs/dog.264.jpg \n", + " inflating: training_set/training_set/dogs/dog.2640.jpg \n", + " inflating: training_set/training_set/dogs/dog.2641.jpg \n", + " inflating: training_set/training_set/dogs/dog.2642.jpg \n", + " inflating: training_set/training_set/dogs/dog.2643.jpg \n", + " inflating: training_set/training_set/dogs/dog.2644.jpg \n", + " inflating: training_set/training_set/dogs/dog.2645.jpg \n", + " inflating: training_set/training_set/dogs/dog.2646.jpg \n", + " inflating: training_set/training_set/dogs/dog.2647.jpg \n", + " inflating: training_set/training_set/dogs/dog.2648.jpg \n", + " inflating: training_set/training_set/dogs/dog.2649.jpg \n", + " inflating: training_set/training_set/dogs/dog.265.jpg \n", + " inflating: training_set/training_set/dogs/dog.2650.jpg \n", + " inflating: training_set/training_set/dogs/dog.2651.jpg \n", + " inflating: training_set/training_set/dogs/dog.2652.jpg \n", + " inflating: training_set/training_set/dogs/dog.2653.jpg \n", + " inflating: training_set/training_set/dogs/dog.2654.jpg \n", + " inflating: training_set/training_set/dogs/dog.2655.jpg \n", + " inflating: training_set/training_set/dogs/dog.2656.jpg \n", + " inflating: training_set/training_set/dogs/dog.2657.jpg \n", + " inflating: training_set/training_set/dogs/dog.2658.jpg \n", + " inflating: training_set/training_set/dogs/dog.2659.jpg \n", + " inflating: training_set/training_set/dogs/dog.266.jpg \n", + " inflating: training_set/training_set/dogs/dog.2660.jpg \n", + " inflating: training_set/training_set/dogs/dog.2661.jpg \n", + " inflating: training_set/training_set/dogs/dog.2662.jpg \n", + " inflating: training_set/training_set/dogs/dog.2663.jpg \n", + " inflating: training_set/training_set/dogs/dog.2664.jpg \n", + " inflating: training_set/training_set/dogs/dog.2665.jpg \n", + " inflating: training_set/training_set/dogs/dog.2666.jpg \n", + " inflating: training_set/training_set/dogs/dog.2667.jpg \n", + " inflating: training_set/training_set/dogs/dog.2668.jpg \n", + " inflating: training_set/training_set/dogs/dog.2669.jpg \n", + " inflating: training_set/training_set/dogs/dog.267.jpg \n", + " inflating: training_set/training_set/dogs/dog.2670.jpg \n", + " inflating: training_set/training_set/dogs/dog.2671.jpg \n", + " inflating: training_set/training_set/dogs/dog.2672.jpg \n", + " inflating: training_set/training_set/dogs/dog.2673.jpg \n", + " inflating: training_set/training_set/dogs/dog.2674.jpg \n", + " inflating: training_set/training_set/dogs/dog.2675.jpg \n", + " inflating: training_set/training_set/dogs/dog.2676.jpg \n", + " inflating: training_set/training_set/dogs/dog.2677.jpg \n", + " inflating: training_set/training_set/dogs/dog.2678.jpg \n", + " inflating: training_set/training_set/dogs/dog.2679.jpg \n", + " inflating: training_set/training_set/dogs/dog.268.jpg \n", + " inflating: training_set/training_set/dogs/dog.2680.jpg \n", + " inflating: training_set/training_set/dogs/dog.2681.jpg \n", + " inflating: training_set/training_set/dogs/dog.2682.jpg \n", + " inflating: training_set/training_set/dogs/dog.2683.jpg \n", + " inflating: training_set/training_set/dogs/dog.2684.jpg \n", + " inflating: training_set/training_set/dogs/dog.2685.jpg \n", + " inflating: training_set/training_set/dogs/dog.2686.jpg \n", + " inflating: training_set/training_set/dogs/dog.2687.jpg \n", + " inflating: training_set/training_set/dogs/dog.2688.jpg \n", + " inflating: training_set/training_set/dogs/dog.2689.jpg \n", + " inflating: training_set/training_set/dogs/dog.269.jpg \n", + " inflating: training_set/training_set/dogs/dog.2690.jpg \n", + " inflating: training_set/training_set/dogs/dog.2691.jpg \n", + " inflating: training_set/training_set/dogs/dog.2692.jpg \n", + " inflating: training_set/training_set/dogs/dog.2693.jpg \n", + " inflating: training_set/training_set/dogs/dog.2694.jpg \n", + " inflating: training_set/training_set/dogs/dog.2695.jpg \n", + " inflating: training_set/training_set/dogs/dog.2696.jpg \n", + " inflating: training_set/training_set/dogs/dog.2697.jpg \n", + " inflating: training_set/training_set/dogs/dog.2698.jpg \n", + " inflating: training_set/training_set/dogs/dog.2699.jpg \n", + " inflating: training_set/training_set/dogs/dog.27.jpg \n", + " inflating: training_set/training_set/dogs/dog.270.jpg \n", + " inflating: training_set/training_set/dogs/dog.2700.jpg \n", + " inflating: training_set/training_set/dogs/dog.2701.jpg \n", + " inflating: training_set/training_set/dogs/dog.2702.jpg \n", + " inflating: training_set/training_set/dogs/dog.2703.jpg \n", + " inflating: training_set/training_set/dogs/dog.2704.jpg \n", + " inflating: training_set/training_set/dogs/dog.2705.jpg \n", + " inflating: training_set/training_set/dogs/dog.2706.jpg \n", + " inflating: training_set/training_set/dogs/dog.2707.jpg \n", + " inflating: training_set/training_set/dogs/dog.2708.jpg \n", + " inflating: training_set/training_set/dogs/dog.2709.jpg \n", + " inflating: training_set/training_set/dogs/dog.271.jpg \n", + " inflating: training_set/training_set/dogs/dog.2710.jpg \n", + " inflating: training_set/training_set/dogs/dog.2711.jpg \n", + " inflating: training_set/training_set/dogs/dog.2712.jpg \n", + " inflating: training_set/training_set/dogs/dog.2713.jpg \n", + " inflating: training_set/training_set/dogs/dog.2714.jpg \n", + " inflating: training_set/training_set/dogs/dog.2715.jpg \n", + " inflating: training_set/training_set/dogs/dog.2716.jpg \n", + " inflating: training_set/training_set/dogs/dog.2717.jpg \n", + " inflating: training_set/training_set/dogs/dog.2718.jpg \n", + " inflating: training_set/training_set/dogs/dog.2719.jpg \n", + " inflating: training_set/training_set/dogs/dog.272.jpg \n", + " inflating: training_set/training_set/dogs/dog.2720.jpg \n", + " inflating: training_set/training_set/dogs/dog.2721.jpg \n", + " inflating: training_set/training_set/dogs/dog.2722.jpg \n", + " inflating: training_set/training_set/dogs/dog.2723.jpg \n", + " inflating: training_set/training_set/dogs/dog.2724.jpg \n", + " inflating: training_set/training_set/dogs/dog.2725.jpg \n", + " inflating: training_set/training_set/dogs/dog.2726.jpg \n", + " inflating: training_set/training_set/dogs/dog.2727.jpg \n", + " inflating: training_set/training_set/dogs/dog.2728.jpg \n", + " inflating: training_set/training_set/dogs/dog.2729.jpg \n", + " inflating: training_set/training_set/dogs/dog.273.jpg \n", + " inflating: training_set/training_set/dogs/dog.2730.jpg \n", + " inflating: training_set/training_set/dogs/dog.2731.jpg \n", + " inflating: training_set/training_set/dogs/dog.2732.jpg \n", + " inflating: training_set/training_set/dogs/dog.2733.jpg \n", + " inflating: training_set/training_set/dogs/dog.2734.jpg \n", + " inflating: training_set/training_set/dogs/dog.2735.jpg \n", + " inflating: training_set/training_set/dogs/dog.2736.jpg \n", + " inflating: training_set/training_set/dogs/dog.2737.jpg \n", + " inflating: training_set/training_set/dogs/dog.2738.jpg \n", + " inflating: training_set/training_set/dogs/dog.2739.jpg \n", + " inflating: training_set/training_set/dogs/dog.274.jpg \n", + " inflating: training_set/training_set/dogs/dog.2740.jpg \n", + " inflating: training_set/training_set/dogs/dog.2741.jpg \n", + " inflating: training_set/training_set/dogs/dog.2742.jpg \n", + " inflating: training_set/training_set/dogs/dog.2743.jpg \n", + " inflating: training_set/training_set/dogs/dog.2744.jpg \n", + " inflating: training_set/training_set/dogs/dog.2745.jpg \n", + " inflating: training_set/training_set/dogs/dog.2746.jpg \n", + " inflating: training_set/training_set/dogs/dog.2747.jpg \n", + " inflating: training_set/training_set/dogs/dog.2748.jpg \n", + " inflating: training_set/training_set/dogs/dog.2749.jpg \n", + " inflating: training_set/training_set/dogs/dog.275.jpg \n", + " inflating: training_set/training_set/dogs/dog.2750.jpg \n", + " inflating: training_set/training_set/dogs/dog.2751.jpg \n", + " inflating: training_set/training_set/dogs/dog.2752.jpg \n", + " inflating: training_set/training_set/dogs/dog.2753.jpg \n", + " inflating: training_set/training_set/dogs/dog.2754.jpg \n", + " inflating: training_set/training_set/dogs/dog.2755.jpg \n", + " inflating: training_set/training_set/dogs/dog.2756.jpg \n", + " inflating: training_set/training_set/dogs/dog.2757.jpg \n", + " inflating: training_set/training_set/dogs/dog.2758.jpg \n", + " inflating: training_set/training_set/dogs/dog.2759.jpg \n", + " inflating: training_set/training_set/dogs/dog.276.jpg \n", + " inflating: training_set/training_set/dogs/dog.2760.jpg \n", + " inflating: training_set/training_set/dogs/dog.2761.jpg \n", + " inflating: training_set/training_set/dogs/dog.2762.jpg \n", + " inflating: training_set/training_set/dogs/dog.2763.jpg \n", + " inflating: training_set/training_set/dogs/dog.2764.jpg \n", + " inflating: training_set/training_set/dogs/dog.2765.jpg \n", + " inflating: training_set/training_set/dogs/dog.2766.jpg \n", + " inflating: training_set/training_set/dogs/dog.2767.jpg \n", + " inflating: training_set/training_set/dogs/dog.2768.jpg \n", + " inflating: training_set/training_set/dogs/dog.2769.jpg \n", + " inflating: training_set/training_set/dogs/dog.277.jpg \n", + " inflating: training_set/training_set/dogs/dog.2770.jpg \n", + " inflating: training_set/training_set/dogs/dog.2771.jpg \n", + " inflating: training_set/training_set/dogs/dog.2772.jpg \n", + " inflating: training_set/training_set/dogs/dog.2773.jpg \n", + " inflating: training_set/training_set/dogs/dog.2774.jpg \n", + " inflating: training_set/training_set/dogs/dog.2775.jpg \n", + " inflating: training_set/training_set/dogs/dog.2776.jpg \n", + " inflating: training_set/training_set/dogs/dog.2777.jpg \n", + " inflating: training_set/training_set/dogs/dog.2778.jpg \n", + " inflating: training_set/training_set/dogs/dog.2779.jpg \n", + " inflating: training_set/training_set/dogs/dog.278.jpg \n", + " inflating: training_set/training_set/dogs/dog.2780.jpg \n", + " inflating: training_set/training_set/dogs/dog.2781.jpg \n", + " inflating: training_set/training_set/dogs/dog.2782.jpg \n", + " inflating: training_set/training_set/dogs/dog.2783.jpg \n", + " inflating: training_set/training_set/dogs/dog.2784.jpg \n", + " inflating: training_set/training_set/dogs/dog.2785.jpg \n", + " inflating: training_set/training_set/dogs/dog.2786.jpg \n", + " inflating: training_set/training_set/dogs/dog.2787.jpg \n", + " inflating: training_set/training_set/dogs/dog.2788.jpg \n", + " inflating: training_set/training_set/dogs/dog.2789.jpg \n", + " inflating: training_set/training_set/dogs/dog.279.jpg \n", + " inflating: training_set/training_set/dogs/dog.2790.jpg \n", + " inflating: training_set/training_set/dogs/dog.2791.jpg \n", + " inflating: training_set/training_set/dogs/dog.2792.jpg \n", + " inflating: training_set/training_set/dogs/dog.2793.jpg \n", + " inflating: training_set/training_set/dogs/dog.2794.jpg \n", + " inflating: training_set/training_set/dogs/dog.2795.jpg \n", + " inflating: training_set/training_set/dogs/dog.2796.jpg \n", + " inflating: training_set/training_set/dogs/dog.2797.jpg \n", + " inflating: training_set/training_set/dogs/dog.2798.jpg \n", + " inflating: training_set/training_set/dogs/dog.2799.jpg \n", + " inflating: training_set/training_set/dogs/dog.28.jpg \n", + " inflating: training_set/training_set/dogs/dog.280.jpg \n", + " inflating: training_set/training_set/dogs/dog.2800.jpg \n", + " inflating: training_set/training_set/dogs/dog.2801.jpg \n", + " inflating: training_set/training_set/dogs/dog.2802.jpg \n", + " inflating: training_set/training_set/dogs/dog.2803.jpg \n", + " inflating: training_set/training_set/dogs/dog.2804.jpg \n", + " inflating: training_set/training_set/dogs/dog.2805.jpg \n", + " inflating: training_set/training_set/dogs/dog.2806.jpg \n", + " inflating: training_set/training_set/dogs/dog.2807.jpg \n", + " inflating: training_set/training_set/dogs/dog.2808.jpg \n", + " inflating: training_set/training_set/dogs/dog.2809.jpg \n", + " inflating: training_set/training_set/dogs/dog.281.jpg \n", + " inflating: training_set/training_set/dogs/dog.2810.jpg \n", + " inflating: training_set/training_set/dogs/dog.2811.jpg \n", + " inflating: training_set/training_set/dogs/dog.2812.jpg \n", + " inflating: training_set/training_set/dogs/dog.2813.jpg \n", + " inflating: training_set/training_set/dogs/dog.2814.jpg \n", + " inflating: training_set/training_set/dogs/dog.2815.jpg \n", + " inflating: training_set/training_set/dogs/dog.2816.jpg \n", + " inflating: training_set/training_set/dogs/dog.2817.jpg \n", + " inflating: training_set/training_set/dogs/dog.2818.jpg \n", + " inflating: training_set/training_set/dogs/dog.2819.jpg \n", + " inflating: training_set/training_set/dogs/dog.282.jpg \n", + " inflating: training_set/training_set/dogs/dog.2820.jpg \n", + " inflating: training_set/training_set/dogs/dog.2821.jpg \n", + " inflating: training_set/training_set/dogs/dog.2822.jpg \n", + " inflating: training_set/training_set/dogs/dog.2823.jpg \n", + " inflating: training_set/training_set/dogs/dog.2824.jpg \n", + " inflating: training_set/training_set/dogs/dog.2825.jpg \n", + " inflating: training_set/training_set/dogs/dog.2826.jpg \n", + " inflating: training_set/training_set/dogs/dog.2827.jpg \n", + " inflating: training_set/training_set/dogs/dog.2828.jpg \n", + " inflating: training_set/training_set/dogs/dog.2829.jpg \n", + " inflating: training_set/training_set/dogs/dog.283.jpg \n", + " inflating: training_set/training_set/dogs/dog.2830.jpg \n", + " inflating: training_set/training_set/dogs/dog.2831.jpg \n", + " inflating: training_set/training_set/dogs/dog.2832.jpg \n", + " inflating: training_set/training_set/dogs/dog.2833.jpg \n", + " inflating: training_set/training_set/dogs/dog.2834.jpg \n", + " inflating: training_set/training_set/dogs/dog.2835.jpg \n", + " inflating: training_set/training_set/dogs/dog.2836.jpg \n", + " inflating: training_set/training_set/dogs/dog.2837.jpg \n", + " inflating: training_set/training_set/dogs/dog.2838.jpg \n", + " inflating: training_set/training_set/dogs/dog.2839.jpg \n", + " inflating: training_set/training_set/dogs/dog.284.jpg \n", + " inflating: training_set/training_set/dogs/dog.2840.jpg \n", + " inflating: training_set/training_set/dogs/dog.2841.jpg \n", + " inflating: training_set/training_set/dogs/dog.2842.jpg \n", + " inflating: training_set/training_set/dogs/dog.2843.jpg \n", + " inflating: training_set/training_set/dogs/dog.2844.jpg \n", + " inflating: training_set/training_set/dogs/dog.2845.jpg \n", + " inflating: training_set/training_set/dogs/dog.2846.jpg \n", + " inflating: training_set/training_set/dogs/dog.2847.jpg \n", + " inflating: training_set/training_set/dogs/dog.2848.jpg \n", + " inflating: training_set/training_set/dogs/dog.2849.jpg \n", + " inflating: training_set/training_set/dogs/dog.285.jpg \n", + " inflating: training_set/training_set/dogs/dog.2850.jpg \n", + " inflating: training_set/training_set/dogs/dog.2851.jpg \n", + " inflating: training_set/training_set/dogs/dog.2852.jpg \n", + " inflating: training_set/training_set/dogs/dog.2853.jpg \n", + " inflating: training_set/training_set/dogs/dog.2854.jpg \n", + " inflating: training_set/training_set/dogs/dog.2855.jpg \n", + " inflating: training_set/training_set/dogs/dog.2856.jpg \n", + " inflating: training_set/training_set/dogs/dog.2857.jpg \n", + " inflating: training_set/training_set/dogs/dog.2858.jpg \n", + " inflating: training_set/training_set/dogs/dog.2859.jpg \n", + " inflating: training_set/training_set/dogs/dog.286.jpg \n", + " inflating: training_set/training_set/dogs/dog.2860.jpg \n", + " inflating: training_set/training_set/dogs/dog.2861.jpg \n", + " inflating: training_set/training_set/dogs/dog.2862.jpg \n", + " inflating: training_set/training_set/dogs/dog.2863.jpg \n", + " inflating: training_set/training_set/dogs/dog.2864.jpg \n", + " inflating: training_set/training_set/dogs/dog.2865.jpg \n", + " inflating: training_set/training_set/dogs/dog.2866.jpg \n", + " inflating: training_set/training_set/dogs/dog.2867.jpg \n", + " inflating: training_set/training_set/dogs/dog.2868.jpg \n", + " inflating: training_set/training_set/dogs/dog.2869.jpg \n", + " inflating: training_set/training_set/dogs/dog.287.jpg \n", + " inflating: training_set/training_set/dogs/dog.2870.jpg \n", + " inflating: training_set/training_set/dogs/dog.2871.jpg \n", + " inflating: training_set/training_set/dogs/dog.2872.jpg \n", + " inflating: training_set/training_set/dogs/dog.2873.jpg \n", + " inflating: training_set/training_set/dogs/dog.2874.jpg \n", + " inflating: training_set/training_set/dogs/dog.2875.jpg \n", + " inflating: training_set/training_set/dogs/dog.2876.jpg \n", + " inflating: training_set/training_set/dogs/dog.2877.jpg \n", + " inflating: training_set/training_set/dogs/dog.2878.jpg \n", + " inflating: training_set/training_set/dogs/dog.2879.jpg \n", + " inflating: training_set/training_set/dogs/dog.288.jpg \n", + " inflating: training_set/training_set/dogs/dog.2880.jpg \n", + " inflating: training_set/training_set/dogs/dog.2881.jpg \n", + " inflating: training_set/training_set/dogs/dog.2882.jpg \n", + " inflating: training_set/training_set/dogs/dog.2883.jpg \n", + " inflating: training_set/training_set/dogs/dog.2884.jpg \n", + " inflating: training_set/training_set/dogs/dog.2885.jpg \n", + " inflating: training_set/training_set/dogs/dog.2886.jpg \n", + " inflating: training_set/training_set/dogs/dog.2887.jpg \n", + " inflating: training_set/training_set/dogs/dog.2888.jpg \n", + " inflating: training_set/training_set/dogs/dog.2889.jpg \n", + " inflating: training_set/training_set/dogs/dog.289.jpg \n", + " inflating: training_set/training_set/dogs/dog.2890.jpg \n", + " inflating: training_set/training_set/dogs/dog.2891.jpg \n", + " inflating: training_set/training_set/dogs/dog.2892.jpg \n", + " inflating: training_set/training_set/dogs/dog.2893.jpg \n", + " inflating: training_set/training_set/dogs/dog.2894.jpg \n", + " inflating: training_set/training_set/dogs/dog.2895.jpg \n", + " inflating: training_set/training_set/dogs/dog.2896.jpg \n", + " inflating: training_set/training_set/dogs/dog.2897.jpg \n", + " inflating: training_set/training_set/dogs/dog.2898.jpg \n", + " inflating: training_set/training_set/dogs/dog.2899.jpg \n", + " inflating: training_set/training_set/dogs/dog.29.jpg \n", + " inflating: training_set/training_set/dogs/dog.290.jpg \n", + " inflating: training_set/training_set/dogs/dog.2900.jpg \n", + " inflating: training_set/training_set/dogs/dog.2901.jpg \n", + " inflating: training_set/training_set/dogs/dog.2902.jpg \n", + " inflating: training_set/training_set/dogs/dog.2903.jpg \n", + " inflating: training_set/training_set/dogs/dog.2904.jpg \n", + " inflating: training_set/training_set/dogs/dog.2905.jpg \n", + " inflating: training_set/training_set/dogs/dog.2906.jpg \n", + " inflating: training_set/training_set/dogs/dog.2907.jpg \n", + " inflating: training_set/training_set/dogs/dog.2908.jpg \n", + " inflating: training_set/training_set/dogs/dog.2909.jpg \n", + " inflating: training_set/training_set/dogs/dog.291.jpg \n", + " inflating: training_set/training_set/dogs/dog.2910.jpg \n", + " inflating: training_set/training_set/dogs/dog.2911.jpg \n", + " inflating: training_set/training_set/dogs/dog.2912.jpg \n", + " inflating: training_set/training_set/dogs/dog.2913.jpg \n", + " inflating: training_set/training_set/dogs/dog.2914.jpg \n", + " inflating: training_set/training_set/dogs/dog.2915.jpg \n", + " inflating: training_set/training_set/dogs/dog.2916.jpg \n", + " inflating: training_set/training_set/dogs/dog.2917.jpg \n", + " inflating: training_set/training_set/dogs/dog.2918.jpg \n", + " inflating: training_set/training_set/dogs/dog.2919.jpg \n", + " inflating: training_set/training_set/dogs/dog.292.jpg \n", + " inflating: training_set/training_set/dogs/dog.2920.jpg \n", + " inflating: training_set/training_set/dogs/dog.2921.jpg \n", + " inflating: training_set/training_set/dogs/dog.2922.jpg \n", + " inflating: training_set/training_set/dogs/dog.2923.jpg \n", + " inflating: training_set/training_set/dogs/dog.2924.jpg \n", + " inflating: training_set/training_set/dogs/dog.2925.jpg \n", + " inflating: training_set/training_set/dogs/dog.2926.jpg \n", + " inflating: training_set/training_set/dogs/dog.2927.jpg \n", + " inflating: training_set/training_set/dogs/dog.2928.jpg \n", + " inflating: training_set/training_set/dogs/dog.2929.jpg \n", + " inflating: training_set/training_set/dogs/dog.293.jpg \n", + " inflating: training_set/training_set/dogs/dog.2930.jpg \n", + " inflating: training_set/training_set/dogs/dog.2931.jpg \n", + " inflating: training_set/training_set/dogs/dog.2932.jpg \n", + " inflating: training_set/training_set/dogs/dog.2933.jpg \n", + " inflating: training_set/training_set/dogs/dog.2934.jpg \n", + " inflating: training_set/training_set/dogs/dog.2935.jpg \n", + " inflating: training_set/training_set/dogs/dog.2936.jpg \n", + " inflating: training_set/training_set/dogs/dog.2937.jpg \n", + " inflating: training_set/training_set/dogs/dog.2938.jpg \n", + " inflating: training_set/training_set/dogs/dog.2939.jpg \n", + " inflating: training_set/training_set/dogs/dog.294.jpg \n", + " inflating: training_set/training_set/dogs/dog.2940.jpg \n", + " inflating: training_set/training_set/dogs/dog.2941.jpg \n", + " inflating: training_set/training_set/dogs/dog.2942.jpg \n", + " inflating: training_set/training_set/dogs/dog.2943.jpg \n", + " inflating: training_set/training_set/dogs/dog.2944.jpg \n", + " inflating: training_set/training_set/dogs/dog.2945.jpg \n", + " inflating: training_set/training_set/dogs/dog.2946.jpg \n", + " inflating: training_set/training_set/dogs/dog.2947.jpg \n", + " inflating: training_set/training_set/dogs/dog.2948.jpg \n", + " inflating: training_set/training_set/dogs/dog.2949.jpg \n", + " inflating: training_set/training_set/dogs/dog.295.jpg \n", + " inflating: training_set/training_set/dogs/dog.2950.jpg \n", + " inflating: training_set/training_set/dogs/dog.2951.jpg \n", + " inflating: training_set/training_set/dogs/dog.2952.jpg \n", + " inflating: training_set/training_set/dogs/dog.2953.jpg \n", + " inflating: training_set/training_set/dogs/dog.2954.jpg \n", + " inflating: training_set/training_set/dogs/dog.2955.jpg \n", + " inflating: training_set/training_set/dogs/dog.2956.jpg \n", + " inflating: training_set/training_set/dogs/dog.2957.jpg \n", + " inflating: training_set/training_set/dogs/dog.2958.jpg \n", + " inflating: training_set/training_set/dogs/dog.2959.jpg \n", + " inflating: training_set/training_set/dogs/dog.296.jpg \n", + " inflating: training_set/training_set/dogs/dog.2960.jpg \n", + " inflating: training_set/training_set/dogs/dog.2961.jpg \n", + " inflating: training_set/training_set/dogs/dog.2962.jpg \n", + " inflating: training_set/training_set/dogs/dog.2963.jpg \n", + " inflating: training_set/training_set/dogs/dog.2964.jpg \n", + " inflating: training_set/training_set/dogs/dog.2965.jpg \n", + " inflating: training_set/training_set/dogs/dog.2966.jpg \n", + " inflating: training_set/training_set/dogs/dog.2967.jpg \n", + " inflating: training_set/training_set/dogs/dog.2968.jpg \n", + " inflating: training_set/training_set/dogs/dog.2969.jpg \n", + " inflating: training_set/training_set/dogs/dog.297.jpg \n", + " inflating: training_set/training_set/dogs/dog.2970.jpg \n", + " inflating: training_set/training_set/dogs/dog.2971.jpg \n", + " inflating: training_set/training_set/dogs/dog.2972.jpg \n", + " inflating: training_set/training_set/dogs/dog.2973.jpg \n", + " inflating: training_set/training_set/dogs/dog.2974.jpg \n", + " inflating: training_set/training_set/dogs/dog.2975.jpg \n", + " inflating: training_set/training_set/dogs/dog.2976.jpg \n", + " inflating: training_set/training_set/dogs/dog.2977.jpg \n", + " inflating: training_set/training_set/dogs/dog.2978.jpg \n", + " inflating: training_set/training_set/dogs/dog.2979.jpg \n", + " inflating: training_set/training_set/dogs/dog.298.jpg \n", + " inflating: training_set/training_set/dogs/dog.2980.jpg \n", + " inflating: training_set/training_set/dogs/dog.2981.jpg \n", + " inflating: training_set/training_set/dogs/dog.2982.jpg \n", + " inflating: training_set/training_set/dogs/dog.2983.jpg \n", + " inflating: training_set/training_set/dogs/dog.2984.jpg \n", + " inflating: training_set/training_set/dogs/dog.2985.jpg \n", + " inflating: training_set/training_set/dogs/dog.2986.jpg \n", + " inflating: training_set/training_set/dogs/dog.2987.jpg \n", + " inflating: training_set/training_set/dogs/dog.2988.jpg \n", + " inflating: training_set/training_set/dogs/dog.2989.jpg \n", + " inflating: training_set/training_set/dogs/dog.299.jpg \n", + " inflating: training_set/training_set/dogs/dog.2990.jpg \n", + " inflating: training_set/training_set/dogs/dog.2991.jpg \n", + " inflating: training_set/training_set/dogs/dog.2992.jpg \n", + " inflating: training_set/training_set/dogs/dog.2993.jpg \n", + " inflating: training_set/training_set/dogs/dog.2994.jpg \n", + " inflating: training_set/training_set/dogs/dog.2995.jpg \n", + " inflating: training_set/training_set/dogs/dog.2996.jpg \n", + " inflating: training_set/training_set/dogs/dog.2997.jpg \n", + " inflating: training_set/training_set/dogs/dog.2998.jpg \n", + " inflating: training_set/training_set/dogs/dog.2999.jpg \n", + " inflating: training_set/training_set/dogs/dog.3.jpg \n", + " inflating: training_set/training_set/dogs/dog.30.jpg \n", + " inflating: training_set/training_set/dogs/dog.300.jpg \n", + " inflating: training_set/training_set/dogs/dog.3000.jpg \n", + " inflating: training_set/training_set/dogs/dog.3001.jpg \n", + " inflating: training_set/training_set/dogs/dog.3002.jpg \n", + " inflating: training_set/training_set/dogs/dog.3003.jpg \n", + " inflating: training_set/training_set/dogs/dog.3004.jpg \n", + " inflating: training_set/training_set/dogs/dog.3005.jpg \n", + " inflating: training_set/training_set/dogs/dog.3006.jpg \n", + " inflating: training_set/training_set/dogs/dog.3007.jpg \n", + " inflating: training_set/training_set/dogs/dog.3008.jpg \n", + " inflating: training_set/training_set/dogs/dog.3009.jpg \n", + " inflating: training_set/training_set/dogs/dog.301.jpg \n", + " inflating: training_set/training_set/dogs/dog.3010.jpg \n", + " inflating: training_set/training_set/dogs/dog.3011.jpg \n", + " inflating: training_set/training_set/dogs/dog.3012.jpg \n", + " inflating: training_set/training_set/dogs/dog.3013.jpg \n", + " inflating: training_set/training_set/dogs/dog.3014.jpg \n", + " inflating: training_set/training_set/dogs/dog.3015.jpg \n", + " inflating: training_set/training_set/dogs/dog.3016.jpg \n", + " inflating: training_set/training_set/dogs/dog.3017.jpg \n", + " inflating: training_set/training_set/dogs/dog.3018.jpg \n", + " inflating: training_set/training_set/dogs/dog.3019.jpg \n", + " inflating: training_set/training_set/dogs/dog.302.jpg \n", + " inflating: training_set/training_set/dogs/dog.3020.jpg \n", + " inflating: training_set/training_set/dogs/dog.3021.jpg \n", + " inflating: training_set/training_set/dogs/dog.3022.jpg \n", + " inflating: training_set/training_set/dogs/dog.3023.jpg \n", + " inflating: training_set/training_set/dogs/dog.3024.jpg \n", + " inflating: training_set/training_set/dogs/dog.3025.jpg \n", + " inflating: training_set/training_set/dogs/dog.3026.jpg \n", + " inflating: training_set/training_set/dogs/dog.3027.jpg \n", + " inflating: training_set/training_set/dogs/dog.3028.jpg \n", + " inflating: training_set/training_set/dogs/dog.3029.jpg \n", + " inflating: training_set/training_set/dogs/dog.303.jpg \n", + " inflating: training_set/training_set/dogs/dog.3030.jpg \n", + " inflating: training_set/training_set/dogs/dog.3031.jpg \n", + " inflating: training_set/training_set/dogs/dog.3032.jpg \n", + " inflating: training_set/training_set/dogs/dog.3033.jpg \n", + " inflating: training_set/training_set/dogs/dog.3034.jpg \n", + " inflating: training_set/training_set/dogs/dog.3035.jpg \n", + " inflating: training_set/training_set/dogs/dog.3036.jpg \n", + " inflating: training_set/training_set/dogs/dog.3037.jpg \n", + " inflating: training_set/training_set/dogs/dog.3038.jpg \n", + " inflating: training_set/training_set/dogs/dog.3039.jpg \n", + " inflating: training_set/training_set/dogs/dog.304.jpg \n", + " inflating: training_set/training_set/dogs/dog.3040.jpg \n", + " inflating: training_set/training_set/dogs/dog.3041.jpg \n", + " inflating: training_set/training_set/dogs/dog.3042.jpg \n", + " inflating: training_set/training_set/dogs/dog.3043.jpg \n", + " inflating: training_set/training_set/dogs/dog.3044.jpg \n", + " inflating: training_set/training_set/dogs/dog.3045.jpg \n", + " inflating: training_set/training_set/dogs/dog.3046.jpg \n", + " inflating: training_set/training_set/dogs/dog.3047.jpg \n", + " inflating: training_set/training_set/dogs/dog.3048.jpg \n", + " inflating: training_set/training_set/dogs/dog.3049.jpg \n", + " inflating: training_set/training_set/dogs/dog.305.jpg \n", + " inflating: training_set/training_set/dogs/dog.3050.jpg \n", + " inflating: training_set/training_set/dogs/dog.3051.jpg \n", + " inflating: training_set/training_set/dogs/dog.3052.jpg \n", + " inflating: training_set/training_set/dogs/dog.3053.jpg \n", + " inflating: training_set/training_set/dogs/dog.3054.jpg \n", + " inflating: training_set/training_set/dogs/dog.3055(1).jpg \n", + " inflating: training_set/training_set/dogs/dog.3055.jpg \n", + " inflating: training_set/training_set/dogs/dog.3056.jpg \n", + " inflating: training_set/training_set/dogs/dog.3057.jpg \n", + " inflating: training_set/training_set/dogs/dog.3058.jpg \n", + " inflating: training_set/training_set/dogs/dog.3059.jpg \n", + " inflating: training_set/training_set/dogs/dog.306.jpg \n", + " inflating: training_set/training_set/dogs/dog.3060.jpg \n", + " inflating: training_set/training_set/dogs/dog.3061.jpg \n", + " inflating: training_set/training_set/dogs/dog.3062.jpg \n", + " inflating: training_set/training_set/dogs/dog.3063.jpg \n", + " inflating: training_set/training_set/dogs/dog.3064.jpg \n", + " inflating: training_set/training_set/dogs/dog.3065.jpg \n", + " inflating: training_set/training_set/dogs/dog.3066.jpg \n", + " inflating: training_set/training_set/dogs/dog.3067.jpg \n", + " inflating: training_set/training_set/dogs/dog.3068.jpg \n", + " inflating: training_set/training_set/dogs/dog.3069.jpg \n", + " inflating: training_set/training_set/dogs/dog.307.jpg \n", + " inflating: training_set/training_set/dogs/dog.3070.jpg \n", + " inflating: training_set/training_set/dogs/dog.3071.jpg \n", + " inflating: training_set/training_set/dogs/dog.3072.jpg \n", + " inflating: training_set/training_set/dogs/dog.3073.jpg \n", + " inflating: training_set/training_set/dogs/dog.3074.jpg \n", + " inflating: training_set/training_set/dogs/dog.3075.jpg \n", + " inflating: training_set/training_set/dogs/dog.3076.jpg \n", + " inflating: training_set/training_set/dogs/dog.3077.jpg \n", + " inflating: training_set/training_set/dogs/dog.3078.jpg \n", + " inflating: training_set/training_set/dogs/dog.3079.jpg \n", + " inflating: training_set/training_set/dogs/dog.308.jpg \n", + " inflating: training_set/training_set/dogs/dog.3080.jpg \n", + " inflating: training_set/training_set/dogs/dog.3081.jpg \n", + " inflating: training_set/training_set/dogs/dog.3082.jpg \n", + " inflating: training_set/training_set/dogs/dog.3083.jpg \n", + " inflating: training_set/training_set/dogs/dog.3084.jpg \n", + " inflating: training_set/training_set/dogs/dog.3085.jpg \n", + " inflating: training_set/training_set/dogs/dog.3086.jpg \n", + " inflating: training_set/training_set/dogs/dog.3087.jpg \n", + " inflating: training_set/training_set/dogs/dog.3088.jpg \n", + " inflating: training_set/training_set/dogs/dog.3089.jpg \n", + " inflating: training_set/training_set/dogs/dog.309.jpg \n", + " inflating: training_set/training_set/dogs/dog.3090.jpg \n", + " inflating: training_set/training_set/dogs/dog.3091.jpg \n", + " inflating: training_set/training_set/dogs/dog.3092.jpg \n", + " inflating: training_set/training_set/dogs/dog.3093.jpg \n", + " inflating: training_set/training_set/dogs/dog.3094.jpg \n", + " inflating: training_set/training_set/dogs/dog.3095.jpg \n", + " inflating: training_set/training_set/dogs/dog.3096.jpg \n", + " inflating: training_set/training_set/dogs/dog.3097.jpg \n", + " inflating: training_set/training_set/dogs/dog.3098.jpg \n", + " inflating: training_set/training_set/dogs/dog.3099.jpg \n", + " inflating: training_set/training_set/dogs/dog.31.jpg \n", + " inflating: training_set/training_set/dogs/dog.310.jpg \n", + " inflating: training_set/training_set/dogs/dog.3100.jpg \n", + " inflating: training_set/training_set/dogs/dog.3101.jpg \n", + " inflating: training_set/training_set/dogs/dog.3102.jpg \n", + " inflating: training_set/training_set/dogs/dog.3103.jpg \n", + " inflating: training_set/training_set/dogs/dog.3104.jpg \n", + " inflating: training_set/training_set/dogs/dog.3105.jpg \n", + " inflating: training_set/training_set/dogs/dog.3106.jpg \n", + " inflating: training_set/training_set/dogs/dog.3107.jpg \n", + " inflating: training_set/training_set/dogs/dog.3108.jpg \n", + " inflating: training_set/training_set/dogs/dog.3109.jpg \n", + " inflating: training_set/training_set/dogs/dog.311.jpg \n", + " inflating: training_set/training_set/dogs/dog.3110.jpg \n", + " inflating: training_set/training_set/dogs/dog.3111.jpg \n", + " inflating: training_set/training_set/dogs/dog.3112.jpg \n", + " inflating: training_set/training_set/dogs/dog.3113.jpg \n", + " inflating: training_set/training_set/dogs/dog.3114.jpg \n", + " inflating: training_set/training_set/dogs/dog.3115.jpg \n", + " inflating: training_set/training_set/dogs/dog.3116.jpg \n", + " inflating: training_set/training_set/dogs/dog.3117.jpg \n", + " inflating: training_set/training_set/dogs/dog.3118.jpg \n", + " inflating: training_set/training_set/dogs/dog.3119.jpg \n", + " inflating: training_set/training_set/dogs/dog.312.jpg \n", + " inflating: training_set/training_set/dogs/dog.3120.jpg \n", + " inflating: training_set/training_set/dogs/dog.3121.jpg \n", + " inflating: training_set/training_set/dogs/dog.3122.jpg \n", + " inflating: training_set/training_set/dogs/dog.3123.jpg \n", + " inflating: training_set/training_set/dogs/dog.3124.jpg \n", + " inflating: training_set/training_set/dogs/dog.3125.jpg \n", + " inflating: training_set/training_set/dogs/dog.3126.jpg \n", + " inflating: training_set/training_set/dogs/dog.3127.jpg \n", + " inflating: training_set/training_set/dogs/dog.3128.jpg \n", + " inflating: training_set/training_set/dogs/dog.3129.jpg \n", + " inflating: training_set/training_set/dogs/dog.313.jpg \n", + " inflating: training_set/training_set/dogs/dog.3130.jpg \n", + " inflating: training_set/training_set/dogs/dog.3131.jpg \n", + " inflating: training_set/training_set/dogs/dog.3132.jpg \n", + " inflating: training_set/training_set/dogs/dog.3133.jpg \n", + " inflating: training_set/training_set/dogs/dog.3134.jpg \n", + " inflating: training_set/training_set/dogs/dog.3135.jpg \n", + " inflating: training_set/training_set/dogs/dog.3136.jpg \n", + " inflating: training_set/training_set/dogs/dog.3137.jpg \n", + " inflating: training_set/training_set/dogs/dog.3138.jpg \n", + " inflating: training_set/training_set/dogs/dog.3139.jpg \n", + " inflating: training_set/training_set/dogs/dog.314.jpg \n", + " inflating: training_set/training_set/dogs/dog.3140.jpg \n", + " inflating: training_set/training_set/dogs/dog.3141.jpg \n", + " inflating: training_set/training_set/dogs/dog.3142.jpg \n", + " inflating: training_set/training_set/dogs/dog.3143.jpg \n", + " inflating: training_set/training_set/dogs/dog.3144.jpg \n", + " inflating: training_set/training_set/dogs/dog.3145.jpg \n", + " inflating: training_set/training_set/dogs/dog.3146.jpg \n", + " inflating: training_set/training_set/dogs/dog.3147.jpg \n", + " inflating: training_set/training_set/dogs/dog.3148.jpg \n", + " inflating: training_set/training_set/dogs/dog.3149.jpg \n", + " inflating: training_set/training_set/dogs/dog.315.jpg \n", + " inflating: training_set/training_set/dogs/dog.3150.jpg \n", + " inflating: training_set/training_set/dogs/dog.3151.jpg \n", + " inflating: training_set/training_set/dogs/dog.3152.jpg \n", + " inflating: training_set/training_set/dogs/dog.3153.jpg \n", + " inflating: training_set/training_set/dogs/dog.3154.jpg \n", + " inflating: training_set/training_set/dogs/dog.3155.jpg \n", + " inflating: training_set/training_set/dogs/dog.3156.jpg \n", + " inflating: training_set/training_set/dogs/dog.3157.jpg \n", + " inflating: training_set/training_set/dogs/dog.3158.jpg \n", + " inflating: training_set/training_set/dogs/dog.3159.jpg \n", + " inflating: training_set/training_set/dogs/dog.316.jpg \n", + " inflating: training_set/training_set/dogs/dog.3160.jpg \n", + " inflating: training_set/training_set/dogs/dog.3161.jpg \n", + " inflating: training_set/training_set/dogs/dog.3162.jpg \n", + " inflating: training_set/training_set/dogs/dog.3163.jpg \n", + " inflating: training_set/training_set/dogs/dog.3164.jpg \n", + " inflating: training_set/training_set/dogs/dog.3165.jpg \n", + " inflating: training_set/training_set/dogs/dog.3166.jpg \n", + " inflating: training_set/training_set/dogs/dog.3167.jpg \n", + " inflating: training_set/training_set/dogs/dog.3168.jpg \n", + " inflating: training_set/training_set/dogs/dog.3169.jpg \n", + " inflating: training_set/training_set/dogs/dog.317.jpg \n", + " inflating: training_set/training_set/dogs/dog.3170.jpg \n", + " inflating: training_set/training_set/dogs/dog.3171.jpg \n", + " inflating: training_set/training_set/dogs/dog.3172.jpg \n", + " inflating: training_set/training_set/dogs/dog.3173.jpg \n", + " inflating: training_set/training_set/dogs/dog.3174.jpg \n", + " inflating: training_set/training_set/dogs/dog.3175.jpg \n", + " inflating: training_set/training_set/dogs/dog.3176.jpg \n", + " inflating: training_set/training_set/dogs/dog.3177.jpg \n", + " inflating: training_set/training_set/dogs/dog.3178.jpg \n", + " inflating: training_set/training_set/dogs/dog.3179.jpg \n", + " inflating: training_set/training_set/dogs/dog.318.jpg \n", + " inflating: training_set/training_set/dogs/dog.3180.jpg \n", + " inflating: training_set/training_set/dogs/dog.3181.jpg \n", + " inflating: training_set/training_set/dogs/dog.3182.jpg \n", + " inflating: training_set/training_set/dogs/dog.3183.jpg \n", + " inflating: training_set/training_set/dogs/dog.3184.jpg \n", + " inflating: training_set/training_set/dogs/dog.3185.jpg \n", + " inflating: training_set/training_set/dogs/dog.3186.jpg \n", + " inflating: training_set/training_set/dogs/dog.3187.jpg \n", + " inflating: training_set/training_set/dogs/dog.3188.jpg \n", + " inflating: training_set/training_set/dogs/dog.3189.jpg \n", + " inflating: training_set/training_set/dogs/dog.319.jpg \n", + " inflating: training_set/training_set/dogs/dog.3190.jpg \n", + " inflating: training_set/training_set/dogs/dog.3191.jpg \n", + " inflating: training_set/training_set/dogs/dog.3192.jpg \n", + " inflating: training_set/training_set/dogs/dog.3193.jpg \n", + " inflating: training_set/training_set/dogs/dog.3194.jpg \n", + " inflating: training_set/training_set/dogs/dog.3195.jpg \n", + " inflating: training_set/training_set/dogs/dog.3196.jpg \n", + " inflating: training_set/training_set/dogs/dog.3197.jpg \n", + " inflating: training_set/training_set/dogs/dog.3198.jpg \n", + " inflating: training_set/training_set/dogs/dog.3199.jpg \n", + " inflating: training_set/training_set/dogs/dog.32.jpg \n", + " inflating: training_set/training_set/dogs/dog.320.jpg \n", + " inflating: training_set/training_set/dogs/dog.3200.jpg \n", + " inflating: training_set/training_set/dogs/dog.3201.jpg \n", + " inflating: training_set/training_set/dogs/dog.3202.jpg \n", + " inflating: training_set/training_set/dogs/dog.3203.jpg \n", + " inflating: training_set/training_set/dogs/dog.3204.jpg \n", + " inflating: training_set/training_set/dogs/dog.3205.jpg \n", + " inflating: training_set/training_set/dogs/dog.3206.jpg \n", + " inflating: training_set/training_set/dogs/dog.3207.jpg \n", + " inflating: training_set/training_set/dogs/dog.3208.jpg \n", + " inflating: training_set/training_set/dogs/dog.3209.jpg \n", + " inflating: training_set/training_set/dogs/dog.321.jpg \n", + " inflating: training_set/training_set/dogs/dog.3210.jpg \n", + " inflating: training_set/training_set/dogs/dog.3211.jpg \n", + " inflating: training_set/training_set/dogs/dog.3212.jpg \n", + " inflating: training_set/training_set/dogs/dog.3213.jpg \n", + " inflating: training_set/training_set/dogs/dog.3214.jpg \n", + " inflating: training_set/training_set/dogs/dog.3215.jpg \n", + " inflating: training_set/training_set/dogs/dog.3216.jpg \n", + " inflating: training_set/training_set/dogs/dog.3217.jpg \n", + " inflating: training_set/training_set/dogs/dog.3218.jpg \n", + " inflating: training_set/training_set/dogs/dog.3219.jpg \n", + " inflating: training_set/training_set/dogs/dog.322.jpg \n", + " inflating: training_set/training_set/dogs/dog.3220.jpg \n", + " inflating: training_set/training_set/dogs/dog.3221.jpg \n", + " inflating: training_set/training_set/dogs/dog.3222.jpg \n", + " inflating: training_set/training_set/dogs/dog.3223.jpg \n", + " inflating: training_set/training_set/dogs/dog.3224.jpg \n", + " inflating: training_set/training_set/dogs/dog.3225.jpg \n", + " inflating: training_set/training_set/dogs/dog.3226.jpg \n", + " inflating: training_set/training_set/dogs/dog.3227.jpg \n", + " inflating: training_set/training_set/dogs/dog.3228.jpg \n", + " inflating: training_set/training_set/dogs/dog.3229.jpg \n", + " inflating: training_set/training_set/dogs/dog.323.jpg \n", + " inflating: training_set/training_set/dogs/dog.3230.jpg \n", + " inflating: training_set/training_set/dogs/dog.3231.jpg \n", + " inflating: training_set/training_set/dogs/dog.3232.jpg \n", + " inflating: training_set/training_set/dogs/dog.3233.jpg \n", + " inflating: training_set/training_set/dogs/dog.3234.jpg \n", + " inflating: training_set/training_set/dogs/dog.3235.jpg \n", + " inflating: training_set/training_set/dogs/dog.3236.jpg \n", + " inflating: training_set/training_set/dogs/dog.3237.jpg \n", + " inflating: training_set/training_set/dogs/dog.3238.jpg \n", + " inflating: training_set/training_set/dogs/dog.3239.jpg \n", + " inflating: training_set/training_set/dogs/dog.324.jpg \n", + " inflating: training_set/training_set/dogs/dog.3240.jpg \n", + " inflating: training_set/training_set/dogs/dog.3241.jpg \n", + " inflating: training_set/training_set/dogs/dog.3242.jpg \n", + " inflating: training_set/training_set/dogs/dog.3243.jpg \n", + " inflating: training_set/training_set/dogs/dog.3244.jpg \n", + " inflating: training_set/training_set/dogs/dog.3245.jpg \n", + " inflating: training_set/training_set/dogs/dog.3246.jpg \n", + " inflating: training_set/training_set/dogs/dog.3247.jpg \n", + " inflating: training_set/training_set/dogs/dog.3248.jpg \n", + " inflating: training_set/training_set/dogs/dog.3249.jpg \n", + " inflating: training_set/training_set/dogs/dog.325.jpg \n", + " inflating: training_set/training_set/dogs/dog.3250.jpg \n", + " inflating: training_set/training_set/dogs/dog.3251.jpg \n", + " inflating: training_set/training_set/dogs/dog.3252.jpg \n", + " inflating: training_set/training_set/dogs/dog.3253.jpg \n", + " inflating: training_set/training_set/dogs/dog.3254.jpg \n", + " inflating: training_set/training_set/dogs/dog.3255.jpg \n", + " inflating: training_set/training_set/dogs/dog.3256.jpg \n", + " inflating: training_set/training_set/dogs/dog.3257.jpg \n", + " inflating: training_set/training_set/dogs/dog.3258.jpg \n", + " inflating: training_set/training_set/dogs/dog.3259.jpg \n", + " inflating: training_set/training_set/dogs/dog.326.jpg \n", + " inflating: training_set/training_set/dogs/dog.3260.jpg \n", + " inflating: training_set/training_set/dogs/dog.3261.jpg \n", + " inflating: training_set/training_set/dogs/dog.3262.jpg \n", + " inflating: training_set/training_set/dogs/dog.3263.jpg \n", + " inflating: training_set/training_set/dogs/dog.3264.jpg \n", + " inflating: training_set/training_set/dogs/dog.3265.jpg \n", + " inflating: training_set/training_set/dogs/dog.3266.jpg \n", + " inflating: training_set/training_set/dogs/dog.3267.jpg \n", + " inflating: training_set/training_set/dogs/dog.3268.jpg \n", + " inflating: training_set/training_set/dogs/dog.3269.jpg \n", + " inflating: training_set/training_set/dogs/dog.327.jpg \n", + " inflating: training_set/training_set/dogs/dog.3270.jpg \n", + " inflating: training_set/training_set/dogs/dog.3271.jpg \n", + " inflating: training_set/training_set/dogs/dog.3272.jpg \n", + " inflating: training_set/training_set/dogs/dog.3273.jpg \n", + " inflating: training_set/training_set/dogs/dog.3274.jpg \n", + " inflating: training_set/training_set/dogs/dog.3275.jpg \n", + " inflating: training_set/training_set/dogs/dog.3276.jpg \n", + " inflating: training_set/training_set/dogs/dog.3277.jpg \n", + " inflating: training_set/training_set/dogs/dog.3278.jpg \n", + " inflating: training_set/training_set/dogs/dog.3279.jpg \n", + " inflating: training_set/training_set/dogs/dog.328.jpg \n", + " inflating: training_set/training_set/dogs/dog.3280.jpg \n", + " inflating: training_set/training_set/dogs/dog.3281.jpg \n", + " inflating: training_set/training_set/dogs/dog.3282.jpg \n", + " inflating: training_set/training_set/dogs/dog.3283.jpg \n", + " inflating: training_set/training_set/dogs/dog.3284.jpg \n", + " inflating: training_set/training_set/dogs/dog.3285.jpg \n", + " inflating: training_set/training_set/dogs/dog.3286.jpg \n", + " inflating: training_set/training_set/dogs/dog.3287.jpg \n", + " inflating: training_set/training_set/dogs/dog.3288.jpg \n", + " inflating: training_set/training_set/dogs/dog.3289.jpg \n", + " inflating: training_set/training_set/dogs/dog.329.jpg \n", + " inflating: training_set/training_set/dogs/dog.3290.jpg \n", + " inflating: training_set/training_set/dogs/dog.3291.jpg \n", + " inflating: training_set/training_set/dogs/dog.3292.jpg \n", + " inflating: training_set/training_set/dogs/dog.3293.jpg \n", + " inflating: training_set/training_set/dogs/dog.3294.jpg \n", + " inflating: training_set/training_set/dogs/dog.3295.jpg \n", + " inflating: training_set/training_set/dogs/dog.3296.jpg \n", + " inflating: training_set/training_set/dogs/dog.3297.jpg \n", + " inflating: training_set/training_set/dogs/dog.3298.jpg \n", + " inflating: training_set/training_set/dogs/dog.3299.jpg \n", + " inflating: training_set/training_set/dogs/dog.33.jpg \n", + " inflating: training_set/training_set/dogs/dog.330.jpg \n", + " inflating: training_set/training_set/dogs/dog.3300.jpg \n", + " inflating: training_set/training_set/dogs/dog.3301.jpg \n", + " inflating: training_set/training_set/dogs/dog.3302.jpg \n", + " inflating: training_set/training_set/dogs/dog.3303.jpg \n", + " inflating: training_set/training_set/dogs/dog.3304.jpg \n", + " inflating: training_set/training_set/dogs/dog.3305.jpg \n", + " inflating: training_set/training_set/dogs/dog.3306.jpg \n", + " inflating: training_set/training_set/dogs/dog.3307.jpg \n", + " inflating: training_set/training_set/dogs/dog.3308.jpg \n", + " inflating: training_set/training_set/dogs/dog.3309.jpg \n", + " inflating: training_set/training_set/dogs/dog.331.jpg \n", + " inflating: training_set/training_set/dogs/dog.3310.jpg \n", + " inflating: training_set/training_set/dogs/dog.3311.jpg \n", + " inflating: training_set/training_set/dogs/dog.3312.jpg \n", + " inflating: training_set/training_set/dogs/dog.3313.jpg \n", + " inflating: training_set/training_set/dogs/dog.3314.jpg \n", + " inflating: training_set/training_set/dogs/dog.3315.jpg \n", + " inflating: training_set/training_set/dogs/dog.3316.jpg \n", + " inflating: training_set/training_set/dogs/dog.3317.jpg \n", + " inflating: training_set/training_set/dogs/dog.3318.jpg \n", + " inflating: training_set/training_set/dogs/dog.3319.jpg \n", + " inflating: training_set/training_set/dogs/dog.332.jpg \n", + " inflating: training_set/training_set/dogs/dog.3320.jpg \n", + " inflating: training_set/training_set/dogs/dog.3321.jpg \n", + " inflating: training_set/training_set/dogs/dog.3322.jpg \n", + " inflating: training_set/training_set/dogs/dog.3323.jpg \n", + " inflating: training_set/training_set/dogs/dog.3324.jpg \n", + " inflating: training_set/training_set/dogs/dog.3325.jpg \n", + " inflating: training_set/training_set/dogs/dog.3326.jpg \n", + " inflating: training_set/training_set/dogs/dog.3327.jpg \n", + " inflating: training_set/training_set/dogs/dog.3328.jpg \n", + " inflating: training_set/training_set/dogs/dog.3329.jpg \n", + " inflating: training_set/training_set/dogs/dog.333.jpg \n", + " inflating: training_set/training_set/dogs/dog.3330.jpg \n", + " inflating: training_set/training_set/dogs/dog.3331.jpg \n", + " inflating: training_set/training_set/dogs/dog.3332.jpg \n", + " inflating: training_set/training_set/dogs/dog.3333.jpg \n", + " inflating: training_set/training_set/dogs/dog.3334.jpg \n", + " inflating: training_set/training_set/dogs/dog.3335.jpg \n", + " inflating: training_set/training_set/dogs/dog.3336.jpg \n", + " inflating: training_set/training_set/dogs/dog.3337.jpg \n", + " inflating: training_set/training_set/dogs/dog.3338.jpg \n", + " inflating: training_set/training_set/dogs/dog.3339.jpg \n", + " inflating: training_set/training_set/dogs/dog.334.jpg \n", + " inflating: training_set/training_set/dogs/dog.3340.jpg \n", + " inflating: training_set/training_set/dogs/dog.3341.jpg \n", + " inflating: training_set/training_set/dogs/dog.3342.jpg \n", + " inflating: training_set/training_set/dogs/dog.3343.jpg \n", + " inflating: training_set/training_set/dogs/dog.3344.jpg \n", + " inflating: training_set/training_set/dogs/dog.3345.jpg \n", + " inflating: training_set/training_set/dogs/dog.3346.jpg \n", + " inflating: training_set/training_set/dogs/dog.3347.jpg \n", + " inflating: training_set/training_set/dogs/dog.3348.jpg \n", + " inflating: training_set/training_set/dogs/dog.3349.jpg \n", + " inflating: training_set/training_set/dogs/dog.335.jpg \n", + " inflating: training_set/training_set/dogs/dog.3350.jpg \n", + " inflating: training_set/training_set/dogs/dog.3351.jpg \n", + " inflating: training_set/training_set/dogs/dog.3352.jpg \n", + " inflating: training_set/training_set/dogs/dog.3353.jpg \n", + " inflating: training_set/training_set/dogs/dog.3354.jpg \n", + " inflating: training_set/training_set/dogs/dog.3355.jpg \n", + " inflating: training_set/training_set/dogs/dog.3356.jpg \n", + " inflating: training_set/training_set/dogs/dog.3357.jpg \n", + " inflating: training_set/training_set/dogs/dog.3358.jpg \n", + " inflating: training_set/training_set/dogs/dog.3359.jpg \n", + " inflating: training_set/training_set/dogs/dog.336.jpg \n", + " inflating: training_set/training_set/dogs/dog.3360.jpg \n", + " inflating: training_set/training_set/dogs/dog.3361.jpg \n", + " inflating: training_set/training_set/dogs/dog.3362.jpg \n", + " inflating: training_set/training_set/dogs/dog.3363.jpg \n", + " inflating: training_set/training_set/dogs/dog.3364.jpg \n", + " inflating: training_set/training_set/dogs/dog.3365.jpg \n", + " inflating: training_set/training_set/dogs/dog.3366.jpg \n", + " inflating: training_set/training_set/dogs/dog.3367.jpg \n", + " inflating: training_set/training_set/dogs/dog.3368.jpg \n", + " inflating: training_set/training_set/dogs/dog.3369.jpg \n", + " inflating: training_set/training_set/dogs/dog.337.jpg \n", + " inflating: training_set/training_set/dogs/dog.3370.jpg \n", + " inflating: training_set/training_set/dogs/dog.3371.jpg \n", + " inflating: training_set/training_set/dogs/dog.3372.jpg \n", + " inflating: training_set/training_set/dogs/dog.3373.jpg \n", + " inflating: training_set/training_set/dogs/dog.3374.jpg \n", + " inflating: training_set/training_set/dogs/dog.3375.jpg \n", + " inflating: training_set/training_set/dogs/dog.3376.jpg \n", + " inflating: training_set/training_set/dogs/dog.3377.jpg \n", + " inflating: training_set/training_set/dogs/dog.3378.jpg \n", + " inflating: training_set/training_set/dogs/dog.3379.jpg \n", + " inflating: training_set/training_set/dogs/dog.338.jpg \n", + " inflating: training_set/training_set/dogs/dog.3380.jpg \n", + " inflating: training_set/training_set/dogs/dog.3381.jpg \n", + " inflating: training_set/training_set/dogs/dog.3382.jpg \n", + " inflating: training_set/training_set/dogs/dog.3383.jpg \n", + " inflating: training_set/training_set/dogs/dog.3384.jpg \n", + " inflating: training_set/training_set/dogs/dog.3385.jpg \n", + " inflating: training_set/training_set/dogs/dog.3386.jpg \n", + " inflating: training_set/training_set/dogs/dog.3387.jpg \n", + " inflating: training_set/training_set/dogs/dog.3388.jpg \n", + " inflating: training_set/training_set/dogs/dog.3389.jpg \n", + " inflating: training_set/training_set/dogs/dog.339.jpg \n", + " inflating: training_set/training_set/dogs/dog.3390.jpg \n", + " inflating: training_set/training_set/dogs/dog.3391.jpg \n", + " inflating: training_set/training_set/dogs/dog.3392.jpg \n", + " inflating: training_set/training_set/dogs/dog.3393.jpg \n", + " inflating: training_set/training_set/dogs/dog.3394.jpg \n", + " inflating: training_set/training_set/dogs/dog.3395.jpg \n", + " inflating: training_set/training_set/dogs/dog.3396.jpg \n", + " inflating: training_set/training_set/dogs/dog.3397.jpg \n", + " inflating: training_set/training_set/dogs/dog.3398.jpg \n", + " inflating: training_set/training_set/dogs/dog.3399.jpg \n", + " inflating: training_set/training_set/dogs/dog.34.jpg \n", + " inflating: training_set/training_set/dogs/dog.340.jpg \n", + " inflating: training_set/training_set/dogs/dog.3400.jpg \n", + " inflating: training_set/training_set/dogs/dog.3401.jpg \n", + " inflating: training_set/training_set/dogs/dog.3402.jpg \n", + " inflating: training_set/training_set/dogs/dog.3403.jpg \n", + " inflating: training_set/training_set/dogs/dog.3404.jpg \n", + " inflating: training_set/training_set/dogs/dog.3405.jpg \n", + " inflating: training_set/training_set/dogs/dog.3406.jpg \n", + " inflating: training_set/training_set/dogs/dog.3407.jpg \n", + " inflating: training_set/training_set/dogs/dog.3408.jpg \n", + " inflating: training_set/training_set/dogs/dog.3409.jpg \n", + " inflating: training_set/training_set/dogs/dog.341.jpg \n", + " inflating: training_set/training_set/dogs/dog.3410.jpg \n", + " inflating: training_set/training_set/dogs/dog.3411.jpg \n", + " inflating: training_set/training_set/dogs/dog.3412.jpg \n", + " inflating: training_set/training_set/dogs/dog.3413.jpg \n", + " inflating: training_set/training_set/dogs/dog.3414.jpg \n", + " inflating: training_set/training_set/dogs/dog.3415.jpg \n", + " inflating: training_set/training_set/dogs/dog.3416.jpg \n", + " inflating: training_set/training_set/dogs/dog.3417.jpg \n", + " inflating: training_set/training_set/dogs/dog.3418.jpg \n", + " inflating: training_set/training_set/dogs/dog.3419.jpg \n", + " inflating: training_set/training_set/dogs/dog.342.jpg \n", + " inflating: training_set/training_set/dogs/dog.3420.jpg \n", + " inflating: training_set/training_set/dogs/dog.3421.jpg \n", + " inflating: training_set/training_set/dogs/dog.3422.jpg \n", + " inflating: training_set/training_set/dogs/dog.3423.jpg \n", + " inflating: training_set/training_set/dogs/dog.3424.jpg \n", + " inflating: training_set/training_set/dogs/dog.3425.jpg \n", + " inflating: training_set/training_set/dogs/dog.3426.jpg \n", + " inflating: training_set/training_set/dogs/dog.3427.jpg \n", + " inflating: training_set/training_set/dogs/dog.3428.jpg \n", + " inflating: training_set/training_set/dogs/dog.3429.jpg \n", + " inflating: training_set/training_set/dogs/dog.343.jpg \n", + " inflating: training_set/training_set/dogs/dog.3430.jpg \n", + " inflating: training_set/training_set/dogs/dog.3431.jpg \n", + " inflating: training_set/training_set/dogs/dog.3432.jpg \n", + " inflating: training_set/training_set/dogs/dog.3433.jpg \n", + " inflating: training_set/training_set/dogs/dog.3434.jpg \n", + " inflating: training_set/training_set/dogs/dog.3435.jpg \n", + " inflating: training_set/training_set/dogs/dog.3436.jpg \n", + " inflating: training_set/training_set/dogs/dog.3437.jpg \n", + " inflating: training_set/training_set/dogs/dog.3438.jpg \n", + " inflating: training_set/training_set/dogs/dog.3439.jpg \n", + " inflating: training_set/training_set/dogs/dog.344.jpg \n", + " inflating: training_set/training_set/dogs/dog.3440.jpg \n", + " inflating: training_set/training_set/dogs/dog.3441.jpg \n", + " inflating: training_set/training_set/dogs/dog.3442.jpg \n", + " inflating: training_set/training_set/dogs/dog.3443.jpg \n", + " inflating: training_set/training_set/dogs/dog.3444.jpg \n", + " inflating: training_set/training_set/dogs/dog.3445.jpg \n", + " inflating: training_set/training_set/dogs/dog.3446.jpg \n", + " inflating: training_set/training_set/dogs/dog.3447.jpg \n", + " inflating: training_set/training_set/dogs/dog.3448.jpg \n", + " inflating: training_set/training_set/dogs/dog.3449.jpg \n", + " inflating: training_set/training_set/dogs/dog.345.jpg \n", + " inflating: training_set/training_set/dogs/dog.3450.jpg \n", + " inflating: training_set/training_set/dogs/dog.3451.jpg \n", + " inflating: training_set/training_set/dogs/dog.3452.jpg \n", + " inflating: training_set/training_set/dogs/dog.3453.jpg \n", + " inflating: training_set/training_set/dogs/dog.3454.jpg \n", + " inflating: training_set/training_set/dogs/dog.3455.jpg \n", + " inflating: training_set/training_set/dogs/dog.3456.jpg \n", + " inflating: training_set/training_set/dogs/dog.3457.jpg \n", + " inflating: training_set/training_set/dogs/dog.3458.jpg \n", + " inflating: training_set/training_set/dogs/dog.3459.jpg \n", + " inflating: training_set/training_set/dogs/dog.346.jpg \n", + " inflating: training_set/training_set/dogs/dog.3460.jpg \n", + " inflating: training_set/training_set/dogs/dog.3461.jpg \n", + " inflating: training_set/training_set/dogs/dog.3462.jpg \n", + " inflating: training_set/training_set/dogs/dog.3463.jpg \n", + " inflating: training_set/training_set/dogs/dog.3464.jpg \n", + " inflating: training_set/training_set/dogs/dog.3465.jpg \n", + " inflating: training_set/training_set/dogs/dog.3466.jpg \n", + " inflating: training_set/training_set/dogs/dog.3467.jpg \n", + " inflating: training_set/training_set/dogs/dog.3468.jpg \n", + " inflating: training_set/training_set/dogs/dog.3469.jpg \n", + " inflating: training_set/training_set/dogs/dog.347.jpg \n", + " inflating: training_set/training_set/dogs/dog.3470.jpg \n", + " inflating: training_set/training_set/dogs/dog.3471.jpg \n", + " inflating: training_set/training_set/dogs/dog.3472.jpg \n", + " inflating: training_set/training_set/dogs/dog.3473.jpg \n", + " inflating: training_set/training_set/dogs/dog.3474.jpg \n", + " inflating: training_set/training_set/dogs/dog.3475.jpg \n", + " inflating: training_set/training_set/dogs/dog.3476.jpg \n", + " inflating: training_set/training_set/dogs/dog.3477.jpg \n", + " inflating: training_set/training_set/dogs/dog.3478.jpg \n", + " inflating: training_set/training_set/dogs/dog.3479.jpg \n", + " inflating: training_set/training_set/dogs/dog.348.jpg \n", + " inflating: training_set/training_set/dogs/dog.3480.jpg \n", + " inflating: training_set/training_set/dogs/dog.3481.jpg \n", + " inflating: training_set/training_set/dogs/dog.3482.jpg \n", + " inflating: training_set/training_set/dogs/dog.3483.jpg \n", + " inflating: training_set/training_set/dogs/dog.3484.jpg \n", + " inflating: training_set/training_set/dogs/dog.3485.jpg \n", + " inflating: training_set/training_set/dogs/dog.3486.jpg \n", + " inflating: training_set/training_set/dogs/dog.3487.jpg \n", + " inflating: training_set/training_set/dogs/dog.3488.jpg \n", + " inflating: training_set/training_set/dogs/dog.3489.jpg \n", + " inflating: training_set/training_set/dogs/dog.349.jpg \n", + " inflating: training_set/training_set/dogs/dog.3490.jpg \n", + " inflating: training_set/training_set/dogs/dog.3491.jpg \n", + " inflating: training_set/training_set/dogs/dog.3492.jpg \n", + " inflating: training_set/training_set/dogs/dog.3493.jpg \n", + " inflating: training_set/training_set/dogs/dog.3494.jpg \n", + " inflating: training_set/training_set/dogs/dog.3495.jpg \n", + " inflating: training_set/training_set/dogs/dog.3496.jpg \n", + " inflating: training_set/training_set/dogs/dog.3497.jpg \n", + " inflating: training_set/training_set/dogs/dog.3498.jpg \n", + " inflating: training_set/training_set/dogs/dog.3499.jpg \n", + " inflating: training_set/training_set/dogs/dog.35.jpg \n", + " inflating: training_set/training_set/dogs/dog.350.jpg \n", + " inflating: training_set/training_set/dogs/dog.3500.jpg \n", + " inflating: training_set/training_set/dogs/dog.3501.jpg \n", + " inflating: training_set/training_set/dogs/dog.3502.jpg \n", + " inflating: training_set/training_set/dogs/dog.3503.jpg \n", + " inflating: training_set/training_set/dogs/dog.3504.jpg \n", + " inflating: training_set/training_set/dogs/dog.3505.jpg \n", + " inflating: training_set/training_set/dogs/dog.3506.jpg \n", + " inflating: training_set/training_set/dogs/dog.3507.jpg \n", + " inflating: training_set/training_set/dogs/dog.3508.jpg \n", + " inflating: training_set/training_set/dogs/dog.3509.jpg \n", + " inflating: training_set/training_set/dogs/dog.351.jpg \n", + " inflating: training_set/training_set/dogs/dog.3510.jpg \n", + " inflating: training_set/training_set/dogs/dog.3511.jpg \n", + " inflating: training_set/training_set/dogs/dog.3512.jpg \n", + " inflating: training_set/training_set/dogs/dog.3513.jpg \n", + " inflating: training_set/training_set/dogs/dog.3514.jpg \n", + " inflating: training_set/training_set/dogs/dog.3515.jpg \n", + " inflating: training_set/training_set/dogs/dog.3516.jpg \n", + " inflating: training_set/training_set/dogs/dog.3517.jpg \n", + " inflating: training_set/training_set/dogs/dog.3518.jpg \n", + " inflating: training_set/training_set/dogs/dog.3519.jpg \n", + " inflating: training_set/training_set/dogs/dog.352.jpg \n", + " inflating: training_set/training_set/dogs/dog.3520.jpg \n", + " inflating: training_set/training_set/dogs/dog.3521.jpg \n", + " inflating: training_set/training_set/dogs/dog.3522.jpg \n", + " inflating: training_set/training_set/dogs/dog.3523.jpg \n", + " inflating: training_set/training_set/dogs/dog.3524.jpg \n", + " inflating: training_set/training_set/dogs/dog.3525.jpg \n", + " inflating: training_set/training_set/dogs/dog.3526.jpg \n", + " inflating: training_set/training_set/dogs/dog.3527.jpg \n", + " inflating: training_set/training_set/dogs/dog.3528.jpg \n", + " inflating: training_set/training_set/dogs/dog.3529.jpg \n", + " inflating: training_set/training_set/dogs/dog.353.jpg \n", + " inflating: training_set/training_set/dogs/dog.3530.jpg \n", + " inflating: training_set/training_set/dogs/dog.3531.jpg \n", + " inflating: training_set/training_set/dogs/dog.3532.jpg \n", + " inflating: training_set/training_set/dogs/dog.3533.jpg \n", + " inflating: training_set/training_set/dogs/dog.3534.jpg \n", + " inflating: training_set/training_set/dogs/dog.3535.jpg \n", + " inflating: training_set/training_set/dogs/dog.3536.jpg \n", + " inflating: training_set/training_set/dogs/dog.3537.jpg \n", + " inflating: training_set/training_set/dogs/dog.3538.jpg \n", + " inflating: training_set/training_set/dogs/dog.3539.jpg \n", + " inflating: training_set/training_set/dogs/dog.354.jpg \n", + " inflating: training_set/training_set/dogs/dog.3540.jpg \n", + " inflating: training_set/training_set/dogs/dog.3541.jpg \n", + " inflating: training_set/training_set/dogs/dog.3542.jpg \n", + " inflating: training_set/training_set/dogs/dog.3543.jpg \n", + " inflating: training_set/training_set/dogs/dog.3544.jpg \n", + " inflating: training_set/training_set/dogs/dog.3545.jpg \n", + " inflating: training_set/training_set/dogs/dog.3546.jpg \n", + " inflating: training_set/training_set/dogs/dog.3547.jpg \n", + " inflating: training_set/training_set/dogs/dog.3548.jpg \n", + " inflating: training_set/training_set/dogs/dog.3549.jpg \n", + " inflating: training_set/training_set/dogs/dog.355.jpg \n", + " inflating: training_set/training_set/dogs/dog.3550.jpg \n", + " inflating: training_set/training_set/dogs/dog.3551.jpg \n", + " inflating: training_set/training_set/dogs/dog.3552.jpg \n", + " inflating: training_set/training_set/dogs/dog.3553.jpg \n", + " inflating: training_set/training_set/dogs/dog.3554.jpg \n", + " inflating: training_set/training_set/dogs/dog.3555.jpg \n", + " inflating: training_set/training_set/dogs/dog.3556.jpg \n", + " inflating: training_set/training_set/dogs/dog.3557.jpg \n", + " inflating: training_set/training_set/dogs/dog.3558.jpg \n", + " inflating: training_set/training_set/dogs/dog.3559.jpg \n", + " inflating: training_set/training_set/dogs/dog.356.jpg \n", + " inflating: training_set/training_set/dogs/dog.3560.jpg \n", + " inflating: training_set/training_set/dogs/dog.3561.jpg \n", + " inflating: training_set/training_set/dogs/dog.3562.jpg \n", + " inflating: training_set/training_set/dogs/dog.3563.jpg \n", + " inflating: training_set/training_set/dogs/dog.3564.jpg \n", + " inflating: training_set/training_set/dogs/dog.3565.jpg \n", + " inflating: training_set/training_set/dogs/dog.3566.jpg \n", + " inflating: training_set/training_set/dogs/dog.3567.jpg \n", + " inflating: training_set/training_set/dogs/dog.3568.jpg \n", + " inflating: training_set/training_set/dogs/dog.3569.jpg \n", + " inflating: training_set/training_set/dogs/dog.357.jpg \n", + " inflating: training_set/training_set/dogs/dog.3570.jpg \n", + " inflating: training_set/training_set/dogs/dog.3571.jpg \n", + " inflating: training_set/training_set/dogs/dog.3572.jpg \n", + " inflating: training_set/training_set/dogs/dog.3573.jpg \n", + " inflating: training_set/training_set/dogs/dog.3574.jpg \n", + " inflating: training_set/training_set/dogs/dog.3575.jpg \n", + " inflating: training_set/training_set/dogs/dog.3576.jpg \n", + " inflating: training_set/training_set/dogs/dog.3577.jpg \n", + " inflating: training_set/training_set/dogs/dog.3578.jpg \n", + " inflating: training_set/training_set/dogs/dog.3579.jpg \n", + " inflating: training_set/training_set/dogs/dog.358.jpg \n", + " inflating: training_set/training_set/dogs/dog.3580.jpg \n", + " inflating: training_set/training_set/dogs/dog.3581.jpg \n", + " inflating: training_set/training_set/dogs/dog.3582.jpg \n", + " inflating: training_set/training_set/dogs/dog.3583.jpg \n", + " inflating: training_set/training_set/dogs/dog.3584.jpg \n", + " inflating: training_set/training_set/dogs/dog.3585.jpg \n", + " inflating: training_set/training_set/dogs/dog.3586.jpg \n", + " inflating: training_set/training_set/dogs/dog.3587.jpg \n", + " inflating: training_set/training_set/dogs/dog.3588.jpg \n", + " inflating: training_set/training_set/dogs/dog.3589.jpg \n", + " inflating: training_set/training_set/dogs/dog.359.jpg \n", + " inflating: training_set/training_set/dogs/dog.3590.jpg \n", + " inflating: training_set/training_set/dogs/dog.3591.jpg \n", + " inflating: training_set/training_set/dogs/dog.3592.jpg \n", + " inflating: training_set/training_set/dogs/dog.3593.jpg \n", + " inflating: training_set/training_set/dogs/dog.3594.jpg \n", + " inflating: training_set/training_set/dogs/dog.3595.jpg \n", + " inflating: training_set/training_set/dogs/dog.3596.jpg \n", + " inflating: training_set/training_set/dogs/dog.3597.jpg \n", + " inflating: training_set/training_set/dogs/dog.3598.jpg \n", + " inflating: training_set/training_set/dogs/dog.3599.jpg \n", + " inflating: training_set/training_set/dogs/dog.36.jpg \n", + " inflating: training_set/training_set/dogs/dog.360.jpg \n", + " inflating: training_set/training_set/dogs/dog.3600.jpg \n", + " inflating: training_set/training_set/dogs/dog.3601.jpg \n", + " inflating: training_set/training_set/dogs/dog.3602.jpg \n", + " inflating: training_set/training_set/dogs/dog.3603.jpg \n", + " inflating: training_set/training_set/dogs/dog.3604.jpg \n", + " inflating: training_set/training_set/dogs/dog.3605.jpg \n", + " inflating: training_set/training_set/dogs/dog.3606.jpg \n", + " inflating: training_set/training_set/dogs/dog.3607.jpg \n", + " inflating: training_set/training_set/dogs/dog.3608.jpg \n", + " inflating: training_set/training_set/dogs/dog.3609.jpg \n", + " inflating: training_set/training_set/dogs/dog.361.jpg \n", + " inflating: training_set/training_set/dogs/dog.3610.jpg \n", + " inflating: training_set/training_set/dogs/dog.3611.jpg \n", + " inflating: training_set/training_set/dogs/dog.3612.jpg \n", + " inflating: training_set/training_set/dogs/dog.3613.jpg \n", + " inflating: training_set/training_set/dogs/dog.3614.jpg \n", + " inflating: training_set/training_set/dogs/dog.3615.jpg \n", + " inflating: training_set/training_set/dogs/dog.3616.jpg \n", + " inflating: training_set/training_set/dogs/dog.3617.jpg \n", + " inflating: training_set/training_set/dogs/dog.3618.jpg \n", + " inflating: training_set/training_set/dogs/dog.3619.jpg \n", + " inflating: training_set/training_set/dogs/dog.362.jpg \n", + " inflating: training_set/training_set/dogs/dog.3620.jpg \n", + " inflating: training_set/training_set/dogs/dog.3621.jpg \n", + " inflating: training_set/training_set/dogs/dog.3622.jpg \n", + " inflating: training_set/training_set/dogs/dog.3623.jpg \n", + " inflating: training_set/training_set/dogs/dog.3624.jpg \n", + " inflating: training_set/training_set/dogs/dog.3625.jpg \n", + " inflating: training_set/training_set/dogs/dog.3626.jpg \n", + " inflating: training_set/training_set/dogs/dog.3627.jpg \n", + " inflating: training_set/training_set/dogs/dog.3628.jpg \n", + " inflating: training_set/training_set/dogs/dog.3629.jpg \n", + " inflating: training_set/training_set/dogs/dog.363.jpg \n", + " inflating: training_set/training_set/dogs/dog.3630.jpg \n", + " inflating: training_set/training_set/dogs/dog.3631.jpg \n", + " inflating: training_set/training_set/dogs/dog.3632.jpg \n", + " inflating: training_set/training_set/dogs/dog.3633.jpg \n", + " inflating: training_set/training_set/dogs/dog.3634.jpg \n", + " inflating: training_set/training_set/dogs/dog.3635.jpg \n", + " inflating: training_set/training_set/dogs/dog.3636.jpg \n", + " inflating: training_set/training_set/dogs/dog.3637.jpg \n", + " inflating: training_set/training_set/dogs/dog.3638.jpg \n", + " inflating: training_set/training_set/dogs/dog.3639.jpg \n", + " inflating: training_set/training_set/dogs/dog.364.jpg \n", + " inflating: training_set/training_set/dogs/dog.3640.jpg \n", + " inflating: training_set/training_set/dogs/dog.3641.jpg \n", + " inflating: training_set/training_set/dogs/dog.3642.jpg \n", + " inflating: training_set/training_set/dogs/dog.3643.jpg \n", + " inflating: training_set/training_set/dogs/dog.3644.jpg \n", + " inflating: training_set/training_set/dogs/dog.3645.jpg \n", + " inflating: training_set/training_set/dogs/dog.3646.jpg \n", + " inflating: training_set/training_set/dogs/dog.3647.jpg \n", + " inflating: training_set/training_set/dogs/dog.3648.jpg \n", + " inflating: training_set/training_set/dogs/dog.3649.jpg \n", + " inflating: training_set/training_set/dogs/dog.365.jpg \n", + " inflating: training_set/training_set/dogs/dog.3650.jpg \n", + " inflating: training_set/training_set/dogs/dog.3651.jpg \n", + " inflating: training_set/training_set/dogs/dog.3652.jpg \n", + " inflating: training_set/training_set/dogs/dog.3653.jpg \n", + " inflating: training_set/training_set/dogs/dog.3654.jpg \n", + " inflating: training_set/training_set/dogs/dog.3655.jpg \n", + " inflating: training_set/training_set/dogs/dog.3656.jpg \n", + " inflating: training_set/training_set/dogs/dog.3657.jpg \n", + " inflating: training_set/training_set/dogs/dog.3658.jpg \n", + " inflating: training_set/training_set/dogs/dog.3659.jpg \n", + " inflating: training_set/training_set/dogs/dog.366.jpg \n", + " inflating: training_set/training_set/dogs/dog.3660.jpg \n", + " inflating: training_set/training_set/dogs/dog.3661.jpg \n", + " inflating: training_set/training_set/dogs/dog.3662.jpg \n", + " inflating: training_set/training_set/dogs/dog.3663.jpg \n", + " inflating: training_set/training_set/dogs/dog.3664.jpg \n", + " inflating: training_set/training_set/dogs/dog.3665.jpg \n", + " inflating: training_set/training_set/dogs/dog.3666.jpg \n", + " inflating: training_set/training_set/dogs/dog.3667.jpg \n", + " inflating: training_set/training_set/dogs/dog.3668.jpg \n", + " inflating: training_set/training_set/dogs/dog.3669.jpg \n", + " inflating: training_set/training_set/dogs/dog.367.jpg \n", + " inflating: training_set/training_set/dogs/dog.3670.jpg \n", + " inflating: training_set/training_set/dogs/dog.3671.jpg \n", + " inflating: training_set/training_set/dogs/dog.3672.jpg \n", + " inflating: training_set/training_set/dogs/dog.3673.jpg \n", + " inflating: training_set/training_set/dogs/dog.3674.jpg \n", + " inflating: training_set/training_set/dogs/dog.3675.jpg \n", + " inflating: training_set/training_set/dogs/dog.3676.jpg \n", + " inflating: training_set/training_set/dogs/dog.3677.jpg \n", + " inflating: training_set/training_set/dogs/dog.3678.jpg \n", + " inflating: training_set/training_set/dogs/dog.3679.jpg \n", + " inflating: training_set/training_set/dogs/dog.368.jpg \n", + " inflating: training_set/training_set/dogs/dog.3680.jpg \n", + " inflating: training_set/training_set/dogs/dog.3681.jpg \n", + " inflating: training_set/training_set/dogs/dog.3682.jpg \n", + " inflating: training_set/training_set/dogs/dog.3683.jpg \n", + " inflating: training_set/training_set/dogs/dog.3684.jpg \n", + " inflating: training_set/training_set/dogs/dog.3685.jpg \n", + " inflating: training_set/training_set/dogs/dog.3686.jpg \n", + " inflating: training_set/training_set/dogs/dog.3687.jpg \n", + " inflating: training_set/training_set/dogs/dog.3688.jpg \n", + " inflating: training_set/training_set/dogs/dog.3689.jpg \n", + " inflating: training_set/training_set/dogs/dog.369.jpg \n", + " inflating: training_set/training_set/dogs/dog.3690.jpg \n", + " inflating: training_set/training_set/dogs/dog.3691.jpg \n", + " inflating: training_set/training_set/dogs/dog.3692.jpg \n", + " inflating: training_set/training_set/dogs/dog.3693.jpg \n", + " inflating: training_set/training_set/dogs/dog.3694.jpg \n", + " inflating: training_set/training_set/dogs/dog.3695.jpg \n", + " inflating: training_set/training_set/dogs/dog.3696.jpg \n", + " inflating: training_set/training_set/dogs/dog.3697.jpg \n", + " inflating: training_set/training_set/dogs/dog.3698.jpg \n", + " inflating: training_set/training_set/dogs/dog.3699.jpg \n", + " inflating: training_set/training_set/dogs/dog.37.jpg \n", + " inflating: training_set/training_set/dogs/dog.370.jpg \n", + " inflating: training_set/training_set/dogs/dog.3700.jpg \n", + " inflating: training_set/training_set/dogs/dog.3701.jpg \n", + " inflating: training_set/training_set/dogs/dog.3702.jpg \n", + " inflating: training_set/training_set/dogs/dog.3703.jpg \n", + " inflating: training_set/training_set/dogs/dog.3704.jpg \n", + " inflating: training_set/training_set/dogs/dog.3705.jpg \n", + " inflating: training_set/training_set/dogs/dog.3706.jpg \n", + " inflating: training_set/training_set/dogs/dog.3707.jpg \n", + " inflating: training_set/training_set/dogs/dog.3708.jpg \n", + " inflating: training_set/training_set/dogs/dog.3709.jpg \n", + " inflating: training_set/training_set/dogs/dog.371.jpg \n", + " inflating: training_set/training_set/dogs/dog.3710.jpg \n", + " inflating: training_set/training_set/dogs/dog.3711.jpg \n", + " inflating: training_set/training_set/dogs/dog.3712.jpg \n", + " inflating: training_set/training_set/dogs/dog.3713.jpg \n", + " inflating: training_set/training_set/dogs/dog.3714.jpg \n", + " inflating: training_set/training_set/dogs/dog.3715.jpg \n", + " inflating: training_set/training_set/dogs/dog.3716.jpg \n", + " inflating: training_set/training_set/dogs/dog.3717.jpg \n", + " inflating: training_set/training_set/dogs/dog.3718.jpg \n", + " inflating: training_set/training_set/dogs/dog.3719.jpg \n", + " inflating: training_set/training_set/dogs/dog.372.jpg \n", + " inflating: training_set/training_set/dogs/dog.3720.jpg \n", + " inflating: training_set/training_set/dogs/dog.3721.jpg \n", + " inflating: training_set/training_set/dogs/dog.3722.jpg \n", + " inflating: training_set/training_set/dogs/dog.3723.jpg \n", + " inflating: training_set/training_set/dogs/dog.3724.jpg \n", + " inflating: training_set/training_set/dogs/dog.3725.jpg \n", + " inflating: training_set/training_set/dogs/dog.3726.jpg \n", + " inflating: training_set/training_set/dogs/dog.3727.jpg \n", + " inflating: training_set/training_set/dogs/dog.3728.jpg \n", + " inflating: training_set/training_set/dogs/dog.3729.jpg \n", + " inflating: training_set/training_set/dogs/dog.373.jpg \n", + " inflating: training_set/training_set/dogs/dog.3730.jpg \n", + " inflating: training_set/training_set/dogs/dog.3731.jpg \n", + " inflating: training_set/training_set/dogs/dog.3732.jpg \n", + " inflating: training_set/training_set/dogs/dog.3733.jpg \n", + " inflating: training_set/training_set/dogs/dog.3734.jpg \n", + " inflating: training_set/training_set/dogs/dog.3735.jpg \n", + " inflating: training_set/training_set/dogs/dog.3736.jpg \n", + " inflating: training_set/training_set/dogs/dog.3737.jpg \n", + " inflating: training_set/training_set/dogs/dog.3738.jpg \n", + " inflating: training_set/training_set/dogs/dog.3739.jpg \n", + " inflating: training_set/training_set/dogs/dog.374.jpg \n", + " inflating: training_set/training_set/dogs/dog.3740.jpg \n", + " inflating: training_set/training_set/dogs/dog.3741.jpg \n", + " inflating: training_set/training_set/dogs/dog.3742.jpg \n", + " inflating: training_set/training_set/dogs/dog.3743.jpg \n", + " inflating: training_set/training_set/dogs/dog.3744.jpg \n", + " inflating: training_set/training_set/dogs/dog.3745.jpg \n", + " inflating: training_set/training_set/dogs/dog.3746.jpg \n", + " inflating: training_set/training_set/dogs/dog.3747.jpg \n", + " inflating: training_set/training_set/dogs/dog.3748.jpg \n", + " inflating: training_set/training_set/dogs/dog.3749.jpg \n", + " inflating: training_set/training_set/dogs/dog.375.jpg \n", + " inflating: training_set/training_set/dogs/dog.3750.jpg \n", + " inflating: training_set/training_set/dogs/dog.3751.jpg \n", + " inflating: training_set/training_set/dogs/dog.3752.jpg \n", + " inflating: training_set/training_set/dogs/dog.3753.jpg \n", + " inflating: training_set/training_set/dogs/dog.3754.jpg \n", + " inflating: training_set/training_set/dogs/dog.3755.jpg \n", + " inflating: training_set/training_set/dogs/dog.3756.jpg \n", + " inflating: training_set/training_set/dogs/dog.3757.jpg \n", + " inflating: training_set/training_set/dogs/dog.3758.jpg \n", + " inflating: training_set/training_set/dogs/dog.3759.jpg \n", + " inflating: training_set/training_set/dogs/dog.376.jpg \n", + " inflating: training_set/training_set/dogs/dog.3760.jpg \n", + " inflating: training_set/training_set/dogs/dog.3761.jpg \n", + " inflating: training_set/training_set/dogs/dog.3762.jpg \n", + " inflating: training_set/training_set/dogs/dog.3763.jpg \n", + " inflating: training_set/training_set/dogs/dog.3764.jpg \n", + " inflating: training_set/training_set/dogs/dog.3765.jpg \n", + " inflating: training_set/training_set/dogs/dog.3766.jpg \n", + " inflating: training_set/training_set/dogs/dog.3767.jpg \n", + " inflating: training_set/training_set/dogs/dog.3768.jpg \n", + " inflating: training_set/training_set/dogs/dog.3769.jpg \n", + " inflating: training_set/training_set/dogs/dog.377.jpg \n", + " inflating: training_set/training_set/dogs/dog.3770.jpg \n", + " inflating: training_set/training_set/dogs/dog.3771.jpg \n", + " inflating: training_set/training_set/dogs/dog.3772.jpg \n", + " inflating: training_set/training_set/dogs/dog.3773.jpg \n", + " inflating: training_set/training_set/dogs/dog.3774.jpg \n", + " inflating: training_set/training_set/dogs/dog.3775.jpg \n", + " inflating: training_set/training_set/dogs/dog.3776.jpg \n", + " inflating: training_set/training_set/dogs/dog.3777.jpg \n", + " inflating: training_set/training_set/dogs/dog.3778.jpg \n", + " inflating: training_set/training_set/dogs/dog.3779.jpg \n", + " inflating: training_set/training_set/dogs/dog.378.jpg \n", + " inflating: training_set/training_set/dogs/dog.3780.jpg \n", + " inflating: training_set/training_set/dogs/dog.3781.jpg \n", + " inflating: training_set/training_set/dogs/dog.3782.jpg \n", + " inflating: training_set/training_set/dogs/dog.3783.jpg \n", + " inflating: training_set/training_set/dogs/dog.3784.jpg \n", + " inflating: training_set/training_set/dogs/dog.3785.jpg \n", + " inflating: training_set/training_set/dogs/dog.3786.jpg \n", + " inflating: training_set/training_set/dogs/dog.3787.jpg \n", + " inflating: training_set/training_set/dogs/dog.3788.jpg \n", + " inflating: training_set/training_set/dogs/dog.3789.jpg \n", + " inflating: training_set/training_set/dogs/dog.379.jpg \n", + " inflating: training_set/training_set/dogs/dog.3790.jpg \n", + " inflating: training_set/training_set/dogs/dog.3791.jpg \n", + " inflating: training_set/training_set/dogs/dog.3792.jpg \n", + " inflating: training_set/training_set/dogs/dog.3793.jpg \n", + " inflating: training_set/training_set/dogs/dog.3794.jpg \n", + " inflating: training_set/training_set/dogs/dog.3795.jpg \n", + " inflating: training_set/training_set/dogs/dog.3796.jpg \n", + " inflating: training_set/training_set/dogs/dog.3797.jpg \n", + " inflating: training_set/training_set/dogs/dog.3798.jpg \n", + " inflating: training_set/training_set/dogs/dog.3799.jpg \n", + " inflating: training_set/training_set/dogs/dog.38.jpg \n", + " inflating: training_set/training_set/dogs/dog.380.jpg \n", + " inflating: training_set/training_set/dogs/dog.3800.jpg \n", + " inflating: training_set/training_set/dogs/dog.3801.jpg \n", + " inflating: training_set/training_set/dogs/dog.3802.jpg \n", + " inflating: training_set/training_set/dogs/dog.3803.jpg \n", + " inflating: training_set/training_set/dogs/dog.3804.jpg \n", + " inflating: training_set/training_set/dogs/dog.3805.jpg \n", + " inflating: training_set/training_set/dogs/dog.3806.jpg \n", + " inflating: training_set/training_set/dogs/dog.3807.jpg \n", + " inflating: training_set/training_set/dogs/dog.3808.jpg \n", + " inflating: training_set/training_set/dogs/dog.3809.jpg \n", + " inflating: training_set/training_set/dogs/dog.381.jpg \n", + " inflating: training_set/training_set/dogs/dog.3810.jpg \n", + " inflating: training_set/training_set/dogs/dog.3811.jpg \n", + " inflating: training_set/training_set/dogs/dog.3812.jpg \n", + " inflating: training_set/training_set/dogs/dog.3813.jpg \n", + " inflating: training_set/training_set/dogs/dog.3814.jpg \n", + " inflating: training_set/training_set/dogs/dog.3815.jpg \n", + " inflating: training_set/training_set/dogs/dog.3816.jpg \n", + " inflating: training_set/training_set/dogs/dog.3817.jpg \n", + " inflating: training_set/training_set/dogs/dog.3818.jpg \n", + " inflating: training_set/training_set/dogs/dog.3819.jpg \n", + " inflating: training_set/training_set/dogs/dog.382.jpg \n", + " inflating: training_set/training_set/dogs/dog.3820.jpg \n", + " inflating: training_set/training_set/dogs/dog.3821.jpg \n", + " inflating: training_set/training_set/dogs/dog.3822.jpg \n", + " inflating: training_set/training_set/dogs/dog.3823.jpg \n", + " inflating: training_set/training_set/dogs/dog.3824.jpg \n", + " inflating: training_set/training_set/dogs/dog.3825.jpg \n", + " inflating: training_set/training_set/dogs/dog.3826.jpg \n", + " inflating: training_set/training_set/dogs/dog.3827.jpg \n", + " inflating: training_set/training_set/dogs/dog.3828.jpg \n", + " inflating: training_set/training_set/dogs/dog.3829.jpg \n", + " inflating: training_set/training_set/dogs/dog.383.jpg \n", + " inflating: training_set/training_set/dogs/dog.3830.jpg \n", + " inflating: training_set/training_set/dogs/dog.3831.jpg \n", + " inflating: training_set/training_set/dogs/dog.3832.jpg \n", + " inflating: training_set/training_set/dogs/dog.3833.jpg \n", + " inflating: training_set/training_set/dogs/dog.3834.jpg \n", + " inflating: training_set/training_set/dogs/dog.3835.jpg \n", + " inflating: training_set/training_set/dogs/dog.3836.jpg \n", + " inflating: training_set/training_set/dogs/dog.3837.jpg \n", + " inflating: training_set/training_set/dogs/dog.3838.jpg \n", + " inflating: training_set/training_set/dogs/dog.3839.jpg \n", + " inflating: training_set/training_set/dogs/dog.384.jpg \n", + " inflating: training_set/training_set/dogs/dog.3840.jpg \n", + " inflating: training_set/training_set/dogs/dog.3841.jpg \n", + " inflating: training_set/training_set/dogs/dog.3842.jpg \n", + " inflating: training_set/training_set/dogs/dog.3843.jpg \n", + " inflating: training_set/training_set/dogs/dog.3844.jpg \n", + " inflating: training_set/training_set/dogs/dog.3845.jpg \n", + " inflating: training_set/training_set/dogs/dog.3846.jpg \n", + " inflating: training_set/training_set/dogs/dog.3847.jpg \n", + " inflating: training_set/training_set/dogs/dog.3848.jpg \n", + " inflating: training_set/training_set/dogs/dog.3849.jpg \n", + " inflating: training_set/training_set/dogs/dog.385.jpg \n", + " inflating: training_set/training_set/dogs/dog.3850.jpg \n", + " inflating: training_set/training_set/dogs/dog.3851.jpg \n", + " inflating: training_set/training_set/dogs/dog.3852.jpg \n", + " inflating: training_set/training_set/dogs/dog.3853.jpg \n", + " inflating: training_set/training_set/dogs/dog.3854.jpg \n", + " inflating: training_set/training_set/dogs/dog.3855.jpg \n", + " inflating: training_set/training_set/dogs/dog.3856.jpg \n", + " inflating: training_set/training_set/dogs/dog.3857.jpg \n", + " inflating: training_set/training_set/dogs/dog.3858.jpg \n", + " inflating: training_set/training_set/dogs/dog.3859.jpg \n", + " inflating: training_set/training_set/dogs/dog.386.jpg \n", + " inflating: training_set/training_set/dogs/dog.3860.jpg \n", + " inflating: training_set/training_set/dogs/dog.3861.jpg \n", + " inflating: training_set/training_set/dogs/dog.3862.jpg \n", + " inflating: training_set/training_set/dogs/dog.3863.jpg \n", + " inflating: training_set/training_set/dogs/dog.3864.jpg \n", + " inflating: training_set/training_set/dogs/dog.3865.jpg \n", + " inflating: training_set/training_set/dogs/dog.3866.jpg \n", + " inflating: training_set/training_set/dogs/dog.3867.jpg \n", + " inflating: training_set/training_set/dogs/dog.3868.jpg \n", + " inflating: training_set/training_set/dogs/dog.3869.jpg \n", + " inflating: training_set/training_set/dogs/dog.387.jpg \n", + " inflating: training_set/training_set/dogs/dog.3870.jpg \n", + " inflating: training_set/training_set/dogs/dog.3871.jpg \n", + " inflating: training_set/training_set/dogs/dog.3872.jpg \n", + " inflating: training_set/training_set/dogs/dog.3873.jpg \n", + " inflating: training_set/training_set/dogs/dog.3874.jpg \n", + " inflating: training_set/training_set/dogs/dog.3875.jpg \n", + " inflating: training_set/training_set/dogs/dog.3876.jpg \n", + " inflating: training_set/training_set/dogs/dog.3877.jpg \n", + " inflating: training_set/training_set/dogs/dog.3878.jpg \n", + " inflating: training_set/training_set/dogs/dog.3879.jpg \n", + " inflating: training_set/training_set/dogs/dog.388.jpg \n", + " inflating: training_set/training_set/dogs/dog.3880.jpg \n", + " inflating: training_set/training_set/dogs/dog.3881.jpg \n", + " inflating: training_set/training_set/dogs/dog.3882.jpg \n", + " inflating: training_set/training_set/dogs/dog.3883.jpg \n", + " inflating: training_set/training_set/dogs/dog.3884.jpg \n", + " inflating: training_set/training_set/dogs/dog.3885.jpg \n", + " inflating: training_set/training_set/dogs/dog.3886.jpg \n", + " inflating: training_set/training_set/dogs/dog.3887.jpg \n", + " inflating: training_set/training_set/dogs/dog.3888.jpg \n", + " inflating: training_set/training_set/dogs/dog.3889.jpg \n", + " inflating: training_set/training_set/dogs/dog.389.jpg \n", + " inflating: training_set/training_set/dogs/dog.3890.jpg \n", + " inflating: training_set/training_set/dogs/dog.3891.jpg \n", + " inflating: training_set/training_set/dogs/dog.3892.jpg \n", + " inflating: training_set/training_set/dogs/dog.3893.jpg \n", + " inflating: training_set/training_set/dogs/dog.3894.jpg \n", + " inflating: training_set/training_set/dogs/dog.3895.jpg \n", + " inflating: training_set/training_set/dogs/dog.3896.jpg \n", + " inflating: training_set/training_set/dogs/dog.3897.jpg \n", + " inflating: training_set/training_set/dogs/dog.3898.jpg \n", + " inflating: training_set/training_set/dogs/dog.3899.jpg \n", + " inflating: training_set/training_set/dogs/dog.39.jpg \n", + " inflating: training_set/training_set/dogs/dog.390.jpg \n", + " inflating: training_set/training_set/dogs/dog.3900.jpg \n", + " inflating: training_set/training_set/dogs/dog.3901.jpg \n", + " inflating: training_set/training_set/dogs/dog.3902.jpg \n", + " inflating: training_set/training_set/dogs/dog.3903.jpg \n", + " inflating: training_set/training_set/dogs/dog.3904.jpg \n", + " inflating: training_set/training_set/dogs/dog.3905.jpg \n", + " inflating: training_set/training_set/dogs/dog.3906.jpg \n", + " inflating: training_set/training_set/dogs/dog.3907.jpg \n", + " inflating: training_set/training_set/dogs/dog.3908.jpg \n", + " inflating: training_set/training_set/dogs/dog.3909.jpg \n", + " inflating: training_set/training_set/dogs/dog.391.jpg \n", + " inflating: training_set/training_set/dogs/dog.3910.jpg \n", + " inflating: training_set/training_set/dogs/dog.3911.jpg \n", + " inflating: training_set/training_set/dogs/dog.3912.jpg \n", + " inflating: training_set/training_set/dogs/dog.3913.jpg \n", + " inflating: training_set/training_set/dogs/dog.3914.jpg \n", + " inflating: training_set/training_set/dogs/dog.3915.jpg \n", + " inflating: training_set/training_set/dogs/dog.3916.jpg \n", + " inflating: training_set/training_set/dogs/dog.3917.jpg \n", + " inflating: training_set/training_set/dogs/dog.3918.jpg \n", + " inflating: training_set/training_set/dogs/dog.3919.jpg \n", + " inflating: training_set/training_set/dogs/dog.392.jpg \n", + " inflating: training_set/training_set/dogs/dog.3920.jpg \n", + " inflating: training_set/training_set/dogs/dog.3921.jpg \n", + " inflating: training_set/training_set/dogs/dog.3922.jpg \n", + " inflating: training_set/training_set/dogs/dog.3923.jpg \n", + " inflating: training_set/training_set/dogs/dog.3924.jpg \n", + " inflating: training_set/training_set/dogs/dog.3925.jpg \n", + " inflating: training_set/training_set/dogs/dog.3926.jpg \n", + " inflating: training_set/training_set/dogs/dog.3927.jpg \n", + " inflating: training_set/training_set/dogs/dog.3928.jpg \n", + " inflating: training_set/training_set/dogs/dog.3929.jpg \n", + " inflating: training_set/training_set/dogs/dog.393.jpg \n", + " inflating: training_set/training_set/dogs/dog.3930.jpg \n", + " inflating: training_set/training_set/dogs/dog.3931.jpg \n", + " inflating: training_set/training_set/dogs/dog.3932.jpg \n", + " inflating: training_set/training_set/dogs/dog.3933.jpg \n", + " inflating: training_set/training_set/dogs/dog.3934.jpg \n", + " inflating: training_set/training_set/dogs/dog.3935.jpg \n", + " inflating: training_set/training_set/dogs/dog.3936.jpg \n", + " inflating: training_set/training_set/dogs/dog.3937.jpg \n", + " inflating: training_set/training_set/dogs/dog.3938.jpg \n", + " inflating: training_set/training_set/dogs/dog.3939.jpg \n", + " inflating: training_set/training_set/dogs/dog.394.jpg \n", + " inflating: training_set/training_set/dogs/dog.3940.jpg \n", + " inflating: training_set/training_set/dogs/dog.3941.jpg \n", + " inflating: training_set/training_set/dogs/dog.3942.jpg \n", + " inflating: training_set/training_set/dogs/dog.3943.jpg \n", + " inflating: training_set/training_set/dogs/dog.3944.jpg \n", + " inflating: training_set/training_set/dogs/dog.3945.jpg \n", + " inflating: training_set/training_set/dogs/dog.3946.jpg \n", + " inflating: training_set/training_set/dogs/dog.3947.jpg \n", + " inflating: training_set/training_set/dogs/dog.3948.jpg \n", + " inflating: training_set/training_set/dogs/dog.3949.jpg \n", + " inflating: training_set/training_set/dogs/dog.395.jpg \n", + " inflating: training_set/training_set/dogs/dog.3950.jpg \n", + " inflating: training_set/training_set/dogs/dog.3951.jpg \n", + " inflating: training_set/training_set/dogs/dog.3952.jpg \n", + " inflating: training_set/training_set/dogs/dog.3953.jpg \n", + " inflating: training_set/training_set/dogs/dog.3954.jpg \n", + " inflating: training_set/training_set/dogs/dog.3955.jpg \n", + " inflating: training_set/training_set/dogs/dog.3956.jpg \n", + " inflating: training_set/training_set/dogs/dog.3957.jpg \n", + " inflating: training_set/training_set/dogs/dog.3958.jpg \n", + " inflating: training_set/training_set/dogs/dog.3959.jpg \n", + " inflating: training_set/training_set/dogs/dog.396.jpg \n", + " inflating: training_set/training_set/dogs/dog.3960.jpg \n", + " inflating: training_set/training_set/dogs/dog.3961.jpg \n", + " inflating: training_set/training_set/dogs/dog.3962.jpg \n", + " inflating: training_set/training_set/dogs/dog.3963.jpg \n", + " inflating: training_set/training_set/dogs/dog.3964.jpg \n", + " inflating: training_set/training_set/dogs/dog.3965.jpg \n", + " inflating: training_set/training_set/dogs/dog.3966.jpg \n", + " inflating: training_set/training_set/dogs/dog.3967.jpg \n", + " inflating: training_set/training_set/dogs/dog.3968.jpg \n", + " inflating: training_set/training_set/dogs/dog.3969.jpg \n", + " inflating: training_set/training_set/dogs/dog.397.jpg \n", + " inflating: training_set/training_set/dogs/dog.3970.jpg \n", + " inflating: training_set/training_set/dogs/dog.3971.jpg \n", + " inflating: training_set/training_set/dogs/dog.3972.jpg \n", + " inflating: training_set/training_set/dogs/dog.3973.jpg \n", + " inflating: training_set/training_set/dogs/dog.3974.jpg \n", + " inflating: training_set/training_set/dogs/dog.3975.jpg \n", + " inflating: training_set/training_set/dogs/dog.3976.jpg \n", + " inflating: training_set/training_set/dogs/dog.3977.jpg \n", + " inflating: training_set/training_set/dogs/dog.3978.jpg \n", + " inflating: training_set/training_set/dogs/dog.3979.jpg \n", + " inflating: training_set/training_set/dogs/dog.398.jpg \n", + " inflating: training_set/training_set/dogs/dog.3980.jpg \n", + " inflating: training_set/training_set/dogs/dog.3981.jpg \n", + " inflating: training_set/training_set/dogs/dog.3982.jpg \n", + " inflating: training_set/training_set/dogs/dog.3983.jpg \n", + " inflating: training_set/training_set/dogs/dog.3984.jpg \n", + " inflating: training_set/training_set/dogs/dog.3985.jpg \n", + " inflating: training_set/training_set/dogs/dog.3986.jpg \n", + " inflating: training_set/training_set/dogs/dog.3987.jpg \n", + " inflating: training_set/training_set/dogs/dog.3988.jpg \n", + " inflating: training_set/training_set/dogs/dog.3989.jpg \n", + " inflating: training_set/training_set/dogs/dog.399.jpg \n", + " inflating: training_set/training_set/dogs/dog.3990.jpg \n", + " inflating: training_set/training_set/dogs/dog.3991.jpg \n", + " inflating: training_set/training_set/dogs/dog.3992.jpg \n", + " inflating: training_set/training_set/dogs/dog.3993.jpg \n", + " inflating: training_set/training_set/dogs/dog.3994.jpg \n", + " inflating: training_set/training_set/dogs/dog.3995.jpg \n", + " inflating: training_set/training_set/dogs/dog.3996.jpg \n", + " inflating: training_set/training_set/dogs/dog.3997.jpg \n", + " inflating: training_set/training_set/dogs/dog.3998.jpg \n", + " inflating: training_set/training_set/dogs/dog.3999.jpg \n", + " inflating: training_set/training_set/dogs/dog.4.jpg \n", + " inflating: training_set/training_set/dogs/dog.40.jpg \n", + " inflating: training_set/training_set/dogs/dog.400.jpg \n", + " inflating: training_set/training_set/dogs/dog.4000.jpg \n", + " inflating: training_set/training_set/dogs/dog.401.jpg \n", + " inflating: training_set/training_set/dogs/dog.402.jpg \n", + " inflating: training_set/training_set/dogs/dog.403.jpg \n", + " inflating: training_set/training_set/dogs/dog.404.jpg \n", + " inflating: training_set/training_set/dogs/dog.405.jpg \n", + " inflating: training_set/training_set/dogs/dog.406.jpg \n", + " inflating: training_set/training_set/dogs/dog.407.jpg \n", + " inflating: training_set/training_set/dogs/dog.408.jpg \n", + " inflating: training_set/training_set/dogs/dog.409.jpg \n", + " inflating: training_set/training_set/dogs/dog.41.jpg \n", + " inflating: training_set/training_set/dogs/dog.410.jpg \n", + " inflating: training_set/training_set/dogs/dog.411.jpg \n", + " inflating: training_set/training_set/dogs/dog.412.jpg \n", + " inflating: training_set/training_set/dogs/dog.413.jpg \n", + " inflating: training_set/training_set/dogs/dog.414.jpg \n", + " inflating: training_set/training_set/dogs/dog.415.jpg \n", + " inflating: training_set/training_set/dogs/dog.416.jpg \n", + " inflating: training_set/training_set/dogs/dog.417.jpg \n", + " inflating: training_set/training_set/dogs/dog.418.jpg \n", + " inflating: training_set/training_set/dogs/dog.419.jpg \n", + " inflating: training_set/training_set/dogs/dog.42.jpg \n", + " inflating: training_set/training_set/dogs/dog.420.jpg \n", + " inflating: training_set/training_set/dogs/dog.421.jpg \n", + " inflating: training_set/training_set/dogs/dog.422.jpg \n", + " inflating: training_set/training_set/dogs/dog.423.jpg \n", + " inflating: training_set/training_set/dogs/dog.424.jpg \n", + " inflating: training_set/training_set/dogs/dog.425.jpg \n", + " inflating: training_set/training_set/dogs/dog.426.jpg \n", + " inflating: training_set/training_set/dogs/dog.427.jpg \n", + " inflating: training_set/training_set/dogs/dog.428.jpg \n", + " inflating: training_set/training_set/dogs/dog.429.jpg \n", + " inflating: training_set/training_set/dogs/dog.43.jpg \n", + " inflating: training_set/training_set/dogs/dog.430.jpg \n", + " inflating: training_set/training_set/dogs/dog.431.jpg \n", + " inflating: training_set/training_set/dogs/dog.432.jpg \n", + " inflating: training_set/training_set/dogs/dog.433.jpg \n", + " inflating: training_set/training_set/dogs/dog.434.jpg \n", + " inflating: training_set/training_set/dogs/dog.435.jpg \n", + " inflating: training_set/training_set/dogs/dog.436.jpg \n", + " inflating: training_set/training_set/dogs/dog.437.jpg \n", + " inflating: training_set/training_set/dogs/dog.438.jpg \n", + " inflating: training_set/training_set/dogs/dog.439.jpg \n", + " inflating: training_set/training_set/dogs/dog.44.jpg \n", + " inflating: training_set/training_set/dogs/dog.440.jpg \n", + " inflating: training_set/training_set/dogs/dog.441.jpg \n", + " inflating: training_set/training_set/dogs/dog.442.jpg \n", + " inflating: training_set/training_set/dogs/dog.443.jpg \n", + " inflating: training_set/training_set/dogs/dog.444.jpg \n", + " inflating: training_set/training_set/dogs/dog.445.jpg \n", + " inflating: training_set/training_set/dogs/dog.446.jpg \n", + " inflating: training_set/training_set/dogs/dog.447.jpg \n", + " inflating: training_set/training_set/dogs/dog.448.jpg \n", + " inflating: training_set/training_set/dogs/dog.449.jpg \n", + " inflating: training_set/training_set/dogs/dog.45.jpg \n", + " inflating: training_set/training_set/dogs/dog.450.jpg \n", + " inflating: training_set/training_set/dogs/dog.451.jpg \n", + " inflating: training_set/training_set/dogs/dog.452.jpg \n", + " inflating: training_set/training_set/dogs/dog.453.jpg \n", + " inflating: training_set/training_set/dogs/dog.454.jpg \n", + " inflating: training_set/training_set/dogs/dog.455.jpg \n", + " inflating: training_set/training_set/dogs/dog.456.jpg \n", + " inflating: training_set/training_set/dogs/dog.457.jpg \n", + " inflating: training_set/training_set/dogs/dog.458.jpg \n", + " inflating: training_set/training_set/dogs/dog.459.jpg \n", + " inflating: training_set/training_set/dogs/dog.46.jpg \n", + " inflating: training_set/training_set/dogs/dog.460.jpg \n", + " inflating: training_set/training_set/dogs/dog.461.jpg \n", + " inflating: training_set/training_set/dogs/dog.462.jpg \n", + " inflating: training_set/training_set/dogs/dog.463.jpg \n", + " inflating: training_set/training_set/dogs/dog.464.jpg \n", + " inflating: training_set/training_set/dogs/dog.465.jpg \n", + " inflating: training_set/training_set/dogs/dog.466.jpg \n", + " inflating: training_set/training_set/dogs/dog.467.jpg \n", + " inflating: training_set/training_set/dogs/dog.468.jpg \n", + " inflating: training_set/training_set/dogs/dog.469.jpg \n", + " inflating: training_set/training_set/dogs/dog.47.jpg \n", + " inflating: training_set/training_set/dogs/dog.470.jpg \n", + " inflating: training_set/training_set/dogs/dog.471.jpg \n", + " inflating: training_set/training_set/dogs/dog.472.jpg \n", + " inflating: training_set/training_set/dogs/dog.473.jpg \n", + " inflating: training_set/training_set/dogs/dog.474.jpg \n", + " inflating: training_set/training_set/dogs/dog.475.jpg \n", + " inflating: training_set/training_set/dogs/dog.476.jpg \n", + " inflating: training_set/training_set/dogs/dog.477.jpg \n", + " inflating: training_set/training_set/dogs/dog.478.jpg \n", + " inflating: training_set/training_set/dogs/dog.479.jpg \n", + " inflating: training_set/training_set/dogs/dog.48.jpg \n", + " inflating: training_set/training_set/dogs/dog.480.jpg \n", + " inflating: training_set/training_set/dogs/dog.481.jpg \n", + " inflating: training_set/training_set/dogs/dog.482.jpg \n", + " inflating: training_set/training_set/dogs/dog.483.jpg \n", + " inflating: training_set/training_set/dogs/dog.484.jpg \n", + " inflating: training_set/training_set/dogs/dog.485.jpg \n", + " inflating: training_set/training_set/dogs/dog.486.jpg \n", + " inflating: training_set/training_set/dogs/dog.487.jpg \n", + " inflating: training_set/training_set/dogs/dog.488.jpg \n", + " inflating: training_set/training_set/dogs/dog.489.jpg \n", + " inflating: training_set/training_set/dogs/dog.49.jpg \n", + " inflating: training_set/training_set/dogs/dog.490.jpg \n", + " inflating: training_set/training_set/dogs/dog.491.jpg \n", + " inflating: training_set/training_set/dogs/dog.492.jpg \n", + " inflating: training_set/training_set/dogs/dog.493.jpg \n", + " inflating: training_set/training_set/dogs/dog.494.jpg \n", + " inflating: training_set/training_set/dogs/dog.495.jpg \n", + " inflating: training_set/training_set/dogs/dog.496.jpg \n", + " inflating: training_set/training_set/dogs/dog.497.jpg \n", + " inflating: training_set/training_set/dogs/dog.498.jpg \n", + " inflating: training_set/training_set/dogs/dog.499.jpg \n", + " inflating: training_set/training_set/dogs/dog.5.jpg \n", + " inflating: training_set/training_set/dogs/dog.50.jpg \n", + " inflating: training_set/training_set/dogs/dog.500.jpg \n", + " inflating: training_set/training_set/dogs/dog.501.jpg \n", + " inflating: training_set/training_set/dogs/dog.502.jpg \n", + " inflating: training_set/training_set/dogs/dog.503.jpg \n", + " inflating: training_set/training_set/dogs/dog.504.jpg \n", + " inflating: training_set/training_set/dogs/dog.505.jpg \n", + " inflating: training_set/training_set/dogs/dog.506.jpg \n", + " inflating: training_set/training_set/dogs/dog.507.jpg \n", + " inflating: training_set/training_set/dogs/dog.508.jpg \n", + " inflating: training_set/training_set/dogs/dog.509.jpg \n", + " inflating: training_set/training_set/dogs/dog.51.jpg \n", + " inflating: training_set/training_set/dogs/dog.510.jpg \n", + " inflating: training_set/training_set/dogs/dog.511.jpg \n", + " inflating: training_set/training_set/dogs/dog.512.jpg \n", + " inflating: training_set/training_set/dogs/dog.513.jpg \n", + " inflating: training_set/training_set/dogs/dog.514.jpg \n", + " inflating: training_set/training_set/dogs/dog.515.jpg \n", + " inflating: training_set/training_set/dogs/dog.516.jpg \n", + " inflating: training_set/training_set/dogs/dog.517.jpg \n", + " inflating: training_set/training_set/dogs/dog.518.jpg \n", + " inflating: training_set/training_set/dogs/dog.519.jpg \n", + " inflating: training_set/training_set/dogs/dog.52.jpg \n", + " inflating: training_set/training_set/dogs/dog.520.jpg \n", + " inflating: training_set/training_set/dogs/dog.521.jpg \n", + " inflating: training_set/training_set/dogs/dog.522.jpg \n", + " inflating: training_set/training_set/dogs/dog.523.jpg \n", + " inflating: training_set/training_set/dogs/dog.524.jpg \n", + " inflating: training_set/training_set/dogs/dog.525.jpg \n", + " inflating: training_set/training_set/dogs/dog.526.jpg \n", + " inflating: training_set/training_set/dogs/dog.527.jpg \n", + " inflating: training_set/training_set/dogs/dog.528.jpg \n", + " inflating: training_set/training_set/dogs/dog.529.jpg \n", + " inflating: training_set/training_set/dogs/dog.53.jpg \n", + " inflating: training_set/training_set/dogs/dog.530.jpg \n", + " inflating: training_set/training_set/dogs/dog.531.jpg \n", + " inflating: training_set/training_set/dogs/dog.532.jpg \n", + " inflating: training_set/training_set/dogs/dog.533.jpg \n", + " inflating: training_set/training_set/dogs/dog.534.jpg \n", + " inflating: training_set/training_set/dogs/dog.535.jpg \n", + " inflating: training_set/training_set/dogs/dog.536.jpg \n", + " inflating: training_set/training_set/dogs/dog.537.jpg \n", + " inflating: training_set/training_set/dogs/dog.538.jpg \n", + " inflating: training_set/training_set/dogs/dog.539.jpg \n", + " inflating: training_set/training_set/dogs/dog.54.jpg \n", + " inflating: training_set/training_set/dogs/dog.540.jpg \n", + " inflating: training_set/training_set/dogs/dog.541.jpg \n", + " inflating: training_set/training_set/dogs/dog.542.jpg \n", + " inflating: training_set/training_set/dogs/dog.543.jpg \n", + " inflating: training_set/training_set/dogs/dog.544.jpg \n", + " inflating: training_set/training_set/dogs/dog.545.jpg \n", + " inflating: training_set/training_set/dogs/dog.546.jpg \n", + " inflating: training_set/training_set/dogs/dog.547.jpg \n", + " inflating: training_set/training_set/dogs/dog.548.jpg \n", + " inflating: training_set/training_set/dogs/dog.549.jpg \n", + " inflating: training_set/training_set/dogs/dog.55.jpg \n", + " inflating: training_set/training_set/dogs/dog.550.jpg \n", + " inflating: training_set/training_set/dogs/dog.551.jpg \n", + " inflating: training_set/training_set/dogs/dog.552.jpg \n", + " inflating: training_set/training_set/dogs/dog.553.jpg \n", + " inflating: training_set/training_set/dogs/dog.554.jpg \n", + " inflating: training_set/training_set/dogs/dog.555.jpg \n", + " inflating: training_set/training_set/dogs/dog.556.jpg \n", + " inflating: training_set/training_set/dogs/dog.557.jpg \n", + " inflating: training_set/training_set/dogs/dog.558.jpg \n", + " inflating: training_set/training_set/dogs/dog.559.jpg \n", + " inflating: training_set/training_set/dogs/dog.56.jpg \n", + " inflating: training_set/training_set/dogs/dog.560.jpg \n", + " inflating: training_set/training_set/dogs/dog.561.jpg \n", + " inflating: training_set/training_set/dogs/dog.562.jpg \n", + " inflating: training_set/training_set/dogs/dog.563.jpg \n", + " inflating: training_set/training_set/dogs/dog.564.jpg \n", + " inflating: training_set/training_set/dogs/dog.565.jpg \n", + " inflating: training_set/training_set/dogs/dog.566.jpg \n", + " inflating: training_set/training_set/dogs/dog.567.jpg \n", + " inflating: training_set/training_set/dogs/dog.568.jpg \n", + " inflating: training_set/training_set/dogs/dog.569.jpg \n", + " inflating: training_set/training_set/dogs/dog.57.jpg \n", + " inflating: training_set/training_set/dogs/dog.570.jpg \n", + " inflating: training_set/training_set/dogs/dog.571.jpg \n", + " inflating: training_set/training_set/dogs/dog.572.jpg \n", + " inflating: training_set/training_set/dogs/dog.573.jpg \n", + " inflating: training_set/training_set/dogs/dog.574.jpg \n", + " inflating: training_set/training_set/dogs/dog.575.jpg \n", + " inflating: training_set/training_set/dogs/dog.576.jpg \n", + " inflating: training_set/training_set/dogs/dog.577.jpg \n", + " inflating: training_set/training_set/dogs/dog.578.jpg \n", + " inflating: training_set/training_set/dogs/dog.579.jpg \n", + " inflating: training_set/training_set/dogs/dog.58.jpg \n", + " inflating: training_set/training_set/dogs/dog.580.jpg \n", + " inflating: training_set/training_set/dogs/dog.581.jpg \n", + " inflating: training_set/training_set/dogs/dog.582.jpg \n", + " inflating: training_set/training_set/dogs/dog.583.jpg \n", + " inflating: training_set/training_set/dogs/dog.584.jpg \n", + " inflating: training_set/training_set/dogs/dog.585.jpg \n", + " inflating: training_set/training_set/dogs/dog.586.jpg \n", + " inflating: training_set/training_set/dogs/dog.587.jpg \n", + " inflating: training_set/training_set/dogs/dog.588.jpg \n", + " inflating: training_set/training_set/dogs/dog.589.jpg \n", + " inflating: training_set/training_set/dogs/dog.59.jpg \n", + " inflating: training_set/training_set/dogs/dog.590.jpg \n", + " inflating: training_set/training_set/dogs/dog.591.jpg \n", + " inflating: training_set/training_set/dogs/dog.592.jpg \n", + " inflating: training_set/training_set/dogs/dog.593.jpg \n", + " inflating: training_set/training_set/dogs/dog.594.jpg \n", + " inflating: training_set/training_set/dogs/dog.595.jpg \n", + " inflating: training_set/training_set/dogs/dog.596.jpg \n", + " inflating: training_set/training_set/dogs/dog.597.jpg \n", + " inflating: training_set/training_set/dogs/dog.598.jpg \n", + " inflating: training_set/training_set/dogs/dog.599.jpg \n", + " inflating: training_set/training_set/dogs/dog.6.jpg \n", + " inflating: training_set/training_set/dogs/dog.60.jpg \n", + " inflating: training_set/training_set/dogs/dog.600.jpg \n", + " inflating: training_set/training_set/dogs/dog.601.jpg \n", + " inflating: training_set/training_set/dogs/dog.602.jpg \n", + " inflating: training_set/training_set/dogs/dog.603.jpg \n", + " inflating: training_set/training_set/dogs/dog.604.jpg \n", + " inflating: training_set/training_set/dogs/dog.605.jpg \n", + " inflating: training_set/training_set/dogs/dog.606.jpg \n", + " inflating: training_set/training_set/dogs/dog.607.jpg \n", + " inflating: training_set/training_set/dogs/dog.608.jpg \n", + " inflating: training_set/training_set/dogs/dog.609.jpg \n", + " inflating: training_set/training_set/dogs/dog.61.jpg \n", + " inflating: training_set/training_set/dogs/dog.610.jpg \n", + " inflating: training_set/training_set/dogs/dog.611.jpg \n", + " inflating: training_set/training_set/dogs/dog.612.jpg \n", + " inflating: training_set/training_set/dogs/dog.613.jpg \n", + " inflating: training_set/training_set/dogs/dog.614.jpg \n", + " inflating: training_set/training_set/dogs/dog.615.jpg \n", + " inflating: training_set/training_set/dogs/dog.616.jpg \n", + " inflating: training_set/training_set/dogs/dog.617.jpg \n", + " inflating: training_set/training_set/dogs/dog.618.jpg \n", + " inflating: training_set/training_set/dogs/dog.619.jpg \n", + " inflating: training_set/training_set/dogs/dog.62.jpg \n", + " inflating: training_set/training_set/dogs/dog.620.jpg \n", + " inflating: training_set/training_set/dogs/dog.621.jpg \n", + " inflating: training_set/training_set/dogs/dog.622.jpg \n", + " inflating: training_set/training_set/dogs/dog.623.jpg \n", + " inflating: training_set/training_set/dogs/dog.624.jpg \n", + " inflating: training_set/training_set/dogs/dog.625.jpg \n", + " inflating: training_set/training_set/dogs/dog.626.jpg \n", + " inflating: training_set/training_set/dogs/dog.627.jpg \n", + " inflating: training_set/training_set/dogs/dog.628.jpg \n", + " inflating: training_set/training_set/dogs/dog.629.jpg \n", + " inflating: training_set/training_set/dogs/dog.63.jpg \n", + " inflating: training_set/training_set/dogs/dog.630.jpg \n", + " inflating: training_set/training_set/dogs/dog.631.jpg \n", + " inflating: training_set/training_set/dogs/dog.632.jpg \n", + " inflating: training_set/training_set/dogs/dog.633.jpg \n", + " inflating: training_set/training_set/dogs/dog.634.jpg \n", + " inflating: training_set/training_set/dogs/dog.635.jpg \n", + " inflating: training_set/training_set/dogs/dog.636.jpg \n", + " inflating: training_set/training_set/dogs/dog.637.jpg \n", + " inflating: training_set/training_set/dogs/dog.638.jpg \n", + " inflating: training_set/training_set/dogs/dog.639.jpg \n", + " inflating: training_set/training_set/dogs/dog.64.jpg \n", + " inflating: training_set/training_set/dogs/dog.640.jpg \n", + " inflating: training_set/training_set/dogs/dog.641.jpg \n", + " inflating: training_set/training_set/dogs/dog.642.jpg \n", + " inflating: training_set/training_set/dogs/dog.643.jpg \n", + " inflating: training_set/training_set/dogs/dog.644.jpg \n", + " inflating: training_set/training_set/dogs/dog.645.jpg \n", + " inflating: training_set/training_set/dogs/dog.646.jpg \n", + " inflating: training_set/training_set/dogs/dog.647.jpg \n", + " inflating: training_set/training_set/dogs/dog.648.jpg \n", + " inflating: training_set/training_set/dogs/dog.649.jpg \n", + " inflating: training_set/training_set/dogs/dog.65.jpg \n", + " inflating: training_set/training_set/dogs/dog.650.jpg \n", + " inflating: training_set/training_set/dogs/dog.651.jpg \n", + " inflating: training_set/training_set/dogs/dog.652.jpg \n", + " inflating: training_set/training_set/dogs/dog.653.jpg \n", + " inflating: training_set/training_set/dogs/dog.654.jpg \n", + " inflating: training_set/training_set/dogs/dog.655.jpg \n", + " inflating: training_set/training_set/dogs/dog.656.jpg \n", + " inflating: training_set/training_set/dogs/dog.657.jpg \n", + " inflating: training_set/training_set/dogs/dog.658.jpg \n", + " inflating: training_set/training_set/dogs/dog.659.jpg \n", + " inflating: training_set/training_set/dogs/dog.66.jpg \n", + " inflating: training_set/training_set/dogs/dog.660.jpg \n", + " inflating: training_set/training_set/dogs/dog.661.jpg \n", + " inflating: training_set/training_set/dogs/dog.662.jpg \n", + " inflating: training_set/training_set/dogs/dog.663.jpg \n", + " inflating: training_set/training_set/dogs/dog.664(1).jpg \n", + " inflating: training_set/training_set/dogs/dog.664.jpg \n", + " inflating: training_set/training_set/dogs/dog.665.jpg \n", + " inflating: training_set/training_set/dogs/dog.666.jpg \n", + " inflating: training_set/training_set/dogs/dog.667.jpg \n", + " inflating: training_set/training_set/dogs/dog.668.jpg \n", + " inflating: training_set/training_set/dogs/dog.669.jpg \n", + " inflating: training_set/training_set/dogs/dog.67.jpg \n", + " inflating: training_set/training_set/dogs/dog.670.jpg \n", + " inflating: training_set/training_set/dogs/dog.671.jpg \n", + " inflating: training_set/training_set/dogs/dog.672.jpg \n", + " inflating: training_set/training_set/dogs/dog.673.jpg \n", + " inflating: training_set/training_set/dogs/dog.674.jpg \n", + " inflating: training_set/training_set/dogs/dog.675.jpg \n", + " inflating: training_set/training_set/dogs/dog.676.jpg \n", + " inflating: training_set/training_set/dogs/dog.677.jpg \n", + " inflating: training_set/training_set/dogs/dog.678.jpg \n", + " inflating: training_set/training_set/dogs/dog.679.jpg \n", + " inflating: training_set/training_set/dogs/dog.68.jpg \n", + " inflating: training_set/training_set/dogs/dog.680.jpg \n", + " inflating: training_set/training_set/dogs/dog.681.jpg \n", + " inflating: training_set/training_set/dogs/dog.682.jpg \n", + " inflating: training_set/training_set/dogs/dog.683.jpg \n", + " inflating: training_set/training_set/dogs/dog.684.jpg \n", + " inflating: training_set/training_set/dogs/dog.685.jpg \n", + " inflating: training_set/training_set/dogs/dog.686.jpg \n", + " inflating: training_set/training_set/dogs/dog.687.jpg \n", + " inflating: training_set/training_set/dogs/dog.688.jpg \n", + " inflating: training_set/training_set/dogs/dog.689.jpg \n", + " inflating: training_set/training_set/dogs/dog.69.jpg \n", + " inflating: training_set/training_set/dogs/dog.690.jpg \n", + " inflating: training_set/training_set/dogs/dog.691.jpg \n", + " inflating: training_set/training_set/dogs/dog.692.jpg \n", + " inflating: training_set/training_set/dogs/dog.693.jpg \n", + " inflating: training_set/training_set/dogs/dog.694.jpg \n", + " inflating: training_set/training_set/dogs/dog.695.jpg \n", + " inflating: training_set/training_set/dogs/dog.696.jpg \n", + " inflating: training_set/training_set/dogs/dog.697.jpg \n", + " inflating: training_set/training_set/dogs/dog.698.jpg \n", + " inflating: training_set/training_set/dogs/dog.699.jpg \n", + " inflating: training_set/training_set/dogs/dog.7.jpg \n", + " inflating: training_set/training_set/dogs/dog.70.jpg \n", + " inflating: training_set/training_set/dogs/dog.700.jpg \n", + " inflating: training_set/training_set/dogs/dog.701.jpg \n", + " inflating: training_set/training_set/dogs/dog.702.jpg \n", + " inflating: training_set/training_set/dogs/dog.703.jpg \n", + " inflating: training_set/training_set/dogs/dog.704.jpg \n", + " inflating: training_set/training_set/dogs/dog.705.jpg \n", + " inflating: training_set/training_set/dogs/dog.706.jpg \n", + " inflating: training_set/training_set/dogs/dog.707.jpg \n", + " inflating: training_set/training_set/dogs/dog.708.jpg \n", + " inflating: training_set/training_set/dogs/dog.709.jpg \n", + " inflating: training_set/training_set/dogs/dog.71.jpg \n", + " inflating: training_set/training_set/dogs/dog.710.jpg \n", + " inflating: training_set/training_set/dogs/dog.711.jpg \n", + " inflating: training_set/training_set/dogs/dog.712.jpg \n", + " inflating: training_set/training_set/dogs/dog.713.jpg \n", + " inflating: training_set/training_set/dogs/dog.714.jpg \n", + " inflating: training_set/training_set/dogs/dog.715.jpg \n", + " inflating: training_set/training_set/dogs/dog.716.jpg \n", + " inflating: training_set/training_set/dogs/dog.717.jpg \n", + " inflating: training_set/training_set/dogs/dog.718.jpg \n", + " inflating: training_set/training_set/dogs/dog.719.jpg \n", + " inflating: training_set/training_set/dogs/dog.72.jpg \n", + " inflating: training_set/training_set/dogs/dog.720.jpg \n", + " inflating: training_set/training_set/dogs/dog.721.jpg \n", + " inflating: training_set/training_set/dogs/dog.722.jpg \n", + " inflating: training_set/training_set/dogs/dog.723.jpg \n", + " inflating: training_set/training_set/dogs/dog.724.jpg \n", + " inflating: training_set/training_set/dogs/dog.725.jpg \n", + " inflating: training_set/training_set/dogs/dog.726.jpg \n", + " inflating: training_set/training_set/dogs/dog.727.jpg \n", + " inflating: training_set/training_set/dogs/dog.728.jpg \n", + " inflating: training_set/training_set/dogs/dog.729.jpg \n", + " inflating: training_set/training_set/dogs/dog.73.jpg \n", + " inflating: training_set/training_set/dogs/dog.730.jpg \n", + " inflating: training_set/training_set/dogs/dog.731.jpg \n", + " inflating: training_set/training_set/dogs/dog.732.jpg \n", + " inflating: training_set/training_set/dogs/dog.733.jpg \n", + " inflating: training_set/training_set/dogs/dog.734.jpg \n", + " inflating: training_set/training_set/dogs/dog.735.jpg \n", + " inflating: training_set/training_set/dogs/dog.736.jpg \n", + " inflating: training_set/training_set/dogs/dog.737.jpg \n", + " inflating: training_set/training_set/dogs/dog.738.jpg \n", + " inflating: training_set/training_set/dogs/dog.739.jpg \n", + " inflating: training_set/training_set/dogs/dog.74.jpg \n", + " inflating: training_set/training_set/dogs/dog.740.jpg \n", + " inflating: training_set/training_set/dogs/dog.741.jpg \n", + " inflating: training_set/training_set/dogs/dog.742.jpg \n", + " inflating: training_set/training_set/dogs/dog.743.jpg \n", + " inflating: training_set/training_set/dogs/dog.744.jpg \n", + " inflating: training_set/training_set/dogs/dog.745.jpg \n", + " inflating: training_set/training_set/dogs/dog.746.jpg \n", + " inflating: training_set/training_set/dogs/dog.747.jpg \n", + " inflating: training_set/training_set/dogs/dog.748.jpg \n", + " inflating: training_set/training_set/dogs/dog.749.jpg \n", + " inflating: training_set/training_set/dogs/dog.75.jpg \n", + " inflating: training_set/training_set/dogs/dog.750.jpg \n", + " inflating: training_set/training_set/dogs/dog.751.jpg \n", + " inflating: training_set/training_set/dogs/dog.752.jpg \n", + " inflating: training_set/training_set/dogs/dog.753.jpg \n", + " inflating: training_set/training_set/dogs/dog.754.jpg \n", + " inflating: training_set/training_set/dogs/dog.755.jpg \n", + " inflating: training_set/training_set/dogs/dog.756.jpg \n", + " inflating: training_set/training_set/dogs/dog.757.jpg \n", + " inflating: training_set/training_set/dogs/dog.758.jpg \n", + " inflating: training_set/training_set/dogs/dog.759.jpg \n", + " inflating: training_set/training_set/dogs/dog.76.jpg \n", + " inflating: training_set/training_set/dogs/dog.760.jpg \n", + " inflating: training_set/training_set/dogs/dog.761.jpg \n", + " inflating: training_set/training_set/dogs/dog.762.jpg \n", + " inflating: training_set/training_set/dogs/dog.763.jpg \n", + " inflating: training_set/training_set/dogs/dog.764.jpg \n", + " inflating: training_set/training_set/dogs/dog.765.jpg \n", + " inflating: training_set/training_set/dogs/dog.766.jpg \n", + " inflating: training_set/training_set/dogs/dog.767.jpg \n", + " inflating: training_set/training_set/dogs/dog.768.jpg \n", + " inflating: training_set/training_set/dogs/dog.769.jpg \n", + " inflating: training_set/training_set/dogs/dog.77.jpg \n", + " inflating: training_set/training_set/dogs/dog.770.jpg \n", + " inflating: training_set/training_set/dogs/dog.771.jpg \n", + " inflating: training_set/training_set/dogs/dog.772.jpg \n", + " inflating: training_set/training_set/dogs/dog.773.jpg \n", + " inflating: training_set/training_set/dogs/dog.774.jpg \n", + " inflating: training_set/training_set/dogs/dog.775.jpg \n", + " inflating: training_set/training_set/dogs/dog.776.jpg \n", + " inflating: training_set/training_set/dogs/dog.777.jpg \n", + " inflating: training_set/training_set/dogs/dog.778.jpg \n", + " inflating: training_set/training_set/dogs/dog.779.jpg \n", + " inflating: training_set/training_set/dogs/dog.78.jpg \n", + " inflating: training_set/training_set/dogs/dog.780.jpg \n", + " inflating: training_set/training_set/dogs/dog.781.jpg \n", + " inflating: training_set/training_set/dogs/dog.782.jpg \n", + " inflating: training_set/training_set/dogs/dog.783.jpg \n", + " inflating: training_set/training_set/dogs/dog.784.jpg \n", + " inflating: training_set/training_set/dogs/dog.785.jpg \n", + " inflating: training_set/training_set/dogs/dog.786.jpg \n", + " inflating: training_set/training_set/dogs/dog.787.jpg \n", + " inflating: training_set/training_set/dogs/dog.788.jpg \n", + " inflating: training_set/training_set/dogs/dog.789.jpg \n", + " inflating: training_set/training_set/dogs/dog.79.jpg \n", + " inflating: training_set/training_set/dogs/dog.790.jpg \n", + " inflating: training_set/training_set/dogs/dog.791.jpg \n", + " inflating: training_set/training_set/dogs/dog.792.jpg \n", + " inflating: training_set/training_set/dogs/dog.793.jpg \n", + " inflating: training_set/training_set/dogs/dog.794.jpg \n", + " inflating: training_set/training_set/dogs/dog.795.jpg \n", + " inflating: training_set/training_set/dogs/dog.796.jpg \n", + " inflating: training_set/training_set/dogs/dog.797.jpg \n", + " inflating: training_set/training_set/dogs/dog.798.jpg \n", + " inflating: training_set/training_set/dogs/dog.799.jpg \n", + " inflating: training_set/training_set/dogs/dog.8.jpg \n", + " inflating: training_set/training_set/dogs/dog.80.jpg \n", + " inflating: training_set/training_set/dogs/dog.800.jpg \n", + " inflating: training_set/training_set/dogs/dog.801.jpg \n", + " inflating: training_set/training_set/dogs/dog.802.jpg \n", + " inflating: training_set/training_set/dogs/dog.803.jpg \n", + " inflating: training_set/training_set/dogs/dog.804.jpg \n", + " inflating: training_set/training_set/dogs/dog.805.jpg \n", + " inflating: training_set/training_set/dogs/dog.806.jpg \n", + " inflating: training_set/training_set/dogs/dog.807.jpg \n", + " inflating: training_set/training_set/dogs/dog.808.jpg \n", + " inflating: training_set/training_set/dogs/dog.809.jpg \n", + " inflating: training_set/training_set/dogs/dog.81.jpg \n", + " inflating: training_set/training_set/dogs/dog.810.jpg \n", + " inflating: training_set/training_set/dogs/dog.811.jpg \n", + " inflating: training_set/training_set/dogs/dog.812.jpg \n", + " inflating: training_set/training_set/dogs/dog.813.jpg \n", + " inflating: training_set/training_set/dogs/dog.814.jpg \n", + " inflating: training_set/training_set/dogs/dog.815.jpg \n", + " inflating: training_set/training_set/dogs/dog.816.jpg \n", + " inflating: training_set/training_set/dogs/dog.817.jpg \n", + " inflating: training_set/training_set/dogs/dog.818.jpg \n", + " inflating: training_set/training_set/dogs/dog.819.jpg \n", + " inflating: training_set/training_set/dogs/dog.82.jpg \n", + " inflating: training_set/training_set/dogs/dog.820.jpg \n", + " inflating: training_set/training_set/dogs/dog.821.jpg \n", + " inflating: training_set/training_set/dogs/dog.822.jpg \n", + " inflating: training_set/training_set/dogs/dog.823.jpg \n", + " inflating: training_set/training_set/dogs/dog.824.jpg \n", + " inflating: training_set/training_set/dogs/dog.825.jpg \n", + " inflating: training_set/training_set/dogs/dog.826.jpg \n", + " inflating: training_set/training_set/dogs/dog.827.jpg \n", + " inflating: training_set/training_set/dogs/dog.828.jpg \n", + " inflating: training_set/training_set/dogs/dog.829.jpg \n", + " inflating: training_set/training_set/dogs/dog.83.jpg \n", + " inflating: training_set/training_set/dogs/dog.830.jpg \n", + " inflating: training_set/training_set/dogs/dog.831.jpg \n", + " inflating: training_set/training_set/dogs/dog.832.jpg \n", + " inflating: training_set/training_set/dogs/dog.833.jpg \n", + " inflating: training_set/training_set/dogs/dog.834.jpg \n", + " inflating: training_set/training_set/dogs/dog.835.jpg \n", + " inflating: training_set/training_set/dogs/dog.836.jpg \n", + " inflating: training_set/training_set/dogs/dog.837.jpg \n", + " inflating: training_set/training_set/dogs/dog.838.jpg \n", + " inflating: training_set/training_set/dogs/dog.839.jpg \n", + " inflating: training_set/training_set/dogs/dog.84(1).jpg \n", + " inflating: training_set/training_set/dogs/dog.84.jpg \n", + " inflating: training_set/training_set/dogs/dog.840.jpg \n", + " inflating: training_set/training_set/dogs/dog.841.jpg \n", + " inflating: training_set/training_set/dogs/dog.842.jpg \n", + " inflating: training_set/training_set/dogs/dog.843.jpg \n", + " inflating: training_set/training_set/dogs/dog.844.jpg \n", + " inflating: training_set/training_set/dogs/dog.845.jpg \n", + " inflating: training_set/training_set/dogs/dog.846.jpg \n", + " inflating: training_set/training_set/dogs/dog.847.jpg \n", + " inflating: training_set/training_set/dogs/dog.848.jpg \n", + " inflating: training_set/training_set/dogs/dog.849.jpg \n", + " inflating: training_set/training_set/dogs/dog.85.jpg \n", + " inflating: training_set/training_set/dogs/dog.850.jpg \n", + " inflating: training_set/training_set/dogs/dog.851.jpg \n", + " inflating: training_set/training_set/dogs/dog.852.jpg \n", + " inflating: training_set/training_set/dogs/dog.853.jpg \n", + " inflating: training_set/training_set/dogs/dog.854.jpg \n", + " inflating: training_set/training_set/dogs/dog.855.jpg \n", + " inflating: training_set/training_set/dogs/dog.856.jpg \n", + " inflating: training_set/training_set/dogs/dog.857.jpg \n", + " inflating: training_set/training_set/dogs/dog.858.jpg \n", + " inflating: training_set/training_set/dogs/dog.859.jpg \n", + " inflating: training_set/training_set/dogs/dog.86.jpg \n", + " inflating: training_set/training_set/dogs/dog.860.jpg \n", + " inflating: training_set/training_set/dogs/dog.861.jpg \n", + " inflating: training_set/training_set/dogs/dog.862.jpg \n", + " inflating: training_set/training_set/dogs/dog.863.jpg \n", + " inflating: training_set/training_set/dogs/dog.864.jpg \n", + " inflating: training_set/training_set/dogs/dog.865.jpg \n", + " inflating: training_set/training_set/dogs/dog.866.jpg \n", + " inflating: training_set/training_set/dogs/dog.867.jpg \n", + " inflating: training_set/training_set/dogs/dog.868.jpg \n", + " inflating: training_set/training_set/dogs/dog.869.jpg \n", + " inflating: training_set/training_set/dogs/dog.87.jpg \n", + " inflating: training_set/training_set/dogs/dog.870.jpg \n", + " inflating: training_set/training_set/dogs/dog.871.jpg \n", + " inflating: training_set/training_set/dogs/dog.872.jpg \n", + " inflating: training_set/training_set/dogs/dog.873.jpg \n", + " inflating: training_set/training_set/dogs/dog.874.jpg \n", + " inflating: training_set/training_set/dogs/dog.875.jpg \n", + " inflating: training_set/training_set/dogs/dog.876.jpg \n", + " inflating: training_set/training_set/dogs/dog.877.jpg \n", + " inflating: training_set/training_set/dogs/dog.878.jpg \n", + " inflating: training_set/training_set/dogs/dog.879.jpg \n", + " inflating: training_set/training_set/dogs/dog.88.jpg \n", + " inflating: training_set/training_set/dogs/dog.880.jpg \n", + " inflating: training_set/training_set/dogs/dog.881.jpg \n", + " inflating: training_set/training_set/dogs/dog.882.jpg \n", + " inflating: training_set/training_set/dogs/dog.883.jpg \n", + " inflating: training_set/training_set/dogs/dog.884.jpg \n", + " inflating: training_set/training_set/dogs/dog.885.jpg \n", + " inflating: training_set/training_set/dogs/dog.886.jpg \n", + " inflating: training_set/training_set/dogs/dog.887.jpg \n", + " inflating: training_set/training_set/dogs/dog.888.jpg \n", + " inflating: training_set/training_set/dogs/dog.889.jpg \n", + " inflating: training_set/training_set/dogs/dog.89.jpg \n", + " inflating: training_set/training_set/dogs/dog.890.jpg \n", + " inflating: training_set/training_set/dogs/dog.891.jpg \n", + " inflating: training_set/training_set/dogs/dog.892.jpg \n", + " inflating: training_set/training_set/dogs/dog.893.jpg \n", + " inflating: training_set/training_set/dogs/dog.894.jpg \n", + " inflating: training_set/training_set/dogs/dog.895.jpg \n", + " inflating: training_set/training_set/dogs/dog.896.jpg \n", + " inflating: training_set/training_set/dogs/dog.897.jpg \n", + " inflating: training_set/training_set/dogs/dog.898.jpg \n", + " inflating: training_set/training_set/dogs/dog.899.jpg \n", + " inflating: training_set/training_set/dogs/dog.9.jpg \n", + " inflating: training_set/training_set/dogs/dog.90(1).jpg \n", + " inflating: training_set/training_set/dogs/dog.90.jpg \n", + " inflating: training_set/training_set/dogs/dog.900.jpg \n", + " inflating: training_set/training_set/dogs/dog.901.jpg \n", + " inflating: training_set/training_set/dogs/dog.902.jpg \n", + " inflating: training_set/training_set/dogs/dog.903.jpg \n", + " inflating: training_set/training_set/dogs/dog.904.jpg \n", + " inflating: training_set/training_set/dogs/dog.905.jpg \n", + " inflating: training_set/training_set/dogs/dog.906.jpg \n", + " inflating: training_set/training_set/dogs/dog.907.jpg \n", + " inflating: training_set/training_set/dogs/dog.908.jpg \n", + " inflating: training_set/training_set/dogs/dog.909.jpg \n", + " inflating: training_set/training_set/dogs/dog.91.jpg \n", + " inflating: training_set/training_set/dogs/dog.910.jpg \n", + " inflating: training_set/training_set/dogs/dog.911.jpg \n", + " inflating: training_set/training_set/dogs/dog.912.jpg \n", + " inflating: training_set/training_set/dogs/dog.913.jpg \n", + " inflating: training_set/training_set/dogs/dog.914.jpg \n", + " inflating: training_set/training_set/dogs/dog.915.jpg \n", + " inflating: training_set/training_set/dogs/dog.916.jpg \n", + " inflating: training_set/training_set/dogs/dog.917.jpg \n", + " inflating: training_set/training_set/dogs/dog.918.jpg \n", + " inflating: training_set/training_set/dogs/dog.919.jpg \n", + " inflating: training_set/training_set/dogs/dog.92.jpg \n", + " inflating: training_set/training_set/dogs/dog.920.jpg \n", + " inflating: training_set/training_set/dogs/dog.921.jpg \n", + " inflating: training_set/training_set/dogs/dog.922.jpg \n", + " inflating: training_set/training_set/dogs/dog.923.jpg \n", + " inflating: training_set/training_set/dogs/dog.924.jpg \n", + " inflating: training_set/training_set/dogs/dog.925.jpg \n", + " inflating: training_set/training_set/dogs/dog.926.jpg \n", + " inflating: training_set/training_set/dogs/dog.927.jpg \n", + " inflating: training_set/training_set/dogs/dog.928.jpg \n", + " inflating: training_set/training_set/dogs/dog.929.jpg \n", + " inflating: training_set/training_set/dogs/dog.93.jpg \n", + " inflating: training_set/training_set/dogs/dog.930.jpg \n", + " inflating: training_set/training_set/dogs/dog.931.jpg \n", + " inflating: training_set/training_set/dogs/dog.932.jpg \n", + " inflating: training_set/training_set/dogs/dog.933.jpg \n", + " inflating: training_set/training_set/dogs/dog.934.jpg \n", + " inflating: training_set/training_set/dogs/dog.935.jpg \n", + " inflating: training_set/training_set/dogs/dog.936.jpg \n", + " inflating: training_set/training_set/dogs/dog.937.jpg \n", + " inflating: training_set/training_set/dogs/dog.938.jpg \n", + " inflating: training_set/training_set/dogs/dog.939.jpg \n", + " inflating: training_set/training_set/dogs/dog.94.jpg \n", + " inflating: training_set/training_set/dogs/dog.940.jpg \n", + " inflating: training_set/training_set/dogs/dog.941.jpg \n", + " inflating: training_set/training_set/dogs/dog.942.jpg \n", + " inflating: training_set/training_set/dogs/dog.943.jpg \n", + " inflating: training_set/training_set/dogs/dog.944.jpg \n", + " inflating: training_set/training_set/dogs/dog.945.jpg \n", + " inflating: training_set/training_set/dogs/dog.946.jpg \n", + " inflating: training_set/training_set/dogs/dog.947.jpg \n", + " inflating: training_set/training_set/dogs/dog.948.jpg \n", + " inflating: training_set/training_set/dogs/dog.949.jpg \n", + " inflating: training_set/training_set/dogs/dog.95.jpg \n", + " inflating: training_set/training_set/dogs/dog.950.jpg \n", + " inflating: training_set/training_set/dogs/dog.951.jpg \n", + " inflating: training_set/training_set/dogs/dog.952.jpg \n", + " inflating: training_set/training_set/dogs/dog.953.jpg \n", + " inflating: training_set/training_set/dogs/dog.954.jpg \n", + " inflating: training_set/training_set/dogs/dog.955.jpg \n", + " inflating: training_set/training_set/dogs/dog.956.jpg \n", + " inflating: training_set/training_set/dogs/dog.957.jpg \n", + " inflating: training_set/training_set/dogs/dog.958.jpg \n", + " inflating: training_set/training_set/dogs/dog.959.jpg \n", + " inflating: training_set/training_set/dogs/dog.96.jpg \n", + " inflating: training_set/training_set/dogs/dog.960.jpg \n", + " inflating: training_set/training_set/dogs/dog.961.jpg \n", + " inflating: training_set/training_set/dogs/dog.962.jpg \n", + " inflating: training_set/training_set/dogs/dog.963.jpg \n", + " inflating: training_set/training_set/dogs/dog.964.jpg \n", + " inflating: training_set/training_set/dogs/dog.965.jpg \n", + " inflating: training_set/training_set/dogs/dog.966.jpg \n", + " inflating: training_set/training_set/dogs/dog.967.jpg \n", + " inflating: training_set/training_set/dogs/dog.968.jpg \n", + " inflating: training_set/training_set/dogs/dog.969.jpg \n", + " inflating: training_set/training_set/dogs/dog.97.jpg \n", + " inflating: training_set/training_set/dogs/dog.970.jpg \n", + " inflating: training_set/training_set/dogs/dog.971.jpg \n", + " inflating: training_set/training_set/dogs/dog.972.jpg \n", + " inflating: training_set/training_set/dogs/dog.973.jpg \n", + " inflating: training_set/training_set/dogs/dog.974.jpg \n", + " inflating: training_set/training_set/dogs/dog.975.jpg \n", + " inflating: training_set/training_set/dogs/dog.976.jpg \n", + " inflating: training_set/training_set/dogs/dog.977.jpg \n", + " inflating: training_set/training_set/dogs/dog.978.jpg \n", + " inflating: training_set/training_set/dogs/dog.979.jpg \n", + " inflating: training_set/training_set/dogs/dog.98.jpg \n", + " inflating: training_set/training_set/dogs/dog.980.jpg \n", + " inflating: training_set/training_set/dogs/dog.981.jpg \n", + " inflating: training_set/training_set/dogs/dog.982.jpg \n", + " inflating: training_set/training_set/dogs/dog.983.jpg \n", + " inflating: training_set/training_set/dogs/dog.984.jpg \n", + " inflating: training_set/training_set/dogs/dog.985.jpg \n", + " inflating: training_set/training_set/dogs/dog.986.jpg \n", + " inflating: training_set/training_set/dogs/dog.987.jpg \n", + " inflating: training_set/training_set/dogs/dog.988.jpg \n", + " inflating: training_set/training_set/dogs/dog.989.jpg \n", + " inflating: training_set/training_set/dogs/dog.99.jpg \n", + " inflating: training_set/training_set/dogs/dog.990.jpg \n", + " inflating: training_set/training_set/dogs/dog.991.jpg \n", + " inflating: training_set/training_set/dogs/dog.992.jpg \n", + " inflating: training_set/training_set/dogs/dog.993.jpg \n", + " inflating: training_set/training_set/dogs/dog.994.jpg \n", + " inflating: training_set/training_set/dogs/dog.995.jpg \n", + " inflating: training_set/training_set/dogs/dog.996.jpg \n", + " inflating: training_set/training_set/dogs/dog.997.jpg \n", + " inflating: training_set/training_set/dogs/dog.998.jpg \n", + " inflating: training_set/training_set/dogs/dog.999.jpg \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Understanding the data" + ], + "metadata": { + "id": "HGRES2YIpxvT" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u5FLANw9cDYg", + "outputId": "a255b476-17ec-4037-cbde-eb10ca45dc0e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "In training set:\n", + "Cats: 4001\n", + "Dogs: 4006\n", + "\n", + "In test set:\n", + "Cats: 1012\n", + "Dogs: 1013\n" + ] + } + ], + "source": [ + "train_cat_dir = os.listdir('/content/training_set/training_set/cats')\n", + "train_dog_dir = os.listdir('/content/training_set/training_set/dogs')\n", + "\n", + "test_cat_dir = os.listdir('/content/test_set/test_set/cats')\n", + "test_dog_dir = os.listdir('/content/test_set/test_set/dogs')\n", + "\n", + "\n", + "print(f\"In training set:\\nCats: {len(train_cat_dir)}\\nDogs: {len(train_dog_dir)}\\n\\nIn test set:\\nCats: {len(test_cat_dir)}\\nDogs: {len(test_dog_dir)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "2Bzzbxp-cTxH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 697 + }, + "outputId": "753b5a5f-8bb7-4498-d5ae-b7952af8d3a0" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAKnCAYAAADHtoe1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABty0lEQVR4nO3dfXzNdePH8ffZZnO7LTfbyChhmtyEYikhmUKUbhRRoWgqdONy5aZ0o3RVuiHVReq6KOnKVblNY/MrCykRUWlMsRG2426b3fz++F47HIyNffc5N6/n43EeZzvnc77n/XV1nZ3zPp/v5+soLCwsFAAAAAAAAFDGAkwHAAAAAAAAgG+ieAIAAAAAAIAtKJ4AAAAAAABgC4onAAAAAAAA2ILiCQAAAAAAALageAIAAAAAAIAtKJ4AAAAAAABgC4onAAAAAAAA2CLIdAAAAACYU1BQoF27dqlatWpyOBym4wAAAC9QWFiogwcPqk6dOgoIOPOcJoonAAAAP7Zr1y5FR0ebjgEAALzQzp07Vbdu3TOOoXgCAADwY9WqVZNkvXEMDQ01nAYAAHgDp9Op6Oho1/uIM6F4AgAA8GNFh9eFhoZSPAEAgFIpyWH6LC4OAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFazwBAAAAAAD4kcLCQuXl5Sk/P7/YMYGBgQoKCirROk5nQvEEAAAAAADgJ3Jzc7V7924dOXLkrGMrV66s2rVrKzg4+Jyfj+IJAAAAAADADxQUFCg1NVWBgYGqU6eOgoODTzujqbCwULm5udq7d69SU1PVqFEjBQSc22pNFE8AAAAAAAB+IDc3VwUFBYqOjlblypXPOLZSpUqqUKGCduzYodzcXFWsWPGcnpPFxQEAAAAAAPxISWcvnessJ7dtnPcWAAAAAAAAgNOgeAIAAAAAAIAtKJ4AAAAAAABgC4onAAAAAAAA2ILiCQAAAAAAwI8UFhaW6bgzoXgCAAAAAADwAxUqVJAkHTlypETji8YVPe5cBJ3zIwEAAAAAAOA1AgMDFR4erj179kiSKleuLIfDccq4wsJCHTlyRHv27FF4eLgCAwPP+TkpngAAAAAAAPxEVFSUJLnKpzMJDw93jT9XFE8AAAAAAAB+wuFwqHbt2oqIiNCxY8eKHVehQoXzmulUhOIJAAAAAADAzwQGBpZJsXQ2LC4OAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAA2OyFF16Qw+HQiBEjXLdlZ2crISFBNWrUUNWqVdWnTx9lZGS4PS4tLU3du3dX5cqVFRERoccff1x5eXluY5KSktSqVSuFhISoYcOGmjVrVjnsEQAAQMlQPAEAANho7dq1evvtt9W8eXO320eOHKkvvvhC8+bNU3Jysnbt2qVbbrnFdX9+fr66d++u3NxcrVq1Su+//75mzZql8ePHu8akpqaqe/fu6tSpk9avX68RI0Zo8ODBWrp0abntHwAAwJk4CgsLC02HAAAA8EWHDh1Sq1atNG3aND377LNq2bKlpkyZoqysLNWqVUtz5szRrbfeKknasmWLLr30UqWkpKhdu3ZavHixevTooV27dikyMlKSNH36dI0ePVp79+5VcHCwRo8erYULF+qnn35yPWffvn2VmZmpJUuWlCij0+lUWFiYsrKyFBoaWvb/CAAAwOeU5v0DM54AAABskpCQoO7du6tLly5ut69bt07Hjh1zu71JkyaqV6+eUlJSJEkpKSlq1qyZq3SSpPj4eDmdTm3atMk15uRtx8fHu7ZxOjk5OXI6nW4XAPAIDgcXLlzK8uIhgkwHAAAA8EUfffSRvv/+e61du/aU+9LT0xUcHKzw8HC32yMjI5Wenu4ac2LpVHR/0X1nGuN0OnX06FFVqlTplOeeNGmSnn766XPer3PhQe99AZ/BcSsAvAUzngAAAMrYzp079cgjj2j27NmqWLGi6ThuxowZo6ysLNdl586dpiMBAAAfRvEEAABQxtatW6c9e/aoVatWCgoKUlBQkJKTk/X6668rKChIkZGRys3NVWZmptvjMjIyFBUVJUmKioo65Sx3Rb+fbUxoaOhpZztJUkhIiEJDQ90uAAAAdqF4AgAAKGPXXXedNm7cqPXr17subdq0Ub9+/Vw/V6hQQYmJia7HbN26VWlpaYqLi5MkxcXFaePGjdqzZ49rzLJlyxQaGqrY2FjXmBO3UTSmaBsAAACmscYTAABAGatWrZouu+wyt9uqVKmiGjVquG4fNGiQRo0aperVqys0NFQPPfSQ4uLi1K5dO0lS165dFRsbq7vvvluTJ09Wenq6xo4dq4SEBIWEhEiShg4dqjfffFNPPPGE7rvvPi1fvlwff/yxFi5cWL47DAAAUAyKJwAAAANeffVVBQQEqE+fPsrJyVF8fLymTZvmuj8wMFALFizQsGHDFBcXpypVqmjgwIGaOHGia8zFF1+shQsXauTIkXrttddUt25d/fOf/1R8fLyJXQIAADiFo7CQ8yEAAAD4K6fTqbCwMGVlZdm23hNntQPKnk9+iuPFAihbNr5QlOb9A2s8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsEWQ6AADz9u+XMjOlQ4ekgwfPfJ2dLeXnSwUFxy+S5HBIAQFSYKB1HRQkVa4sVat26qVqVfffq1eXQkKM/hMAAAAAAGxA8QT4sD17pF27rMvu3ae/pKdLOTmmk1rlU+3aUp061qW4n4ODTScFAAAAAJQUxRPg5bKypK1bpV9+cb/89ps1S8lb7N9vXTZtKn5MQIBUr57UuLEUE+N+Xa+eNesKAAAAAOA5WOMJ8BKHDkn/93/SlCnSoEHS1VdLERFSeLjUtq10993SM89Ic+dKP/zgXaVTSRUUSNu3S19+Kb3xhvTQQ1LXrtJFF0lVqkjNm0u33SaNHSt98omUmmo6MQB/9dZbb6l58+YKDQ1VaGio4uLitHjxYtf9HTt2lMPhcLsMHTrUbRtpaWnq3r27KleurIiICD3++OPKy8tzG5OUlKRWrVopJCREDRs21KxZs8pj9wAAAEqMGU+ABzp40CqP1q07fvnll+PrKeFUR49KGzdalxPVqCG1aiW1aSO1bm1d169vJiMA/1G3bl298MILatSokQoLC/X++++rV69e+uGHH9S0aVNJ0pAhQzRx4kTXYypXruz6OT8/X927d1dUVJRWrVql3bt3a8CAAapQoYKef/55SVJqaqq6d++uoUOHavbs2UpMTNTgwYNVu3ZtxcfHl+8OAwAAFMNRWFhYaDoE4M8KC6WffpKSk6WUlOMlE//PtE/NmlYZdcUVUvv20jXXWAueA4CdqlevrpdeekmDBg1Sx44d1bJlS02ZMuW0YxcvXqwePXpo165dioyMlCRNnz5do0eP1t69exUcHKzRo0dr4cKF+umnn1yP69u3rzIzM7VkyZIS53I6nQoLC1NWVpZCQ0PPax+Lw6HQQNnzyfeKvFgAZcvGF4rSvH9gxhNQzoqKpqQk67JypfTXX6ZT+Ze//rIO1/vyS+v3oCBrNlSnTlLHjtZhjFWqGI0IwIfk5+dr3rx5Onz4sOLi4ly3z549W//+978VFRWlnj17aty4ca5ZTykpKWrWrJmrdJKk+Ph4DRs2TJs2bdLll1+ulJQUdenSxe254uPjNWLEiDPmycnJUc4JZ5VwOp1lsJcAAACnR/EE2Kyw0FowOylJWrGCoskT5eVJq1dblxdekCpUsA7J69TJurRvL1WqZDolAG+zceNGxcXFKTs7W1WrVtX8+fMVGxsrSbrrrrtUv3591alTRxs2bNDo0aO1detWffrpp5Kk9PR0t9JJkuv39PT0M45xOp06evSoKhXzwjVp0iQ9/fTTZbqvAAAAxaF4AmyQnS199ZX0xRfSggXSrl2mE6E0jh2zDntMSZGef14KDpY6dJBuusm6sEYUgJKIiYnR+vXrlZWVpU8++UQDBw5UcnKyYmNjdf/997vGNWvWTLVr19Z1112nbdu26ZJLLrE115gxYzRq1CjX706nU9HR0bY+JwAA8F8UT0AZyciwSqbPP7dKpyNHTCdCWcnNtf43/eor6eGHrbPnFZVQbdqwHAGA0wsODlbDhg0lSa1bt9batWv12muv6e233z5lbNu2bSVJv/32my655BJFRUVpzZo1bmMyMjIkSVFRUa7rottOHBMaGlrsbCdJCgkJUUhIyLnvGAAAQCkEmA4AeLONG6XnnpPatZNq15YGD7aKJ0on37Zhg/Tss9KVV0p160pDh0qLFkknLJkCAKcoKChwW1vpROvXr5ck1a5dW5IUFxenjRs3as+ePa4xy5YtU2hoqOtwvbi4OCUmJrptZ9myZW7rSAEAAJjGWe2AUvr9d2n2bOuydavpNPAkVatKvXpJ/ftL118vBQaaTgTAlDFjxuiGG25QvXr1dPDgQc2ZM0cvvviili5dqgYNGmjOnDm68cYbVaNGDW3YsEEjR45U3bp1lZycLMlakLxly5aqU6eOJk+erPT0dN19990aPHiwnn/+eUlSamqqLrvsMiUkJOi+++7T8uXL9fDDD2vhwoWKj48vcVbOagd4J5/8FMeLBVC2POSsdhRPQAn89Zc0d65VNqWkmE4DbxAZKfXta5VQbdqYTgOgvA0aNEiJiYnavXu3wsLC1Lx5c40ePVrXX3+9du7cqf79++unn37S4cOHFR0drZtvvlljx451e+O2Y8cODRs2TElJSapSpYoGDhyoF154QUFBx1dKSEpK0siRI7V582bVrVtX48aN0z333FOqrBRPgHfyyU9xvFgAZYviCfBsR45In31mlU1Ll1pnPgPORUyM1K+fVUJdfLHpNADgjuIJ8E4++SmOFwugbFE8AZ7pm2+kd96RPv1UOnTIdBr4mquukgYMsIqoqlVNpwEAiifAW/nkpzheLICy5SHFE4uLA7IKpunTpRYtpKuvlj74gNIJ9li1ylqM/MILpeHDpc2bTScCAAAAAPtQPMGvbd5sffi/8EJp2DDrbGVAeXA6palTpaZNpU6dpHnzOJwTAAAAgO8JOvsQwLccO2YdRjdtmrRypek0gJSUZF3q1JGGDJHuv9/6GQAAAAC8HTOe4Df275cmTpTq1bPONkbpBE+za5f09NNS/frSbbdxBkUAAAAA3o/iCT7vzz+lUaOsD/MTJkjp6aYTAWeWlyd98om1EHnHjtZZFQEAAADAG1E8wWf98os0eLDUoIH06qssFg7vlJwsdesmtW5tlVEFBaYTAQAAAEDJUTzB56xbJ916q3TppdKMGVJurulEwPn7/nvr8LvYWGnmTGutMgAAAADwdBRP8BnJyVLXrlKbNtJ//sPMEPimrVulQYOsmXxTpkhHjphOBAAAAADFo3iC1/v+e6tw6thRWrbMdBqgfPzxhzRypHTJJdYZGpkBBQAAAMATUTzBa/36q3T77dYMJwon+Kv0dCkhwTq09MMPpcJC04kAAAAA4DiKJ3idXbukBx6w1rqZN48P2oAkbdsm3XWXtQg5Z8EDAAAA4CkonuA1DhyQRo+WGjaU3nnHOuU8AHc//GCdBa9zZ2nNGtNpAAAAAPg7iid4vNxcafJkazHlyZOlo0dNJwI834oVUtu2Up8+0i+/mE4DAAAAwF9RPMGjLVkiXXaZNdMpM9N0GsD7fPrp8f8PHT5sOg0AAAAAf0PxBI+0fbvUu7d0ww3WIuIAzt2xY9ZswSZNpI8/Np0GAAAAgD+heIJHyc6Wnn7aWjj8s89MpwF8yx9/SHfcIXXpIm3ZYjoNAAAAAH9A8QSP8cUXUtOm0lNPsY4TYKfERKl5c+mJJ6RDh0ynAQAAAODLKJ5g3LZtUo8e0k03Sb//bjoN4B+OHZNeesk6/G7uXNNpAAAAAPgqiicYU1AgvfKK1KyZtHCh6TSAf/rzT6lvXyk+Xtq503QaAAAAAL6G4glG/PKLdM010qOPclgd4Am+/NI6+90//2k6CQAAAABfQvGEclVQIL38stSypbRqlek0AE7kdEpDhlhnk/zjD9NpAAAAAPgCiieUm61bpauvlh57jFlOgCdbssSa/TRjhukkAAAAALwdxRNsV1Ag/eMf1iynlBTTaQCURFaWNHgws58AAAAAnB+KJ9jq11+tWU6PPy5lZ5tOA6C0imY/zZxpOgkAAAAAb0TxBNvMni21asUsJ8DbZWVJgwZJt91m/QwAAAAAJUXxhDJ3+LB0771S//7SoUOm0wAoK598Il1+ubR2rekkAAAAALwFxRPK1MaNUps20qxZppMAsENqqtS+vfTKK1Jhoek0AAAAADwdxRPKzPTp0pVXSlu2mE4CwE7HjkmPPirddJO0b5/pNAAAAAA8GcUTzltWlrX2y7BhLCAO+JMFC6yzVX79tekkAAAAADwVxRPOy5o11povn3xiOgkAE/74Q+rYUXr2WamgwHQaAAAAAJ6G4gnnbNYsqUMHa80XAP4rP18aN07q2VNyOk2nAQAAAOBJKJ5Qavn50siR1pnrcnJMpwHgKRYtktq2lX791XQSAAAAAJ6C4gmlcuCAdMMN0pQpppMA8ERbtljl07JlppMAAAAA8AQUTyixzZuts9bxgRLAmVBQAwAAAChC8YQSWbBAatdO+u0300kAeIOiQ3IHDZJyc02nAQAAAGAKxRPOatIkqVcv6eBB00kAeJuZM6VOnaSMDNNJAAAAAJhA8YRi5eZK/ftLf/87p0kHcO5WrZKuuEJav950EgAAAADljeIJp3XwoNS9uzR7tukkAHzBzp3StddKK1aYTgIAAACgPFE84RR79kgdO0pffWU6CQBf4nRai47Pm2c6CQAAAIDyQvEEN9u2SVddJX3/vekkAHxRTo7Ut680bZrpJAAAAADKA8UTXL7/3iqdtm0znQSALysokBISpPHjTScBAAAAYDeKJ0iyDqvr2NE6zA4AysMzz0gPPCDl55tOAgAAAMAuFE/QRx9ZC4kfPGg6CQB/88470m23SdnZppMAAAAAsAPFk5+bOlW66y4pN9d0EgD+av58KT7eWnwcAAAAgG+hePJjU6ZIw4dLhYWmkwDwdytXStdfL2VlmU4CAAAAoCxRPPmpl16SRo40nQIAjluzRurSRTpwwHQSAAAAAGWF4skPPf+89MQTplMAwKm++0667jpp/37TSQAAAACUBYonP/P889KTT5pOAQDF++EHqXNnad8+00kAAAAAnC+KJz/y4ouUTgC8w48/Wms+cdgdAAAA4N0onvzEP/4h/e1vplMAQMn98IPUtSsLjgMAAADejOLJD0yZIj3+uOkUAFB6330nxcdLTqfpJAAAAADOBcWTj3v/fWnUKNMpAODcrV4t9ewpZWebTgIAAACgtCiefNjChdLgwVJhoekkAHB+Vq6U7rpLKigwnQQAAABAaVA8+aiUFOn226W8PNNJAKBszJ8vPfig6RQAAAAASoPiyQdt3iz16CEdOWI6CQCUrbfflp56ynQKAAAAACVF8eRjdu60FuLdv990EgCwx9NPS9Onm04BAAAAoCQonnzI/v1W6fTHH6aTAIC9EhKkTz81nQIAAADA2VA8+YgjR6Tu3aWffzadBADsV1BgLTaenGw6CQAAAIAzoXjyAfn51kLi335rOgkAlJ+cHKlXL2nDBtNJAAAAABSH4skHPPGEtHCh6RQAUP6ysqSePaU9e0wnAQAAAHA6FE9e7v33pVdeMZ0CAMxJS5P69JGOHTOdBAAAAMDJKJ68WEqK9MADplMAgHlff20tOA54irfeekvNmzdXaGioQkNDFRcXp8WLF7vuz87OVkJCgmrUqKGqVauqT58+ysjIcNtGWlqaunfvrsqVKysiIkKPP/648vLy3MYkJSWpVatWCgkJUcOGDTVr1qzy2D0AAIASo3jyUn/8Id1yi7XGCXCy1FSpsPD0lxUrTh0fHCyNGyf98ot09Kj055/S229LtWqV/rnbtLEO/TxwQDp0yCpIb7vt9GOvukpatUpyOqXNm6VBg04/LiJC2rdPGjOm9HngP959V3rzTdMpAEvdunX1wgsvaN26dfruu+/UuXNn9erVS5s2bZIkjRw5Ul988YXmzZun5ORk7dq1S7fccovr8fn5+erevbtyc3O1atUqvf/++5o1a5bGjx/vGpOamqru3burU6dOWr9+vUaMGKHBgwdr6dKl5b6/AAAAxXEUFhYWmg6B0jl6VLrmGmndOtNJ4KlSU6XwcGnKlFPv277dOkSziMMhLVokdetmlUTJyVKjRtLNN1vbaddO+uuvkj1vx47S0qVSdrb00UfSwYPWIVAXXSQ9+qj7YaHR0dZZGDMypE8/leLipPbtrUJ1/nz37c6dK8XESK1bW4vpA8UJCrL+G+zc2XQS4FTVq1fXSy+9pFtvvVW1atXSnDlzdOutt0qStmzZoksvvVQpKSlq166dFi9erB49emjXrl2KjIyUJE2fPl2jR4/W3r17FRwcrNGjR2vhwoX66aefXM/Rt29fZWZmasmSJSXO5XQ6FRYWpqysLIWGhpbtTv+Pw2HLZgG/5pOf4nixAMqWjS8UpXn/EGRbCtjmvvsonXB2mZnS00+ffdzAgVbpNGeO1K/f8dsfeECaPl169llp6NCzbycw0JpxUlAgdegg/fijdfvEidKaNdLzz0uffGKtxyNZz1WxolVW7dwpBQRYs57uv9+9eOrRwyqj4uIonXB2eXnWDLu1a6UGDUynASz5+fmaN2+eDh8+rLi4OK1bt07Hjh1Tly5dXGOaNGmievXquYqnlJQUNWvWzFU6SVJ8fLyGDRumTZs26fLLL1dKSorbNorGjBgx4ox5cnJylHPClGmn01k2OwoAAHAaHGrnZZ57zppJApSVIUOs65MPY3v7bWnbtuMF0dl07iw1bGgVWEWlk2QdRvf881JIiFVyFYmOlvbutUonySqs1q+X6tU7PqZaNWnaNOn116Xvvjun3YMf2r9fuukma8YdYNLGjRtVtWpVhYSEaOjQoZo/f75iY2OVnp6u4OBghYeHu42PjIxUenq6JCk9Pd2tdCq6v+i+M41xOp06evRosbkmTZqksLAw1yU6Ovp8dxUAAKBYFE9e5IsvrHV4gJIoKnrGjLEWXb7yytOPadtW2rLl+EykEy1bJlWtaq3bdDYdO1rXX3556n1Fy41ce+3x23bulGrWlC680Prd4ZBatHDP8cIL1gwW/rtHaW3aJPXv76OHIcBrxMTEaP369Vq9erWGDRumgQMHavPmzaZjacyYMcrKynJddhZ9AwAAAGADDrXzEmlpVonAhyiUVO3a0sknN1qzRrrzTun3363fL7nEOkTu119Pv42i2xs1ss4adiaNGrk/5kQZGdbsk6IxkjUzatw4KSnJOrQuLk5q0kT6+9+t+6+6yjrc78YbpSNHzvzcwOl8/rk0ebI0erTpJPBXwcHBatiwoSSpdevWWrt2rV577TXdcccdys3NVWZmptusp4yMDEVFRUmSoqKitGbNGrftFZ317sQxJ58JLyMjQ6GhoapUqVKxuUJCQhQSEnLe+wcAAFASzHjyAnl5Ut++1lnCgJJ47z3r0LeICKlyZallS+mDD6xZT4mJ1iwmSQoLs66zsk6/naJlP4rGnUlJtnXidtLSpPh462x1w4ZZs58GD7ZKqAoVrPWi5syxZlDdcIO1/tOxY9aC5N26nT0PIEljx1qL5gOeoKCgQDk5OWrdurUqVKigxMRE131bt25VWlqa4uLiJElxcXHauHGj9uzZ4xqzbNkyhYaGKjY21jXmxG0UjSnaBgAAgCdgxpMXePJJPjihdCZOdP/9xx+Pr680YIC1rtOrr5Z/rpN9/bV11ryTjR0r1aoljRxprfk0f7515rvhw6VBg6zfGzc+vj4UUJy8PGuW3w8/SBdcYDoN/MmYMWN0ww03qF69ejp48KDmzJmjpKQkLV26VGFhYRo0aJBGjRql6tWrKzQ0VA899JDi4uLU7n8vil27dlVsbKzuvvtuTZ48Wenp6Ro7dqwSEhJcs5WGDh2qN998U0888YTuu+8+LV++XB9//LEWLlxoctcBAADcMOPJwy1ZIr30kukU8BVvv21dt29vXRfNTipuRlPRWTGLm8V0opJsqyTbiY2V/vY3q3Qqmg2VnW2dzXH5cqt4ysmxbgdKYscO678boDzt2bNHAwYMUExMjK677jqtXbtWS5cu1fXXXy9JevXVV9WjRw/16dNHHTp0UFRUlD799FPX4wMDA7VgwQIFBgYqLi5O/fv314ABAzTxhG8WLr74Yi1cuFDLli1TixYt9PLLL+uf//yn4uPjy31/AQAAisOMJw+2a5c1O4V1nVBW/vrLuq5Sxbr+/XcpP9997aUTnWndppOduB7U99+73xcZaZ2h7qTlSk7hcEj//Kd1OODs2dZtMTHS1q1W+SRZ11u3WutBASU1f7705pvWrDmgPMyYMeOM91esWFFTp07V1KlTix1Tv359LVq06Izb6dixo3744YdzyggAAFAemPHkofLzpbvusk43D5SVtm2t6+3brevsbKsMatLEOqTtZNdfLx06JH333dm3nZxsXXfteup9RV++F40pzvDhUrNmp85mOnkN3JAQClmU3mOPWYfcAQAAACg/FE8eauLEs39IB04nJkY63cmMYmKkF1+0fp4z5/jt77xjXU+a5D7+gQess97Nnn18tpEkBQVZ22rQwH18YqK0bZtVmLZocfz20FDrTHU5OdYC58WJjpaee846092OHcdv//lnqWnT48VYvXrW7z//XPy2gNPJyZHuuMMqUwEAAACUD0dhIfMGPM2KFVKXLlJBgekk8EYTJkijRkkrV1oFzuHD1kLcN94oBQdLzz9vLVhfxOGQFi2yzhSXkmIVng0bSrfcYs2Matv2+CF6klS/vnX79u3SxRe7P3fHjtLSpVZR9dFH0sGDUp8+0kUXSY8+Kr3ySvG5FyywFhRv1859NlN0tPTLL9Kff0qffy7ddJNUp451SN+ff573Pxf8UL9+0r//bToF4DmcTqfCwsKUlZWl0KLF/cqYw2HLZgG/5pOf4nixAMqWjS8UpXn/wIwnD5OVZa3rROmEc7VihbR4sVU29e9vLdLdtq1VLnXt6l46SdZrUa9eVmFVdCa59u2lGTOkuDj30ulskpKkq6+WvvnGmlkybJiUkWH9fKbS6c47rWyDB5/62rhzp9S7t3T0qJSQYF336kXphHM3ezbFEwAAAFBemPHkYQYNkmbONJ0CAHzbBRdImzZJtWubTgKYx4wnwDv55Kc4XiyAssWMJ5xs8WJKJwAoDwcOWOuYAQAAALAXxZOHyMyUhgwxnQIA/McXX3DIHQAAAGA3iicPMXIka9YAQHl7+GEpPd10CgAAAMB3UTx5gIULpVmzTKcAAP/DIXcAAACAvSieDMvMlO6/33QKAPBfn3/OIXcAAACAXSieDHvkEWnXLtMpAMC/PfIIh9wBAAAAdqB4MmjRIumDD0ynAADs388hdwAAAIAdKJ4Myc6Whg83nQIAUOTzz6X//td0CgAAAMC3UDwZ8sILUmqq6RQAgBONGCEdPWo6BQAAAOA7KJ4M+P136cUXTacAAJxsxw5p0iTTKQAAAADfQfFkwCOPWIfaAQA8z+TJ0rZtplMAAAAAvoHiqZx98YW0YIHpFACA4uTkWF8QAAAAADh/FE/lKDubDzMA4A0WLrS+KAAAAABwfiieyhELigOA9+CwaAAAAOD8UTyVExYUBwDvkprK6zYAAABwviieysmoUXxzDgDe5oUXpO3bTacAAAAAvBfFUzn45hvps89MpwAAlFZ2tjR2rOkUAAAAgPeieCoHf/ub6QQAgHM1Z47044+mUwAAAADeieLJZgsWSF9/bToFAOBcFRZKf/+76RQAAACAd6J4slFBgTRmjOkUAIDztWiRtHKl6RQAAACA96F4stG//iX99JPpFACAssBh0wAAAEDpUTzZJCdHGj/edAoAQFlJSeFEEQAAAEBpUTzZZNo0KS3NdAoAQFl68knrMGoAAAAAJUPxZAOnU3ruOdMpAABlbdMm6YMPTKcAAAAAvAfFkw1eeUXat890CgCAHSZMsA6nBgAAAHB2FE9l7OBB6fXXTacAANglLU16/33TKQAAAADvQPFUxt56SzpwwHQKAICdJk+W8vNNpwAAAAA8H8VTGcrOll591XQKAIDdtm2T5s0znQIAAADwfBRPZei996T0dNMpAADl4YUXTCcAAAAAPB/FUxnJz5deesl0CgBAefnxR2nRItMpAAAAAM9G8VRGPvxQSk01nQIAUJ4mTTKdAAAAAPBsFE9loLCQQy4AwB99/bV1AQAAAHB6FE9l4PPPpU2bTKcAAJjArCcAAACgeBRPZYAPHQDgvxYtkjZsMJ0CAAAA8EwUT+dp9WrrAgDwXy+/bDoBAAAA4Jkons7TtGmmEwAATJs7V9q3z3QKAAAAwPNQPJ2Hv/6yPmwAAPxbTo40c6bpFAAAAIDnoXg6DzNmWB82AACYPt06yykAAACA4yiezlFBgfUhAwAASfr9d2nJEtMpAAAAAM9C8XSOFi2Stm83nQIA4ElY9w8AAABwR/F0jvhwAQA42aJF0o4dplMAAAAAnoPi6RxwOAUA4HQ4DBsAAABwR/F0Dt56iwVkAQCnN2OGlJtrOgUAAADgGSieSunYMem990ynAAB4qr17pU8+MZ0CAAAA8AwUT6W0aJG0b5/pFAAAT/b++6YTAAAAAJ6B4qmU/v1v0wkAAJ4uMVHKyDCdAgAAADCP4qkUsrKkBQtMpwAAeLr8fOnDD02nAAAAAMyjeCqFefOk7GzTKQAA3oAZsgAAAADFU6nwIQIAUFLr1klbt5pOAQAAAJhF8VRCO3dKK1eaTgEA8CZ8YQEAAAB/R/FUQrNnS4WFplMAALzJnDmmEwAAAABmUTyVEN9aAwBK6/ffpVWrTKcAAAAAzKF4KoH166VNm0ynAAB4I764AAAAgD+jeCqBefNMJwAAeKt586T8fNMpAAAAADMonkrgs89MJwAAeKu//uJwOwAAAPgviqez+P13DrMDAJyfzz83nQAAAAAwg+LpLPiwAAA4X/wtAQAAgL+ieDoLDrMDAJyvX36Rtm41nQLladKkSbriiitUrVo1RUREqHfv3tp60n8EHTt2lMPhcLsMHTrUbUxaWpq6d++uypUrKyIiQo8//rjy8vLcxiQlJalVq1YKCQlRw4YNNWvWLLt3DwAAoMQons7gwAHp669NpwAA+IIvvjCdAOUpOTlZCQkJ+vbbb7Vs2TIdO3ZMXbt21eHDh93GDRkyRLt373ZdJk+e7LovPz9f3bt3V25urlatWqX3339fs2bN0vjx411jUlNT1b17d3Xq1Enr16/XiBEjNHjwYC1durTc9hUAAOBMHIWFhYWmQ3iq2bOl/v1NpwAA+IJrrpFWrjSdAqbs3btXERERSk5OVocOHSRZM55atmypKVOmnPYxixcvVo8ePbRr1y5FRkZKkqZPn67Ro0dr7969Cg4O1ujRo7Vw4UL99NNPrsf17dtXmZmZWrJkSYmyOZ1OhYWFKSsrS6Ghoee3o8VwOGzZLODXfPJTHC8WQNmy8YWiNO8fmPF0BhxmBwAoK6tWSfv2mU4BU7KysiRJ1atXd7t99uzZqlmzpi677DKNGTNGR44ccd2XkpKiZs2auUonSYqPj5fT6dSm/535JCUlRV26dHHbZnx8vFJSUuzaFQAAgFIJMh3AU+XmSsxSBwCUlfx8aeFCacAA00lQ3goKCjRixAi1b99el112mev2u+66S/Xr11edOnW0YcMGjR49Wlu3btWnn34qSUpPT3crnSS5fk9PTz/jGKfTqaNHj6pSpUqn5MnJyVFOTo7rd6fTWTY7CgAAcBoUT8VISpJ4HwYAKEuff07x5I8SEhL0008/6euTFo68//77XT83a9ZMtWvX1nXXXadt27bpkksusS3PpEmT9PTTT9u2fQAAgBNxqF0xvvzSdAIAgK/58ktr5hP8x/Dhw7VgwQKtWLFCdevWPePYtm3bSpJ+++03SVJUVJQyMjLcxhT9HhUVdcYxoaGhp53tJEljxoxRVlaW67Jz587S7xgAAEAJUTwVY8UK0wkAAL7m4EFp3TrTKVAeCgsLNXz4cM2fP1/Lly/XxRdffNbHrF+/XpJUu3ZtSVJcXJw2btyoPXv2uMYsW7ZMoaGhio2NdY1JTEx0286yZcsUFxdX7POEhIQoNDTU7QIAAGAXiqfTyMyU/vfeDwCAMsUXG/4hISFB//73vzVnzhxVq1ZN6enpSk9P19GjRyVJ27Zt0zPPPKN169Zp+/bt+vzzzzVgwAB16NBBzZs3lyR17dpVsbGxuvvuu/Xjjz9q6dKlGjt2rBISEhQSEiJJGjp0qH7//Xc98cQT2rJli6ZNm6aPP/5YI0eONLbvAAAAJ3IUFvrkiTjPy+efS716mU4BAPBF3bpJixebTgG7OYo5Jfh7772ne+65Rzt37lT//v31008/6fDhw4qOjtbNN9+ssWPHus1A2rFjh4YNG6akpCRVqVJFAwcO1AsvvKCgoOPLdCYlJWnkyJHavHmz6tatq3Hjxumee+4pcdbSnA75XHGGdKDs+eSnOF4sgLJl4wtFad4/UDydxsiR0pQpplMAAHxR1arSgQNSEKf3gIegeAK8k09+iuPFAihbHlI8cajdaXAYBADALocOSd99ZzoFAAAAUD4onk6yb5+0YYPpFAAAX5aUZDoBAAAAUD4onk6SnOyj01YBAB6DmbUAAADwFxRPJ+HDAADAbt98I+XlmU4BAAAA2I/i6SQc/gAAsNvhw9LataZTAAAAAPajeDqB0ylt2mQ6BQDAH/zf/5lOAAAAANiP4ukE33/P+k4AgPKxbp3pBAAAAID9KJ5OwOmtAQDlheIJAAAA/oDi6QR8CAAAlJdt26TMTNMpAAAAAHtRPJ2AGU8AgPLEFx4AAADwdRRP/5OZaX37DABAeaF4AgAAgK+jePofFhYHAJQ3iicAAAD4Ooqn/+EwOwBAeaN4AgAAgK+jePofiicAQHljgXEAAAD4Ooqn/+FbZwCACd9/bzoBAAAAYB+KJ0mHD0upqaZTAAD80Q8/mE4AAAAA2IfiSdIvv7CwOADAjC1bTCcAAAAA7EPxJGnrVtMJAAD+6pdfTCcAAAAA7EPxJN70AwDM4W8QAAAAfBnFk5jxBAAwJz1dOnjQdAoAAADAHhRPongCAJjF3yEAAAD4KooncZgDAMAs/g4BAADAV/l98bR7N4c4AADMongCAACAr/L74onDGwAAplE8AQAAwFdRPFE8AQAMo3gCAACAr/L74mnbNtMJAAD+juIJAAAAvsrvi6c//zSdAADg7w4elJxO0ykAAACAsuf3xdOuXaYTAADA3yMAAAD4Jr8vnnbvNp0AAAD+HgEAAMA3+X3xxDfMAABPwN8jAAAA+CK/Lp4OHbLW1QAAwDRmPAEAAMAX+XXxxLfLAABPwd8kAAAA+CKKJwAAPAAzngAAAOCLKJ4AAPAA/E0CAACAL6J4AgDAAzDjCQAAAL7Ir4un9HTTCQAAsFA8eYbOnTsrMzPzlNudTqc6d+5c/oEAAAC8nF8XTwcOmE4AAIDl0CEpJ8d0CiQlJSk3N/eU27Ozs/V///d/BhIBAAB4tyDTAUw6eNB0AgAAjjt4UAoJMZ3CP23YsMH18+bNm5V+wrTo/Px8LVmyRBdeeKGJaAAAAF6N4gkAAA9x6JBUs6bpFP6pZcuWcjgccjgcpz2krlKlSnrjjTcMJAMAAPBuFE8AAHgI/i6Zk5qaqsLCQjVo0EBr1qxRrVq1XPcFBwcrIiJCgYGBBhMCAAB4J78unpxO0wkAADiO4smc+vXrS5IKCgoMJwEAAPAtfl088QYfAOBJDh0ynQCS9Ouvv2rFihXas2fPKUXU+PHjDaUCAADwThRPAAB4CP4umffuu+9q2LBhqlmzpqKiouRwOFz3ORwOiicAAIBSongCAMBD8HfJvGeffVbPPfecRo8ebToKAACATwgwHcCU3FzrAgCAp+BQO/MOHDig2267zXQMAAAAn+G3xRMLiwMAPA0znsy77bbb9OWXX5qOAQAA4DP89lC77GzTCQAAcHf4sOkEaNiwocaNG6dvv/1WzZo1U4UKFdzuf/jhhw0lAwAA8E5+Wzzl55tOAACAu7w80wnwzjvvqGrVqkpOTlZycrLbfQ6Hg+IJAACglCieAADwEAUFphMgNTXVdAQAAACf4rdrPPHmHgDgafjbBAAAAF/DjCcAADwExZN599133xnvnzlzZjklAQAA8A1+WzzV1R/adWWCJIckqdDhkAolORwqlGy73Y773caVYnyJH3fydTHbOeN2y/D6rM9fXO7CU/fvjNs/0+PPMr7E44q5/7SPL+Xjir29uO2cdLvb48807sR/JwDnpXlofUlNTMfwawcOHHD7/dixY/rpp5+UmZmpzp07G0oFAADgvfy2eKqiw6qy5nPTMQAAOK7DCEmvmk7h1+bPn3/KbQUFBRo2bJguueQSA4kAAAC8m9+u8SSHw3QCAADcBfjvn2VPFhAQoFGjRunVVykFAQAASst/3+Hy5h4A4Gn42+Sxtm3bpry8PNMxAAAAvI7fHmrHm3sAgMfhb5Nxo0aNcvu9sLBQu3fv1sKFCzVw4EBDqQAAALyX/xZPgYGmEwAA4I7iybgffvjB7feAgADVqlVLL7/88lnPeAcAAIBT+W/xVLmy6QQAALirWNF0Ar+3YsUK0xEAAAB8iv8WT1Wrmk4AAIC7atVMJ8D/7N27V1u3bpUkxcTEqFatWoYTAQAAeCf/ndNfqRKH2wEAPAtfihh3+PBh3Xfffapdu7Y6dOigDh06qE6dOho0aJCOHDliOh4AAIDX8d/iSeINPgDAszDjybhRo0YpOTlZX3zxhTIzM5WZmanPPvtMycnJevTRR03HAwAA8Dr+e6idZBVPWVmmUwAAYKF4Mu4///mPPvnkE3Xs2NF124033qhKlSrp9ttv11tvvWUuHAAAgBdixhMAAJ6Cv0vGHTlyRJGRkafcHhERwaF2AAAA54DiCQAAT8GMJ+Pi4uI0YcIEZWdnu247evSonn76acXFxZV4O5MmTdIVV1yhatWqKSIiQr1793YtVl4kOztbCQkJqlGjhqpWrao+ffooIyPDbUxaWpq6d++uypUrKyIiQo8//rjy8vLcxiQlJalVq1YKCQlRw4YNNWvWrNLvOAAAgE0ongAA8BT8XTJuypQp+uabb1S3bl1dd911uu666xQdHa1vvvlGr732Wom3k5ycrISEBH377bdatmyZjh07pq5du+rw4cOuMSNHjtQXX3yhefPmKTk5Wbt27dItt9ziuj8/P1/du3dXbm6uVq1apffff1+zZs3S+PHjXWNSU1PVvXt3derUSevXr9eIESM0ePBgLV26tGz+QQAAAM6To7CwsNB0CGN69JAWLjSdAgAAy59/SnXqmE7h944cOaLZs2dry5YtkqRLL71U/fr1U6VKlc55m3v37lVERISSk5PVoUMHZWVlqVatWpozZ45uvfVWSdKWLVt06aWXKiUlRe3atdPixYvVo0cP7dq1y3X43/Tp0zV69Gjt3btXwcHBGj16tBYuXKiffvrJ9Vx9+/ZVZmamlixZUqJsTqdTYWFhysrKUmho6Dnv45k4HLZsFvBrPvkpjhcLoGzZ+EJRmvcP/r24OIc0AAA8CX+XjJs0aZIiIyM1ZMgQt9tnzpypvXv3avTo0ee03az/ncykevXqkqR169bp2LFj6tKli2tMkyZNVK9ePVfxlJKSombNmrmtORUfH69hw4Zp06ZNuvzyy5WSkuK2jaIxI0aMKDZLTk6OcnJyXL87nc5z2icAAICS8O9D7WrUMJ0AAABLYKBUpYrpFH7v7bffVpMmTU65vWnTppo+ffo5bbOgoEAjRoxQ+/btddlll0mS0tPTFRwcrPDwcLexkZGRSk9Pd405eaHzot/PNsbpdOro0aOnzTNp0iSFhYW5LtHR0ee0XwAAACXh38VT7dqmEwAAYImMlAL8+8+yJ0hPT1ft07w/qFWrlnbv3n1O20xISNBPP/2kjz766HzjlYkxY8YoKyvLddm5c6fpSAAAwIf59zvcqCjTCQAAsPBliEcoWkj8ZN98843qnMP6W8OHD9eCBQu0YsUK1a1b13V7VFSUcnNzlZmZ6TY+IyNDUf97fxIVFXXKWe6Kfj/bmNDQ0GLXpAoJCVFoaKjbBQAAwC7+XTzxJh8A4ClYVNwjDBkyRCNGjNB7772nHTt2aMeOHZo5c6ZGjhx5yrpPZ1JYWKjhw4dr/vz5Wr58uS6++GK3+1u3bq0KFSooMTHRddvWrVuVlpamuLg4SVJcXJw2btyoPXv2uMYsW7ZMoaGhio2NdY05cRtFY4q2AQAAYJp/Ly5O8QQA8BT8TfIIjz/+uPbt26cHH3xQubm5kqSKFStq9OjRGjNmTIm3k5CQoDlz5uizzz5TtWrVXGsyhYWFqVKlSgoLC9OgQYM0atQoVa9eXaGhoXrooYcUFxendu3aSZK6du2q2NhY3X333Zo8ebLS09M1duxYJSQkKCQkRJI0dOhQvfnmm3riiSd03333afny5fr444+1kLP2AgAAD+EoLPTJE3GWTHo6b/QBAJ5hwgTpqadMp8D/HDp0SD///LMqVaqkRo0auYqeknIUc0rw9957T/fcc48kKTs7W48++qg+/PBD5eTkKD4+XtOmTXMdRidJO3bs0LBhw5SUlKQqVapo4MCBeuGFFxQUdPy7w6SkJI0cOVKbN29W3bp1NW7cONdzlERpTod8rjhDOlD2fPJTHC8WQNmy8YWiNO8f/Lt4KiiQgoOl/HzTSQAA/m76dOmBB0yngB+ieAK8k09+iuPFAihbHlI8+fcaTwEBUq1aplMAAMAaTwAAAPBJ/l08SRxqBwDwDPw9AgAAgA+ieOKNPgDAE/D3CAAAAD6I4ik62nQCAIC/CwiQIiNNpwAAAADKHMVTo0amEwAA/F39+tIJZykDAAAAfAXFE8UTAMC0xo1NJwAAAABsQfHEm30AgGn8LQIAAICPonhq0EAKDDSdAgDgzyieAAAA4KMonoKDrbU1AAAwheIJAAAAPoriSWKdJwCAWTExphMAAAAAtqB4kvimGQBgTsWKUr16plMAAAAAtqB4kpjxBAAwp2FDyeEwnQIAAACwBcWTxIwnAIA5/A0CAACAD6N4kqQmTUwnAAD4K4onAAAA+DCKJ8k6q90FF5hOAQDwR82bm04AAAAA2Ibiqcjll5tOAADwR61bm04AAAAA2IbiqQhv/AEA5S00lBNcAAAAwKdRPBVp1cp0AgCAv7n8cs5oBwAAAJ9G8VSEGU8AgPLG3x4AAAD4OIqnIg0bWoc8AABQXiieAAAA4OMonoo4HCwwDgAoXxRPAAAA8HEUTydinScAQHmpVk1q3Nh0CgAAAMBWFE8n4ptnAEB5YWFxAAAA+AGKpxO1aWM6AQDAX/BlBwAAAPwAxdOJYmKkWrVMpwAA+IN27UwnAAAAAGxH8XSyDh1MJwAA+IOOHU0nAAAAAGxH8XQyPggAAOx26aVSRITpFAAAAIDtKJ5Odu21phMAAHwdX3IAAADAT1A8neyyy6SaNU2nAAD4MoonAAAA+AmKp5M5HKzzBACwF8UTAAAA/ATF0+lwuB0AwC6xsazvBAAAAL9B8XQ6fBMNALALf2MAAADgRyieTqdZM6l6ddMpAAC+iOIJAAAAfoTi6XQcDg63AwDYg+IJAAAAfoTiqTg33GA6AQDA17RsKdWqZToFAAAAUG4onorTs6c18wkAgLLSs6fpBAAAAEC5ongqTlSU1KaN6RQAAF9y002mEwAAAADliuLpTPhmGgBQVi68UGrd2nQKAAAAoFxRPJ0JxRMAoKz06MEh3AAAAPA7FE9n0rKlFB1tOgUAwBfwZQYAAAD8EMXT2fToYToBAMDbVakiXXed6RQAAABAuaN4Ohu+oQYAnK/rr5cqVjSdAgAAACh3FE9n07mz9U01AADnii8xAAAA4Kcons4mJETq2tV0CgCAtwoI4LBtAAAA+C2Kp5Lo29d0AgCAt7rmGikiwnQKAAAAwAiKp5Lo2VOqVs10CgCAN+rf33QCAAAAwBiKp5KoVEm65RbTKQAA3iYkRLr1VtMpAAAAAGMonkqqXz/TCQAA3qZ7dyk83HQKAAAAwBiKp5K67jqpdm3TKQAA3oQvLQAAAODnKJ5KKiCARcYBACV3wQXWjCcAAADAj1E8lQbfXAMASurWW601ngAAAAA/RvFUGq1bSzExplMAALwBX1YAAAAAFE+lxgcJAMDZ1KsndehgOgUAAABgHMVTafXvLzkcplMAADzZnXfytwIAAAAQxVPpXXyx1KWL6RQAAE/lcEiDBplOAQAAAHgEiqdz8cADphMAADxV585So0amUwAAAAAegeLpXPTqJUVFmU4BAPBEfDkBAAAAuFA8nYugIOm++0ynAAB4mshIqXdv0ykAAAAAj0HxdK7uv18K4J8PAHCCQYOkChVMpwAAAAA8Bs3JuapfX+rRw3QKAICnCAyUhg41nQIAAADwKBRP52P4cNMJAACeolcvKTradAoAAADAo1A8nY8uXaQmTUynAAB4goceMp0AAAAA8DgUT+fD4ZAefNB0CgCAac2aSR07mk4BD7Ny5Ur17NlTderUkcPh0H//+1+3+++55x45HA63S7du3dzG7N+/X/369VNoaKjCw8M1aNAgHTp0yG3Mhg0bdM0116hixYqKjo7W5MmT7d41AACAEqN4Ol/33itdcIHpFAAAk5jthNM4fPiwWrRooalTpxY7plu3btq9e7fr8uGHH7rd369fP23atEnLli3TggULtHLlSt1///2u+51Op7p27ar69etr3bp1eumll/TUU0/pnXfesW2/AAAASiPIdACvV7WqlJAgPfus6SQAABNq15YGDDCdAh7ohhtu0A033HDGMSEhIYqKijrtfT///LOWLFmitWvXqk2bNpKkN954QzfeeKP+8Y9/qE6dOpo9e7Zyc3M1c+ZMBQcHq2nTplq/fr1eeeUVt4IKAADAFGY8lYVHHpEqVzadAgBgwqhRUkiI6RTwUklJSYqIiFBMTIyGDRumffv2ue5LSUlReHi4q3SSpC5duiggIECrV692jenQoYOCg4NdY+Lj47V161YdOHDgtM+Zk5Mjp9PpdgEAALALxVNZqFlTGjTIdAoAQHmrXl0aOtR0Cnipbt266YMPPlBiYqJefPFFJScn64YbblB+fr4kKT09XREREW6PCQoKUvXq1ZWenu4aExkZ6Tam6PeiMSebNGmSwsLCXJdozsYIAABsRPFUVh57TKpQwXQKAEB5Gj7cOuQaOAd9+/bVTTfdpGbNmql3795asGCB1q5dq6SkJFufd8yYMcrKynJddu7caevzAQAA/0bxVFbq1ZPuvNN0CgBAealSRXr4YdMp4EMaNGigmjVr6rfffpMkRUVFac+ePW5j8vLytH//fte6UFFRUcrIyHAbU/R7cWtHhYSEKDQ01O0CAABgF4qnsjR6tORwmE4BACgPQ4ZINWqYTgEf8scff2jfvn2qXbu2JCkuLk6ZmZlat26da8zy5ctVUFCgtm3busasXLlSx44dc41ZtmyZYmJidAFn3QUAAB6A4qksxcZKN91kOgUAwG7BwdKjj5pOAQ936NAhrV+/XuvXr5ckpaamav369UpLS9OhQ4f0+OOP69tvv9X27duVmJioXr16qWHDhoqPj5ckXXrpperWrZuGDBmiNWvW6JtvvtHw4cPVt29f1alTR5J01113KTg4WIMGDdKmTZs0d+5cvfbaaxo1apSp3QYAAHDjKCwsLDQdwqesXi21a2c6BQDAToMGSf/8p+kU8HBJSUnq1KnTKbcPHDhQb731lnr37q0ffvhBmZmZqlOnjrp27apnnnnGbbHw/fv3a/jw4friiy8UEBCgPn366PXXX1fVE9YW27BhgxISErR27VrVrFlTDz30kEaPHl3inE6nU2FhYcrKyrLtsDsmhANlzyc/xfFiAZQtG18oSvP+geLJDl26SImJplMAAOwQECD9/LPUuLHpJECZoHgCvJNPforjxQIoWx5SPHGonR2ee850AgCAXe6+m9IJAAAAKCGKJzu0bSvdfLPpFACAshYSIk2caDoFAAAA4DUonuzy/PNSYKDpFACAsvTgg1K9eqZTAAAAAF6D4skuTZpIAweaTgEAKCuhodKTT5pOAQAAAHgViic7PfWUVLGi6RQAgLLw+ONSjRqmUwAAAABeheLJTtHRUkKC6RQAgPMVFSWNGmU6BQAAAOB1KJ7s9ve/S2FhplMAAM7H+PFS5cqmUwAAAABeh+LJbtWrW4dnAAC8U8OG0pAhplMAAAAAXoniqTyMHCnVrm06BQDgXDz7rBQUZDoFAAAA4JUonspD5crS5MmmUwAASuuqq6TbbzedAgAAAPBaFE/lpX9/6ZprTKcAAJRUYKA0darkcJhOAgAAAHgtiqfy9Oab1gcZAIDnGzZMatnSdAoAAADAq1E8lafmzaWEBNMpAABnExEhPfOM6RQAAACA16N4Km8TJ0qRkaZTAADO5MUXpfBw0ykAAAAAr0fxVN7CwqwPNAAAz3TVVdLAgaZTAAAAAD6B4smEAQOsDzYAAM/CguIAAABAmaJ4MsHhsBYaD+CfHwA8ytChLCgOAAAAlCGaD1Muv1x68EHTKQAARSIipGefNZ0CAAAA8CkUTyZNmiRddJHpFAAAyZqJyoLiAAAAQJmieDKpalVp5kzWEgEA0267zboAAAAAKFMUT6Z16mStKQIAMKNWLWtBcQAAAABljuLJE0yezCF3AGDKtGlW+QQAAACgzFE8eYKqVaUZMzjkDgDK2+23S7feajoFAAAA4LMonjxF587SAw+YTgFfkZoqFRae/rJixanjg4OlceOkX36Rjh6V/vxTevvtc5sF0qaNtHChdOCAdOiQlJJS/No5V10lrVolOZ3S5s3SoEGnHxcRIe3bJ40ZU/o8QHEiIjjEDgAAALCZo7CwsNB0CPzPoUNSs2bS9u2mk8DbpaZaZ+eaMuXU+7Zvl95///jvDoe0aJHUrZtVEiUnS40aSTffbG2nXTvpr79K9rwdO0pLl0rZ2dJHH0kHD0p9+liHkj76qPTKK8fHRkdLP/8sZWRIn34qxcVJ7dtLt9wizZ/vvt25c6WYGKl1ayk/v1T/FECx/vMf6783wM85nU6FhYUpKytLoaGhtjwHk7qBsueTn+J4sQDKlo0vFKV5/0Dx5GmWL5e6dPHRvyQoN6mp1vXFF5997D33SO+9J82ZI/Xrd/z2Bx6Qpk+3Zj6VZAH8wEBpyxapbl2rrPrxR+v20FBpzRqrfGrcWEpLs27/29+kZ5+1Mu7cKQUEWLOeUlOlG244vt0ePawiKi5O+u67kuw9cHZ9+0offmg6BeARKJ4A7+STHxd4sQDKlocUTxxq52k6d5Yefth0CviTIUOs65MPY3v7bWnbNquMqljx7Nvp3Flq2NAqsIpKJ8k6jO7556WQEGngwOO3R0dLe/dapZMkFRRI69dL9eodH1OtmrXw8+uvUzqh7NSuLb35pukUAAAAgF+gePJEkydbhxQB56Oo6BkzRkpIkK688vRj2ra1ZioVzUQ60bJl1uL3bdqc/fk6drSuv/zy1PuWLrWur732+G07d0o1a0oXXmj97nBILVq453jhBSkvz1p/CigLAQFWOVqjhukkAAAAgF8IMh0ApxEcbK2P06qVtUYOcC5q15ZmzXK/bc0a6c47pd9/t36/5BLrELlffz39Nopub9RI+vrrMz9fo0bujzlRRob133LRGMn68D9unJSUdPxQuiZNpL//3br/qqusw/1uvFE6cuTMzw2U1Lhxx0tSAAAAALZjxpOnatjQOtQJOBfvvWcd+hYRIVWuLLVsKX3wgTXrKTHRmsUkSWFh1nVW1um343S6jzuTkmzrxO2kpUnx8dbZ6oYNs2Y/DR5slVAVKkjvvmuVU19+aa35tHmzdOyYtSB5t25nzwOcrFMnafx40ykAAAAAv0Lx5MnuvLP408sDZzJxorRihbWG0tGj1ppLAwda5dNFFx1f18m0r7+2FiKvVk269FJpxgzr9rFjpVq1pJEjrTWf5s+31n+Kj5e+/976PTraaHR4mVq1pNmzrUPtAAAAAJQb3oF7ujfekJo2NZ0CvqJoFl379tZ10eyk4mY0FZ2doLhZTCcqybZKsp3YWOuMdyNHHp8NlZ0t3XefddbHQYOknBzrdqAkHA7pX/+yDj8FAAAAUK4onjxdpUrS3LnWNXC+/vrLuq5Sxbr+/XcpP9997aUTnWndppOduB7UySIjrVlNZ9uOwyH985/W4YCzZ1u3xcRIW7da5ZNkXW/daq0HBZTEE09Ys+UAAAAAlDuKJ2/QtKl1OnngfLVta11v325dZ2dbC443aWId0nay66+XDh2Svvvu7NtOTrauu3Y99b6iD/1FY4ozfLjUrNmps5lCQk79vbDw7JmAq66Snn3WdAoAAADAb1E8eYvBg6X+/U2ngDeIiTn9DLmYGOnFF62f58w5fvs771jXkya5j3/gAeusd7NnH59tJElBQda2GjRwH5+YKG3bJt11l9SixfHbQ0OtM9Xl5FhrTBUnOlp67jnrrGM7dhy//eefrfK1qBirV8/6/eefi98WIEnVq0sffmj9NwsAAADACEdhIdMGvMbRo9I110jr1plOAk82YYI0apS0cqVV4Bw+LDVuLN14oxQcLD3/vPTkk8fHOxzSokXWmeJSUqxZSQ0bSrfcYs2Matv2+CF6klS/vnX79u3SxRe7P3fHjtLSpVZR9dFH0sGDUp8+1oLmjz4qvfJK8bkXLLAWgG7Xzn02U3S09Msv0p9/Sp9/Lt10k1SnjnVI359/nvc/F3xUUJC0eLHUpYvpJIDHczqdCgsLU1ZWlkKL1vYrYw6HLZsF/JpPforjxQIoWza+UJTm/QMznrxJpUrSf/8rRUWZTgJPtmKF9YG7cWNrltzIkVZ5tGiRdRjciaWTZL0Y9eplFVZFZ5Jr3946w1xcnHvpdDZJSdLVV0vffCPdcYd1yFxGhvXzmUqnO++0sg0efOqL486dUu/eVvGakGBd9+pF6YQze/llSicAAADAAzDjyRulpFgzS3JzTScBAM8zeLD07rumUwBegxlPgHfyyU9xvFgAZYsZTzhncXHS9OmmUwCA57n6amnqVNMpAAAAAPwPxZO3uvde6ZFHTKcAAM9Rr570n/9Ya5kBAAAA8AgUT96MNUwAwFKlirX4fESE6SQAAAAATkDx5M0CA6W5c61T3gOAv3I4pFmzpBYtTCcBAAAAcBKKJ29Xvbr1LX94uOkkAGDG+PHSrbeaTgEAAADgNCiefEFsrPTZZ1LFiqaTAED5uuce6amnTKcAAAAAUAyKJ1/RoYM0Z44UwP+kAPxEjx7Su++aTgEAAADgDGgpfMnNN0vTpplOAQD2i4uTPv5YCgoynQQAAADAGVA8+ZoHHpAmTDCdAgDsExsrLVggVapkOgkAAACAs6B48kVPPWUVUADga6KjpaVLrRMrAAAAAPB4FE++ato069A7APAV1atbpVPduqaTAAAAACghiidfFRBgLTbeoYPpJABw/ipXlhYulC691HQSAAAAAKVA8eTLKlaUPv9cat3adBIAOHfBwdK8eVK7dqaTAAAAACgliidfFxYmffml1LKl6SQAUHoVKkhz50o33mg6CQAAAIBzQPHkD6pXl5Ytky67zHQSACi5oCDpww+l3r1NJwEAAABwjiie/EXNmlJionUacgDwdIGB0uzZUp8+ppMAAAAAOA8UT/4kIkJavlxq2tR0EgAoXmCg9O9/S7ffbjoJAAAAgPNE8eRvIiOlFSukZs1MJwGAUxUdXte3r+kkAAAAAMoAxZM/qlXLmvnUooXpJABwXNFC4rfdZjoJAAAAgDJC8eSvitZ8atXKdBIAkIKDpU8+kW65xXQSAAAAAGWI4smf1aghJSVJ111nOgkAf1atmrRokXTTTaaTAAAAAChjFE/+rugDH4e2ADAhMpICHAAAAPBhFE+wDnH56CMpIcF0EgD+5JJLpG++4ZBfAAAAwIdRPMESECC9+aY0caLpJAD8weWXW6XTJZeYTgIAAADARhRPcDdunDR9ulVEAYAdOneWkpOtw+wAH7Zy5Ur17NlTderUkcPh0H//+1+3+wsLCzV+/HjVrl1blSpVUpcuXfTrr7+6jdm/f7/69eun0NBQhYeHa9CgQTp06JDbmA0bNuiaa65RxYoVFR0drcmTJ9u9awAAACVGu4BTPfCANG+eFBJiOgkAX3P77dLixdb6coCPO3z4sFq0aKGpU6ee9v7Jkyfr9ddf1/Tp07V69WpVqVJF8fHxys7Odo3p16+fNm3apGXLlmnBggVauXKl7r//ftf9TqdTXbt2Vf369bVu3Tq99NJLeuqpp/TOO+/Yvn8AAAAl4SgsLCw0HQIeKjlZuvlm6cAB00kA+ILhw6XXXmNGJfySw+HQ/Pnz1bt3b0nWbKc6dero0Ucf1WOPPSZJysrKUmRkpGbNmqW+ffvq559/VmxsrNauXas2bdpIkpYsWaIbb7xRf/zxh+rUqaO33npLTz75pNLT0xUcHCxJ+tvf/qb//ve/2rJlS4myOZ1OhYWFKSsrS6GhoWW/85IcDls2C/g1n/wUx4sFULZsfKEozfsH3v2jeNdeK61eLTVpYjoJAG8WFCS98YZ1oXQCJEmpqalKT09Xly5dXLeFhYWpbdu2SklJkSSlpKQoPDzcVTpJUpcuXRQQEKDVq1e7xnTo0MFVOklSfHy8tm7dqgPFfHGUk5Mjp9PpdgEAALALnwBwZo0aSd9+K91wg+kkALxR9erS0qXWbCcALunp6ZKkyJPWOouMjHTdl56eroiICLf7g4KCVL16dbcxp9vGic9xskmTJiksLMx1iY6OPv8dAgAAKAbFE84uLExasEB69FHTSQB4k6ZNpbVrrcXEAXiMMWPGKCsry3XZuXOn6UgAAMCHUTyhZAICpH/8Q5o1i0XHAZzdTTdJKSlSgwamkwAeKSoqSpKUkZHhdntGRobrvqioKO3Zs8ft/ry8PO3fv99tzOm2ceJznCwkJEShoaFuFwAAALtQPKF0Bg6UVqyQinkzCwD6+9+l//6XM9cBZ3DxxRcrKipKiYmJrtucTqdWr16tuLg4SVJcXJwyMzO1bt0615jly5eroKBAbdu2dY1ZuXKljh075hqzbNkyxcTE6IILLiinvQEAACgexRNKLy7OOnymdWvTSQB4kkqVpI8+kp57jrPSAJIOHTqk9evXa/369ZKsBcXXr1+vtLQ0ORwOjRgxQs8++6w+//xzbdy4UQMGDFCdOnVcZ7679NJL1a1bNw0ZMkRr1qzRN998o+HDh6tv376qU6eOJOmuu+5ScHCwBg0apE2bNmnu3Ll67bXXNGrUKEN7DQAA4M5RWOiTJ+JEeTh61FoweOZM00kAmHbxxdInn0itWplOAniMpKQkderU6ZTbBw4cqFmzZqmwsFATJkzQO++8o8zMTF199dWaNm2aGjdu7Bq7f/9+DR8+XF988YUCAgLUp08fvf7666pataprzIYNG5SQkKC1a9eqZs2aeuihhzR69OgS5yzN6ZDPFV00UPZ88lMcLxZA2bLxhaI07x8onnD+/v1vadgw6dAh00kAmHDbbdK771onIgDgdSieAO/kk5/ieLEAypaHFE8caofz17+/9N13UosWppMAKE8VK0pvvSV9/DGlEwAAAIDTonhC2YiJkb79Vho61HQSAOUhJkZavZr/zwMAAAA4I4onlJ2i2Q9z50qcmhnwXQMGSOvWSc2bm04CAAAAwMNRPKHs3X679P33nPUO8DVVqkizZknvv2/9DAAAAABnQfEEe1xyibRqlfTYY1IA/5kBXq9lS2stt4EDTScBAAAA4EVoBGCf4GDppZek//s/qVEj02kAnIsKFaSnnpLWrJGaNDGdBgAAAICXoXiC/a66SvrxR2nECGY/Ad6kRQurcJowwSqgAAAAAKCUaAFQPipVkl59VUpOlho2NJ0GwJlUqGCVTWvXWofYAQAAAMA5onhC+br6amv208MPSw6H6TQATlY0y+mpp5jlBAAAAOC8UTyh/FWuLL32mpSUZC1CDsA8ZjkBAAAAsAHFE8zp0MGa/TR6NDMrAJPatmWWEwAAAABbUDzBrCpVpBdekDZskK67znQawL/UrCn9859SSgqznAAAAADYguIJnqFJE+mrr6SPPpIuvNB0GsC3BQRIDz4o/fKLNGgQ660BAAAAsA3FEzzLHXdIW7ZIjz3GIT+AHeLipO++k6ZOlS64wHQaAAAAAD6O4gmep2pV6aWXpPXrpU6dTKcBfEOtWtLMmdI330iXX246DQAAAAA/QfEEzxUbKy1fLn34oXTRRabTAN4pKEgaPtw6rO7eezmsDgAAAEC5oniC5+vbV9q6VZoyxVoMGcDZORzWoas//yy98YYUHm46EQAAAAA/RPEE7xAcLD3yiPT779K4cdbZ8ACcXteu1jpOH30kNWxoOg0AAAAAP0bxBO9SrZo0caK0bZuUkMAC5MCJrrxSSkyUli6VWrUynQYAAAAAKJ7gpSIjpTfftA4j6tuXdWvg32JipE8+kVavljp3Np0GAAAAAFwonuDdLrnEWnx83Tqpd28KKPiXiy6S3n1X2rRJ6tPHdBoAAAAAOAXFE3zD5ZdL8+dLGzdK/ftbZ/ICfFXTptK//iX9+qs0eLAUGGg6EQAAAACcFsUTfMuJH8gffFCqWNF0IqDsxMVJn39OwQoAAADAa1A8wTdddJE0daq0fbv0xBPWouSAt4qPl5KSpFWrpJ49OaQUAAAAgNegeIJvi4yUXnxRSkuTnn1WqlXLdCKgZAICpNtus9YvW7JEuvZa04kAAAAAoNQonuAfwsOlJ5+Udu6UZs2SWrc2nQg4vQsukEaNkn75Rfr4Y6lVK9OJAAAAAOCcUTzBv4SESAMHSt99Zx22dOedUoUKplMBUvPm0jvvSH/8Ib38snXGRgAAAADwchRP8F9xcdKcOdYsqOeft9aFAspTxYrWIuFffy39+KM0ZIhUubLpVAAAAABQZiiegMhIacwYads2adEiqVcvzhYGe8XESK+8Iv35p3UWxvbtTScCAAAAAFvw6RooEhAg3XCDddm7V/roI+nf/5bWrDGdDL6gZk3pjjukfv2s2XYAAAAA4AcchYWFhaZDAB7t11+tAmr2bGtWFFBSlStbM+j69ZPi45lJB8AjOZ1OhYWFKSsrS6GhobY8h8Nhy2YBv+aTn+J4sQDKlo0vFKV5/0DxBJRGSopVQn38sfTXX6bTwBMFBkpdulhl0803S1Wrmk4EAGdE8QR4J5/8FMeLBVC2KJ4AL3bsmLR0qTR/vrRggbRnj+lEMCkoSLr6aqtouuMOa90wAPASFE+Ad/LJT3G8WABly0OKJ477AM5FhQpSjx7WpaBAWr1a+vxz67J5s+l0KA/h4VK3btJNN1nrgoWHm04EAAAAAB6HGU9AWdu27XgJ9fXXUl6e6UQoK5dcIvXsaV06dGDNJgA+gRlPgHfyyU9xvFgAZctDZjxRPAF2OnBAWrJESkyUVqyQfv/ddCKURpUqUvv20nXXWbPbYmNNJwKAMkfxBHgnn/wUx4sFULYongA/lJYmJSVZlxUrpO3bDQeCm6pVraKpY0fp2mulK65gVhMAn0fxBHgnn/wUx4sFULYongBoxw6rgCoqo3bsMJ3Iv5xYNHXsKLVpQ9EEwO9QPAHeySc/xfFiAZQtiicAp9izR1q3zv2yc6fpVL6hShWpZUupVSupdWvrOjZWCgw0nQwAjKJ4AryTT36K48UCKFseUjzx1T7gSSIirDOk3XDD8dsoo0qvWjWrZGrd+njJ1KSJFBBgOhkAAAAA+BWKJ8DTna6MOnhQ+uUXaetW67ro519/te7zB4GB0kUXSY0bu18aNZLq1eMbMwAAAADwABRPgDeqVu34bJ6T7d59vJBKTbV+37Xr+PX+/eWf91xUrCjVru1+ObFoatBAqlDBdEoAAAAAwBlQPAG+pqik6djx9Pfn5Fgl1ImFVEaG5HRas6VOdzl0yLrOySldlqAgawHvqlWtsux0P4eGSpGRp5ZM4eHn+y8BAAAAADCM4gnwNyEh1syhiy4q/WOPHZNyc6WCAik/37ouKLDuczisNZSKLhUqWLOWAAAAAAB+i+IJQMlVqMDhbQAAAACAEuMUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAAAAAABsQfEEAAAAAAAAW1A8AQAAAAAAwBYUTwAAAAAAALAFxRMAAIABTz31lBwOh9ulSZMmrvuzs7OVkJCgGjVqqGrVqurTp48yMjLctpGWlqbu3burcuXKioiI0OOPP668vLzy3hUAAIBiBZkOAAAA4K+aNm2qr776yvV7UNDxt2YjR47UwoULNW/ePIWFhWn48OG65ZZb9M0330iS8vPz1b17d0VFRWnVqlXavXu3BgwYoAoVKuj5558v930BAAA4HYonAAAAQ4KCghQVFXXK7VlZWZoxY4bmzJmjzp07S5Lee+89XXrppfr222/Vrl07ffnll9q8ebO++uorRUZGqmXLlnrmmWc0evRoPfXUUwoODi7v3QEAADgFh9oBAAAY8uuvv6pOnTpq0KCB+vXrp7S0NEnSunXrdOzYMXXp0sU1tkmTJqpXr55SUlIkSSkpKWrWrJkiIyNdY+Lj4+V0OrVp06ZinzMnJ0dOp9PtAgAAYBeKJwAAAAPatm2rWbNmacmSJXrrrbeUmpqqa665RgcPHlR6erqCg4MVHh7u9pjIyEilp6dLktLT091Kp6L7i+4rzqRJkxQWFua6REdHl+2OAQAAnIBD7QAAAAy44YYbXD83b95cbdu2Vf369fXxxx+rUqVKtj3vmDFjNGrUKNfvTqeT8gkAANiGGU8AAAAeIDw8XI0bN9Zvv/2mqKgo5ebmKjMz021MRkaGa02oqKioU85yV/T76daNKhISEqLQ0FC3CwAAgF0ongAAADzAoUOHtG3bNtWuXVutW7dWhQoVlJiY6Lp/69atSktLU1xcnCQpLi5OGzdu1J49e1xjli1bptDQUMXGxpZ7fgAAgNPhUDsAAAADHnvsMfXs2VP169fXrl27NGHCBAUGBurOO+9UWFiYBg0apFGjRql69eoKDQ3VQw89pLi4OLVr106S1LVrV8XGxuruu+/W5MmTlZ6errFjxyohIUEhISGG9w4AAMBC8QQAAGDAH3/8oTvvvFP79u1TrVq1dPXVV+vbb79VrVq1JEmvvvqqAgIC1KdPH+Xk5Cg+Pl7Tpk1zPT4wMFALFizQsGHDFBcXpypVqmjgwIGaOHGiqV0CAAA4haOwsLDQdAgAAACY4XQ6FRYWpqysLNvWe3I4bNks4Nd88lMcLxZA2bLxhaI07x9Y4wkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAAAAAYAuKJwAAAAAAANiC4gkAAAAAAAC2oHgCAAAAAACALSieAAAAvNzUqVN10UUXqWLFimrbtq3WrFljOhIAAIAkiicAAACvNnfuXI0aNUoTJkzQ999/rxYtWig+Pl579uwxHQ0AAIDiCQAAwJu98sorGjJkiO69917FxsZq+vTpqly5smbOnGk6GgAAAMUTAACAt8rNzdW6devUpUsX120BAQHq0qWLUlJSDCYDAACwBJkOAAAAgHPz119/KT8/X5GRkW63R0ZGasuWLad9TE5OjnJycly/Z2VlSZKcTqd9QQGUOf4vC+CsbHyhKHrfUFhYeNaxFE8AAAB+ZNKkSXr66adPuT06OtpAGgDnKizMdAIAHq8cXigOHjyosLM8D8UTAACAl6pZs6YCAwOVkZHhdntGRoaioqJO+5gxY8Zo1KhRrt8LCgq0f/9+1ahRQw6Hw9a88GxOp1PR0dHauXOnQkNDTccB4KF4rYBkzXQ6ePCg6tSpc9axFE8AAABeKjg4WK1bt1ZiYqJ69+4tySqSEhMTNXz48NM+JiQkRCEhIW63hYeH25wU3iQ0NJQPkwDOitcKnG2mUxGKJwAAAC82atQoDRw4UG3atNGVV16pKVOm6PDhw7r33ntNRwMAAKB4AgAA8GZ33HGH9u7dq/Hjxys9PV0tW7bUkiVLTllwHAAAwASKJwAAAC83fPjwYg+tA0oqJCREEyZMOOVQTAA4Ea8VKC1HYUnOfQcAAAAAAACUUoDpAAAAAAAAAPBNFE8AAAAAAACwBcUTAAAAAAAAbEHxBAAAAAAAAFtQPAEAAAA+KD09XQ899JAaNGigkJAQRUdHq2fPnkpMTCzR42fNmqXw8HB7QwIod/fcc48cDoccDocqVKigyMhIXX/99Zo5c6YKCgpMx4MPongCAAAAfMz27dvVunVrLV++XC+99JI2btyoJUuWqFOnTkpISDAdD4Bh3bp10+7du7V9+3YtXrxYnTp10iOPPKIePXooLy/PdDz4GIonAAAAwMc8+OCDcjgcWrNmjfr06aPGjRuradOmGjVqlL799ltJ0iuvvKJmzZqpSpUqio6O1oMPPqhDhw5JkpKSknTvvfcqKyvLNTPiqaeekiRNmzZNjRo1UsWKFRUZGalbb73V1G4COEchISGKiorShRdeqFatWunvf/+7PvvsMy1evFizZs2SJKWlpalXr16qWrWqQkNDdfvttysjI8NtO88++6wiIiJUrVo1DR48WH/729/UsmVL1/1JSUm68sorVaVKFYWHh6t9+/basWNHOe4pPAHFEwAAAOBD9u/fryVLlighIUFVqlQ55f6iw+cCAgL0+uuva9OmTXr//fe1fPlyPfHEE5Kkq666SlOmTFFoaKh2796t3bt367HHHtN3332nhx9+WBMnTtTWrVu1ZMkSdejQoTx3D4BNOnfurBYtWujTTz9VQUGBevXqpf379ys5OVnLli3T77//rjvuuMM1fvbs2Xruuef04osvat26dapXr57eeust1/15eXnq3bu3rr32Wm3YsEEpKSm6//775XA4TOweDAoyHQAAAABA2fntt99UWFioJk2anHHciBEjXD9fdNFFevbZZzV06FBNmzZNwcHBCgsLk8PhUFRUlGtcWlqaqlSpoh49eqhatWqqX7++Lr/8crt2BUA5a9KkiTZs2KDExERt3LhRqampio6OliR98MEHatq0qdauXasrrrhCb7zxhgYNGqR7771XkjR+/Hh9+eWXrpmTTqdTWVlZ6tGjhy655BJJ0qWXXmpmx2AUM54AAAAAH1JYWFiicV999ZWuu+46XXjhhapWrZruvvtu7du3T0eOHCn2Mddff73q16+vBg0a6O6779bs2bPPOB6AdyksLJTD4dDPP/+s6OhoV+kkSbGxsQoPD9fPP/8sSdq6dauuvPJKt8ef+Hv16tV1zz33KD4+Xj179tRrr72m3bt3l8+OwKNQPAEAAAA+pFGjRnI4HNqyZUuxY7Zv364ePXqoefPm+s9//qN169Zp6tSpkqTc3NxiH1etWjV9//33+vDDD1W7dm2NHz9eLVq0UGZmZlnvBgADfv75Z1188cVltr333ntPKSkpuuqqqzR37lw1btzYtc4c/AfFEwAAAOBDqlevrvj4eE2dOlWHDx8+5f7MzEytW7dOBQUFevnll9WuXTs1btxYu3btchsXHBys/Pz8Ux4fFBSkLl26aPLkydqwYYO2b9+u5cuX27Y/AMrH8uXLtXHjRvXp00eXXnqpdu7cqZ07d7ru37x5szIzMxUbGytJiomJ0dq1a922cfLvknT55ZdrzJgxWrVqlS677DLNmTPH3h2Bx2GNJwAAAMDHTJ06Ve3bt9eVV16piRMnqnnz5srLy9OyZcv01ltv6aOPPtKxY8f0xhtvqGfPnvrmm280ffp0t21cdNFFOnTokBITE9WiRQtVrlxZy5cv1++//64OHTroggsu0KJFi1RQUKCYmBhDewrgXOTk5Cg9PV35+fnKyMjQkiVLNGnSJPXo0UMDBgxQQECAmjVrpn79+mnKlCnKy8vTgw8+qGuvvVZt2rSRJD300EMaMmSI2rRp45rRtGHDBjVo0ECSlJqaqnfeeUc33XST6tSpo61bt+rXX3/VgAEDTO46DHAUlvQgcAAAAABeY/fu3Xruuee0YMEC7d69W7Vq1VLr1q01cuRIdezYUa+++qpeeuklZWZmqkOHDurXr58GDBigAwcOuM58N2zYMM2bN0/79u3ThAkT1KVLF40dO1YbNmxQdna2GjVqpCeffFK333672Z0FUGL33HOP3n//fUnWDMYLLrhALVq00F133aWBAwcqIMA6MCotLU0PPfSQEhMTFRAQoG7duumNN95QZGSka1vPPPOMXn/9dWVnZ+v2229X1apVtWbNGqWkpCgjI0NDhw7V6tWrtW/fPtWuXVsDBw7UhAkTXM8B/0DxBAAAAAAAztv111+vqKgo/etf/zIdBR6EQ+0AAAAAAECpHDlyRNOnT1d8fLwCAwP14Ycf6quvvtKyZctMR4OHYcYTAAAAAAAolaNHj6pnz5764YcflJ2drZiYGI0dO1a33HKL6WjwMBRPAAAAAAAAsAUregEAAAAAAMAWFE8AAAAAAACwBcUTAAAAAAAAbEHxBAAAAAAAAFtQPAEAAACAn3vqqafUsmVLn3keAJ6D4gkAAAAAfEBKSooCAwPVvXv3Uj/2scceU2Jiog2pAPg7iicAAAAA8AEzZszQQw89pJUrV2rXrl2lemzVqlVVo0YNm5IB8GcUTwAAAADg5Q4dOqS5c+dq2LBh6t69u2bNmuW6LykpSQ6HQ4mJiWrTpo0qV66sq666Slu3bnWNOfkQuHvuuUe9e/fW888/r8jISIWHh2vixInKy8vT448/rurVq6tu3bp677333HKMHj1ajRs3VuXKldWgQQONGzdOx44ds3v3AXgwiicAAAAA8HIff/yxmjRpopiYGPXv318zZ85UYWGh25gnn3xSL7/8sr777jsFBQXpvvvuO+M2ly9frl27dmnlypV65ZVXNGHCBPXo0UMXXHCBVq9eraFDh+qBBx7QH3/84XpMtWrVNGvWLG3evFmvvfaa3n33Xb366qu27DMA70DxBAAAAABebsaMGerfv78kqVu3bsrKylJycrLbmOeee07XXnutYmNj9be//U2rVq1SdnZ2sdusXr26Xn/9dcXExOi+++5TTEyMjhw5or///e9q1KiRxowZo+DgYH399deux4wdO1ZXXXWVLrroIvXs2VOPPfaYPv74Y3t2GoBXoHgCAAAAAC+2detWrVmzRnfeeackKSgoSHfccYdmzJjhNq558+aun2vXri1J2rNnT7Hbbdq0qQICjn9kjIyMVLNmzVy/BwYGqkaNGm7bmDt3rtq3b6+oqChVrVpVY8eOVVpa2vntIACvFmQ6AAAAAADg3M2YMUN5eXmqU6eO67bCwkKFhITozTffdN1WoUIF188Oh0OSVFBQUOx2Txxf9JjT3Va0jZSUFPXr109PP/204uPjFRYWpo8++kgvv/zyue8cAK9H8QQAAAAAXiovL08ffPCBXn75ZXXt2tXtvt69e+vDDz9UkyZNyiXLqlWrVL9+fT355JOu23bs2FEuzw3Ac1E8AQAAAICXWrBggQ4cOKBBgwYpLCzM7b4+ffpoxowZeumll8olS6NGjZSWlqaPPvpIV1xxhRYuXKj58+eXy3MD8Fys8QQAAAAAXmrGjBnq0qXLKaWTZBVP3333nTZs2FAuWW666SaNHDlSw4cPV8uWLbVq1SqNGzeuXJ4bgOdyFJ58jk0AAAAAAACgDDDjCQAAAAAAALageAIAAAAAAIAtKJ4AAAAAAABgC4onAAAAAAAA2ILiCQAAAAAAALageAIAAAAAAIAtKJ4AAAAAAABgC4onAAAAAAAA2ILiCQAAAAAAALageAIAAAAAAIAtKJ4AAAAAAABgC4onAAAAAAAA2OL/AWaKL7KUuITeAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.figure(figsize=(15, 8))\n", + "plt.subplot(1, 2, 1)\n", + "plt.pie([len(train_cat_dir), len(train_dog_dir)], labels=['Cats', 'Dogs'], colors = ['blue', 'red'], autopct='%1.1f%%', textprops={'fontsize': 14, 'color': 'white'})\n", + "plt.subplot(1, 2, 2)\n", + "plt.bar(['Cats', 'Dogs'], [len(train_cat_dir), len(train_dog_dir)], color = ['blue', 'red'])\n", + "plt.xlabel('Animal')\n", + "plt.ylabel('count')\n", + "\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Data Cleaning and Proccessing" + ], + "metadata": { + "id": "liW-zja4qPFY" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "n-6weD4ccTuR" + }, + "outputs": [], + "source": [ + "# label dictionary\n", + "dict_labels={'Cat': 0,'Dog': 1}" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "4iZyP_SIFkTG", + "collapsed": true + }, + "outputs": [], + "source": [ + "def clean_dirs(path):\n", + " # Define the list of acceptable image extensions\n", + " image_exts = ['jpeg', 'jpg', 'png']\n", + " # Walk through all directories and files in the dataset\n", + " for root, dirs, files in os.walk(path):\n", + " for file in files:\n", + " # Construct the path to the current file\n", + " file_path = os.path.join(root, file)\n", + "\n", + " try:\n", + " # Check the file type of the current file\n", + " file_type = imghdr.what(file_path)\n", + "\n", + " # If the file extension is not in the allowed list, remove it\n", + " if file_type not in image_exts:\n", + " print(f'Image not in ext list {file_path}')\n", + " os.remove(file_path)\n", + " else:\n", + " # Proceed to process the image if needed, for example, reading it with OpenCV\n", + " img = cv2.imread(file_path)\n", + "\n", + " except Exception as e:\n", + " # Print out the issue and the path of the problematic file\n", + " print(f'Issue with file {file_path}. Error: {e}')\n", + " # Optionally, remove files that cause exceptions\n", + " os.remove(file_path)\n" + ] + }, + { + "cell_type": "code", + "source": [ + "# Path to the directory containing image classes and possibly other nested subdirectories\n", + "train_data_dir = '/content/training_set/training_set'\n", + "test_data_dir = '/content/test_set/test_set'\n", + "\n", + "clean_dirs(train_data_dir)\n", + "clean_dirs(test_data_dir)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0lIyla6xzk", + "outputId": "2edd0b35-056f-4494-a2ef-cd47ea9b431c" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Image not in ext list /content/training_set/training_set/dogs/_DS_Store\n", + "Image not in ext list /content/training_set/training_set/cats/_DS_Store\n", + "Image not in ext list /content/test_set/test_set/dogs/_DS_Store\n", + "Image not in ext list /content/test_set/test_set/cats/_DS_Store\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "dYmiyyIqJjiv", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ab1103ad-2833-4ef3-b513-6796dc561504" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "In training set:\n", + "Cats: 4001\n", + "Dogs: 4006\n", + "\n", + "In test set:\n", + "Cats: 1012\n", + "Dogs: 1013\n" + ] + } + ], + "source": [ + "print(f\"In training set:\\nCats: {len(train_cat_dir)}\\nDogs: {len(train_dog_dir)}\\n\\nIn test set:\\nCats: {len(test_cat_dir)}\\nDogs: {len(test_dog_dir)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "9JdLzCFiJMPM" + }, + "outputs": [], + "source": [ + "train_datagen = ImageDataGenerator(\n", + " rescale=1./255,\n", + " # shear_range=0.2,\n", + " # zoom_range=0.2,\n", + " # horizontal_flip=True,\n", + " # width_shift_range=0.2,\n", + " # height_shift_range=0.2,\n", + " # rotation_range=40\n", + " )\n", + "\n", + "val_datagen = ImageDataGenerator(\n", + " rescale=1./255\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "Uc3hbk76FmRq", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2b96a306-963f-4344-d968-492a2ee085bd" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found 8005 images belonging to 2 classes.\n", + "Found 2023 images belonging to 2 classes.\n" + ] + } + ], + "source": [ + "# Training generator\n", + "train_generator = train_datagen.flow_from_directory(\n", + " train_data_dir,\n", + " target_size=(150, 150),\n", + " color_mode=\"rgb\",\n", + " batch_size=32,\n", + " class_mode=\"binary\",\n", + " shuffle=True,\n", + " seed=42\n", + ")\n", + "\n", + "# Validation generator\n", + "validation_generator = val_datagen.flow_from_directory(\n", + " test_data_dir,\n", + " target_size=(150, 150),\n", + " color_mode=\"rgb\",\n", + " batch_size=32,\n", + " class_mode=\"binary\",\n", + " seed=42\n", + ")\n" + ] + }, + { + "cell_type": "code", + "source": [ + "train_generator.classes.shape, validation_generator.classes.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DEV_q8ee_B-s", + "outputId": "d13fc2d6-1edb-4768-fe34-e17bb29c3f2c" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "((8005,), (2023,))" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# conv_base = ResNet50(\n", + "# include_top=False,\n", + "# weights=\"imagenet\",\n", + "# input_shape=(150, 150, 3)\n", + "# )" + ], + "metadata": { + "id": "aUWVj3lI4rVQ" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# conv_base.trainable = True\n", + "\n", + "# for layer in conv_base.layers[:-50]:\n", + "# layer.trainable = False" + ], + "metadata": { + "id": "lluT6Gns79pf" + }, + "execution_count": 14, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# model = Sequential([\n", + "# conv_base,\n", + "# Dropout(0.2),\n", + "# BatchNormalization(),\n", + "# Flatten(),\n", + "# Dense(64, activation='relu'),\n", + "# BatchNormalization(),\n", + "# Dropout(0.2),\n", + "# Dense(1,activation='sigmoid')\n", + "# ])" + ], + "metadata": { + "id": "QgImmoeM85Oe" + }, + "execution_count": 15, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# VGG16 Architecture - Transfer Learning" + ], + "metadata": { + "id": "Jff4lCgnqav9" + } + }, + { + "cell_type": "code", + "source": [ + "conv_base = VGG16(\n", + " weights='imagenet',\n", + " include_top = False,\n", + " input_shape=(150,150,3)\n", + ")" + ], + "metadata": { + "id": "TA8nSHPz4VQL", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "cafbb72a-f550-4c84-876e-1ddb1e60ede7" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "\u001b[1m58889256/58889256\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "conv_base.trainable = True\n", + "\n", + "set_trainable = False\n", + "\n", + "for layer in conv_base.layers:\n", + " if layer.name == 'block5_conv1':\n", + " set_trainable = True\n", + " if set_trainable:\n", + " layer.trainable = True\n", + " else:\n", + " layer.trainable = False\n", + "\n", + "for layer in conv_base.layers:\n", + " print(layer.name,layer.trainable)" + ], + "metadata": { + "id": "qCW0DFBN4icc", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "623e4d84-06ec-45e3-8de8-3139ab827fdd" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "input_layer False\n", + "block1_conv1 False\n", + "block1_conv2 False\n", + "block1_pool False\n", + "block2_conv1 False\n", + "block2_conv2 False\n", + "block2_pool False\n", + "block3_conv1 False\n", + "block3_conv2 False\n", + "block3_conv3 False\n", + "block3_pool False\n", + "block4_conv1 False\n", + "block4_conv2 False\n", + "block4_conv3 False\n", + "block4_pool False\n", + "block5_conv1 True\n", + "block5_conv2 True\n", + "block5_conv3 True\n", + "block5_pool True\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "99UcQs-NcTdf" + }, + "outputs": [], + "source": [ + "model = Sequential()\n", + "\n", + "model.add(conv_base)\n", + "model.add(Flatten())\n", + "model.add(Dense(256,activation='relu'))\n", + "model.add(Dense(1,activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "source": [ + "model.compile(optimizer=keras.optimizers.RMSprop(learning_rate=1e-7), loss='binary_crossentropy', metrics=['accuracy'])" + ], + "metadata": { + "id": "5yFwhQCu9KbI" + }, + "execution_count": 19, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "path = '/content/catVsdogs.keras'\n", + "\n", + "model_checkpoint = ModelCheckpoint(\n", + "filepath=path,\n", + " monitor='val_loss',\n", + " verbose=1,\n", + " save_best_only=True,\n", + " save_weights_only=False,\n", + " mode='min',\n", + " save_freq='epoch',\n", + ")\n", + "\n", + "model_early_stopping = EarlyStopping(\n", + " monitor='val_loss',\n", + " patience=5,\n", + " verbose=1,\n", + " mode='min',\n", + " restore_best_weights=True,\n", + " start_from_epoch=1\n", + ")" + ], + "metadata": { + "id": "AfyikWWK9PQ_" + }, + "execution_count": 20, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "model.summary()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 257 + }, + "id": "zgQZgwLi9XbV", + "outputId": "b4a76a4d-807d-4892-b4f2-d3f6ff35fa44" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n", + "│ vgg16 (\u001b[38;5;33mFunctional\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m14,714,688\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m2,097,408\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m257\u001b[0m │\n", + "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                          Output Shape                         Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
+              "│ vgg16 (Functional)                   │ (None, 4, 4, 512)           │      14,714,688 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ flatten (Flatten)                    │ (None, 8192)                │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ dense (Dense)                        │ (None, 256)                 │       2,097,408 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ dense_1 (Dense)                      │ (None, 1)                   │             257 │\n",
+              "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m16,812,353\u001b[0m (64.13 MB)\n" + ], + "text/html": [ + "
 Total params: 16,812,353 (64.13 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m9,177,089\u001b[0m (35.01 MB)\n" + ], + "text/html": [ + "
 Trainable params: 9,177,089 (35.01 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m7,635,264\u001b[0m (29.13 MB)\n" + ], + "text/html": [ + "
 Non-trainable params: 7,635,264 (29.13 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "result = model.fit(\n", + " train_generator,\n", + " validation_data=validation_generator,\n", + " epochs=50,\n", + " callbacks=[model_checkpoint, model_early_stopping]\n", + ")\n" + ], + "metadata": { + "id": "p-2J4wUC9S7d", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "8065217f-03f3-4c1a-cadf-1b34a547f452" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", + " self._warn_if_super_not_called()\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - accuracy: 0.5202 - loss: 0.7549\n", + "Epoch 1: val_loss improved from inf to 0.68800, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m44s\u001b[0m 128ms/step - accuracy: 0.5203 - loss: 0.7548 - val_accuracy: 0.5695 - val_loss: 0.6880\n", + "Epoch 2/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - accuracy: 0.5916 - loss: 0.6769\n", + "Epoch 2: val_loss improved from 0.68800 to 0.64486, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 111ms/step - accuracy: 0.5917 - loss: 0.6769 - val_accuracy: 0.6288 - val_loss: 0.6449\n", + "Epoch 3/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - accuracy: 0.6591 - loss: 0.6292\n", + "Epoch 3: val_loss improved from 0.64486 to 0.61878, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m27s\u001b[0m 107ms/step - accuracy: 0.6591 - loss: 0.6292 - val_accuracy: 0.6639 - val_loss: 0.6188\n", + "Epoch 4/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - accuracy: 0.6904 - loss: 0.6066\n", + "Epoch 4: val_loss improved from 0.61878 to 0.59603, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m42s\u001b[0m 111ms/step - accuracy: 0.6905 - loss: 0.6066 - val_accuracy: 0.7064 - val_loss: 0.5960\n", + "Epoch 5/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - accuracy: 0.7245 - loss: 0.5797\n", + "Epoch 5: val_loss improved from 0.59603 to 0.57434, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 114ms/step - accuracy: 0.7245 - loss: 0.5797 - val_accuracy: 0.7336 - val_loss: 0.5743\n", + "Epoch 6/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.7462 - loss: 0.5604\n", + "Epoch 6: val_loss improved from 0.57434 to 0.55358, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 111ms/step - accuracy: 0.7462 - loss: 0.5604 - val_accuracy: 0.7538 - val_loss: 0.5536\n", + "Epoch 7/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.7624 - loss: 0.5428\n", + "Epoch 7: val_loss improved from 0.55358 to 0.53392, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 114ms/step - accuracy: 0.7625 - loss: 0.5427 - val_accuracy: 0.7672 - val_loss: 0.5339\n", + "Epoch 8/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.7737 - loss: 0.5221\n", + "Epoch 8: val_loss improved from 0.53392 to 0.51520, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 114ms/step - accuracy: 0.7738 - loss: 0.5221 - val_accuracy: 0.7845 - val_loss: 0.5152\n", + "Epoch 9/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.7996 - loss: 0.5019\n", + "Epoch 9: val_loss improved from 0.51520 to 0.49747, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 114ms/step - accuracy: 0.7996 - loss: 0.5019 - val_accuracy: 0.7963 - val_loss: 0.4975\n", + "Epoch 10/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.8074 - loss: 0.4857\n", + "Epoch 10: val_loss improved from 0.49747 to 0.48027, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 114ms/step - accuracy: 0.8074 - loss: 0.4857 - val_accuracy: 0.8052 - val_loss: 0.4803\n", + "Epoch 11/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.8109 - loss: 0.4659\n", + "Epoch 11: val_loss improved from 0.48027 to 0.46424, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 114ms/step - accuracy: 0.8109 - loss: 0.4659 - val_accuracy: 0.8131 - val_loss: 0.4642\n", + "Epoch 12/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.8255 - loss: 0.4468\n", + "Epoch 12: val_loss improved from 0.46424 to 0.44946, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 111ms/step - accuracy: 0.8255 - loss: 0.4468 - val_accuracy: 0.8176 - val_loss: 0.4495\n", + "Epoch 13/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.8320 - loss: 0.4325\n", + "Epoch 13: val_loss improved from 0.44946 to 0.43567, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 113ms/step - accuracy: 0.8320 - loss: 0.4325 - val_accuracy: 0.8230 - val_loss: 0.4357\n", + "Epoch 14/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - accuracy: 0.8374 - loss: 0.4194\n", + "Epoch 14: val_loss improved from 0.43567 to 0.42301, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 108ms/step - accuracy: 0.8374 - loss: 0.4194 - val_accuracy: 0.8285 - val_loss: 0.4230\n", + "Epoch 15/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - accuracy: 0.8397 - loss: 0.4037\n", + "Epoch 15: val_loss improved from 0.42301 to 0.41107, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 112ms/step - accuracy: 0.8397 - loss: 0.4037 - val_accuracy: 0.8324 - val_loss: 0.4111\n", + "Epoch 16/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - accuracy: 0.8462 - loss: 0.3925\n", + "Epoch 16: val_loss improved from 0.41107 to 0.40028, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 110ms/step - accuracy: 0.8462 - loss: 0.3925 - val_accuracy: 0.8344 - val_loss: 0.4003\n", + "Epoch 17/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - accuracy: 0.8497 - loss: 0.3809\n", + "Epoch 17: val_loss improved from 0.40028 to 0.39020, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 110ms/step - accuracy: 0.8497 - loss: 0.3809 - val_accuracy: 0.8364 - val_loss: 0.3902\n", + "Epoch 18/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - accuracy: 0.8553 - loss: 0.3737\n", + "Epoch 18: val_loss improved from 0.39020 to 0.38100, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 109ms/step - accuracy: 0.8553 - loss: 0.3737 - val_accuracy: 0.8393 - val_loss: 0.3810\n", + "Epoch 19/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - accuracy: 0.8569 - loss: 0.3612\n", + "Epoch 19: val_loss improved from 0.38100 to 0.37222, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 110ms/step - accuracy: 0.8569 - loss: 0.3611 - val_accuracy: 0.8413 - val_loss: 0.3722\n", + "Epoch 20/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.8558 - loss: 0.3543\n", + "Epoch 20: val_loss improved from 0.37222 to 0.36425, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 112ms/step - accuracy: 0.8558 - loss: 0.3543 - val_accuracy: 0.8443 - val_loss: 0.3643\n", + "Epoch 21/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - accuracy: 0.8647 - loss: 0.3433\n", + "Epoch 21: val_loss improved from 0.36425 to 0.35645, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 109ms/step - accuracy: 0.8647 - loss: 0.3433 - val_accuracy: 0.8478 - val_loss: 0.3565\n", + "Epoch 22/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - accuracy: 0.8738 - loss: 0.3282\n", + "Epoch 22: val_loss improved from 0.35645 to 0.34931, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 112ms/step - accuracy: 0.8737 - loss: 0.3282 - val_accuracy: 0.8482 - val_loss: 0.3493\n", + "Epoch 23/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - accuracy: 0.8692 - loss: 0.3229\n", + "Epoch 23: val_loss improved from 0.34931 to 0.34282, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 108ms/step - accuracy: 0.8692 - loss: 0.3229 - val_accuracy: 0.8542 - val_loss: 0.3428\n", + "Epoch 24/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - accuracy: 0.8703 - loss: 0.3176\n", + "Epoch 24: val_loss improved from 0.34282 to 0.33662, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 109ms/step - accuracy: 0.8703 - loss: 0.3176 - val_accuracy: 0.8557 - val_loss: 0.3366\n", + "Epoch 25/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - accuracy: 0.8789 - loss: 0.3069\n", + "Epoch 25: val_loss improved from 0.33662 to 0.33074, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 110ms/step - accuracy: 0.8788 - loss: 0.3069 - val_accuracy: 0.8571 - val_loss: 0.3307\n", + "Epoch 26/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - accuracy: 0.8741 - loss: 0.3112\n", + "Epoch 26: val_loss improved from 0.33074 to 0.32535, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 107ms/step - accuracy: 0.8741 - loss: 0.3112 - val_accuracy: 0.8591 - val_loss: 0.3254\n", + "Epoch 27/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - accuracy: 0.8906 - loss: 0.2943\n", + "Epoch 27: val_loss improved from 0.32535 to 0.31990, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m27s\u001b[0m 108ms/step - accuracy: 0.8905 - loss: 0.2943 - val_accuracy: 0.8586 - val_loss: 0.3199\n", + "Epoch 28/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - accuracy: 0.8818 - loss: 0.2939\n", + "Epoch 28: val_loss improved from 0.31990 to 0.31523, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m27s\u001b[0m 108ms/step - accuracy: 0.8818 - loss: 0.2939 - val_accuracy: 0.8611 - val_loss: 0.3152\n", + "Epoch 29/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - accuracy: 0.8887 - loss: 0.2856\n", + "Epoch 29: val_loss improved from 0.31523 to 0.31065, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 110ms/step - accuracy: 0.8887 - loss: 0.2856 - val_accuracy: 0.8636 - val_loss: 0.3107\n", + "Epoch 30/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.8912 - loss: 0.2761\n", + "Epoch 30: val_loss improved from 0.31065 to 0.30629, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m42s\u001b[0m 114ms/step - accuracy: 0.8912 - loss: 0.2762 - val_accuracy: 0.8660 - val_loss: 0.3063\n", + "Epoch 31/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.8866 - loss: 0.2868\n", + "Epoch 31: val_loss improved from 0.30629 to 0.30227, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m46s\u001b[0m 134ms/step - accuracy: 0.8866 - loss: 0.2868 - val_accuracy: 0.8675 - val_loss: 0.3023\n", + "Epoch 32/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - accuracy: 0.8901 - loss: 0.2765\n", + "Epoch 32: val_loss improved from 0.30227 to 0.29864, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m36s\u001b[0m 112ms/step - accuracy: 0.8901 - loss: 0.2765 - val_accuracy: 0.8690 - val_loss: 0.2986\n", + "Epoch 33/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - accuracy: 0.8917 - loss: 0.2690\n", + "Epoch 33: val_loss improved from 0.29864 to 0.29462, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 115ms/step - accuracy: 0.8917 - loss: 0.2690 - val_accuracy: 0.8735 - val_loss: 0.2946\n", + "Epoch 34/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.8832 - loss: 0.2717\n", + "Epoch 34: val_loss improved from 0.29462 to 0.29116, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 113ms/step - accuracy: 0.8832 - loss: 0.2717 - val_accuracy: 0.8739 - val_loss: 0.2912\n", + "Epoch 35/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.8909 - loss: 0.2664\n", + "Epoch 35: val_loss improved from 0.29116 to 0.28803, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 113ms/step - accuracy: 0.8909 - loss: 0.2664 - val_accuracy: 0.8735 - val_loss: 0.2880\n", + "Epoch 36/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.8937 - loss: 0.2575\n", + "Epoch 36: val_loss improved from 0.28803 to 0.28475, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m47s\u001b[0m 135ms/step - accuracy: 0.8937 - loss: 0.2575 - val_accuracy: 0.8754 - val_loss: 0.2848\n", + "Epoch 37/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.8928 - loss: 0.2620\n", + "Epoch 37: val_loss improved from 0.28475 to 0.28186, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 112ms/step - accuracy: 0.8928 - loss: 0.2619 - val_accuracy: 0.8759 - val_loss: 0.2819\n", + "Epoch 38/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.9014 - loss: 0.2475\n", + "Epoch 38: val_loss improved from 0.28186 to 0.27903, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 113ms/step - accuracy: 0.9014 - loss: 0.2475 - val_accuracy: 0.8779 - val_loss: 0.2790\n", + "Epoch 39/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - accuracy: 0.9007 - loss: 0.2483\n", + "Epoch 39: val_loss improved from 0.27903 to 0.27644, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 117ms/step - accuracy: 0.9007 - loss: 0.2483 - val_accuracy: 0.8784 - val_loss: 0.2764\n", + "Epoch 40/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - accuracy: 0.9024 - loss: 0.2373\n", + "Epoch 40: val_loss improved from 0.27644 to 0.27375, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m39s\u001b[0m 111ms/step - accuracy: 0.9024 - loss: 0.2374 - val_accuracy: 0.8799 - val_loss: 0.2738\n", + "Epoch 41/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - accuracy: 0.8936 - loss: 0.2480\n", + "Epoch 41: val_loss improved from 0.27375 to 0.27095, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 116ms/step - accuracy: 0.8936 - loss: 0.2480 - val_accuracy: 0.8838 - val_loss: 0.2710\n", + "Epoch 42/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - accuracy: 0.9004 - loss: 0.2413\n", + "Epoch 42: val_loss improved from 0.27095 to 0.26860, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 111ms/step - accuracy: 0.9004 - loss: 0.2413 - val_accuracy: 0.8833 - val_loss: 0.2686\n", + "Epoch 43/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - accuracy: 0.9015 - loss: 0.2333\n", + "Epoch 43: val_loss improved from 0.26860 to 0.26632, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m42s\u001b[0m 114ms/step - accuracy: 0.9015 - loss: 0.2334 - val_accuracy: 0.8838 - val_loss: 0.2663\n", + "Epoch 44/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.8966 - loss: 0.2419\n", + "Epoch 44: val_loss improved from 0.26632 to 0.26422, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 112ms/step - accuracy: 0.8966 - loss: 0.2419 - val_accuracy: 0.8858 - val_loss: 0.2642\n", + "Epoch 45/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.9017 - loss: 0.2354\n", + "Epoch 45: val_loss improved from 0.26422 to 0.26232, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m47s\u001b[0m 134ms/step - accuracy: 0.9017 - loss: 0.2354 - val_accuracy: 0.8858 - val_loss: 0.2623\n", + "Epoch 46/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - accuracy: 0.9063 - loss: 0.2283\n", + "Epoch 46: val_loss improved from 0.26232 to 0.26019, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 114ms/step - accuracy: 0.9063 - loss: 0.2283 - val_accuracy: 0.8868 - val_loss: 0.2602\n", + "Epoch 47/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - accuracy: 0.9046 - loss: 0.2320\n", + "Epoch 47: val_loss improved from 0.26019 to 0.25777, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 112ms/step - accuracy: 0.9046 - loss: 0.2320 - val_accuracy: 0.8913 - val_loss: 0.2578\n", + "Epoch 48/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - accuracy: 0.9073 - loss: 0.2205\n", + "Epoch 48: val_loss improved from 0.25777 to 0.25570, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 118ms/step - accuracy: 0.9073 - loss: 0.2205 - val_accuracy: 0.8917 - val_loss: 0.2557\n", + "Epoch 49/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - accuracy: 0.9078 - loss: 0.2186\n", + "Epoch 49: val_loss improved from 0.25570 to 0.25390, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 112ms/step - accuracy: 0.9078 - loss: 0.2186 - val_accuracy: 0.8927 - val_loss: 0.2539\n", + "Epoch 50/50\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - accuracy: 0.9141 - loss: 0.2204\n", + "Epoch 50: val_loss improved from 0.25390 to 0.25222, saving model to /content/catVsdogs.keras\n", + "\u001b[1m251/251\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 116ms/step - accuracy: 0.9141 - loss: 0.2204 - val_accuracy: 0.8922 - val_loss: 0.2522\n", + "Restoring model weights from the end of the best epoch: 50.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Accuracy and Loss Graph" + ], + "metadata": { + "id": "vHg_7VYkquKZ" + } + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "_5n1IbAacxVl", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 584 + }, + "outputId": "a7dab513-dbcd-408b-b088-b4bb2b363d3e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNoAAAIjCAYAAADVxnahAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZj0lEQVR4nOzdd3gUVRfH8e8mpIeEFkKVLr03aSJKVwREurRXAakKYkE6KCgIooiiCIgK0kQsdFBUioBgAUF67z2UkJDNvH9ck7AkQAJJJuX3eZ55dnd2ZvZsSfbO2XvvcViWZSEiIiIiIiIiIiL3xc3uAERERERERERERNICJdpEREREREREREQSgRJtIiIiIiIiIiIiiUCJNhERERERERERkUSgRJuIiIiIiIiIiEgiUKJNREREREREREQkESjRJiIiIiIiIiIikgiUaBMREREREREREUkESrSJiIiIiIiIiIgkAiXaRG7RuXNn8ufPf0/7Dh8+HIfDkbgBpTAHDx7E4XDw2WefJftjOxwOhg8fHn37s88+w+FwcPDgwbvumz9/fjp37pyo8dzPZ0Xkbh555BFKlSpldxgiIhIPaj/emdqPMexqP9r5HqRmUZ+X33//3e5QJBVRok1SDYfDEa9lzZo1doea7vXt2xeHw8HevXtvu82gQYNwOBz8/fffyRhZwh0/fpzhw4fz559/2h1KnHbu3InD4cDb25uLFy/aHU6qExYWxqRJk6hZsyaZM2fG09OTXLly8eSTT/LVV1/hdDrtDlFERO6D2o+ph9qP6duvv/5Kq1atyJ07N56engQGBlK1alVGjhzJqVOn7A5PJEEy2B2ASHx98cUXLrc///xzVq5cGWt98eLF7+txpk6dSmRk5D3tO3jwYF577bX7evy0oH379kyaNInZs2czdOjQOLf56quvKF26NGXKlLnnx+nQoQNt2rTBy8vrno9xN8ePH2fEiBHkz5+fcuXKudx3P5+VxPLll1+SI0cOLly4wIIFC3juuedsjSc1OXPmDI0aNWLLli00aNCAwYMHkyVLFk6ePMmqVato164de/fuZciQIXaHKiIi90jtx9RD7cf0a+jQoYwaNYqCBQvSuXNnChYsyPXr19myZQvjx49n5syZ7Nu3z+4wReJNiTZJNZ555hmX27/99hsrV66Mtf5W165dw9fXN96P4+HhcU/xAWTIkIEMGfRnVbVqVQoXLsxXX30VZ0Npw4YNHDhwgLfeeuu+Hsfd3R13d/f7Osb9uJ/PSmKwLIvZs2fTrl07Dhw4wKxZs1Jsou3q1av4+fnZHYaLDh068Mcff/D111/z1FNPudw3cOBAfv/9d3bt2nXHY1y/fh1PT0/c3NRBXEQkJVL7MfVQ+zF9mjt3LqNGjaJVq1Z88cUXeHp6utz/7rvv8u67797xGJZlcf36dXx8fJIyVJF405mBpClRcxpt2bKFhx9+GF9fX15//XUAvv32Wx5//HFy5cqFl5cXhQoVYtSoUbGGht06b0LUfAbvvPMOn3zyCYUKFcLLy4vKlSuzefNml33jmmPD4XDQu3dvFi1aRKlSpfDy8qJkyZIsW7YsVvxr1qyhUqVKeHt7U6hQIT7++ON4z9vx66+/0rJlSx544AG8vLzImzcv/fr1IzQ0NNbz8/f359ixYzRr1gx/f3+CgoIYMGBArNfi4sWLdO7cmcDAQDJlykSnTp3iPTyxffv2/Pvvv2zdujXWfbNnz8bhcNC2bVvCw8MZOnQoFStWJDAwED8/P2rVqsVPP/1018eIa44Ny7J44403yJMnD76+vtSpU4d//vkn1r7nz59nwIABlC5dGn9/fwICAmjUqBF//fVX9DZr1qyhcuXKAHTp0iV6eEnU3BZxzbFx9epVXnrpJfLmzYuXlxdFixblnXfewbIsl+0S8rm4nXXr1nHw4EHatGlDmzZt+OWXXzh69Gis7SIjI3nvvfcoXbo03t7eBAUF0bBhw1hzTXz55ZdUqVIFX19fMmfOzMMPP8yKFStcYr55jpMot85fEvW+/Pzzz/Ts2ZPs2bOTJ08eAA4dOkTPnj0pWrQoPj4+ZM2alZYtW8Y5T8rFixfp168f+fPnx8vLizx58tCxY0fOnj3LlStX8PPz44UXXoi139GjR3F3d2fMmDG3fe02bNjA8uXL6datW6wkW5RKlSrRvn376Ntr1qzB4XAwZ84cBg8eTO7cufH19SUkJCRen6ebjzF37lxef/11cuTIgZ+fH08++SRHjhyJM44dO3ZQp04dfH19yZ07N2PHjr3t8xIRkYRT+1Htx/TUfrzVjz/+SK1atfDz8yNTpkw0bdqUnTt3umxz+fJlXnzxxeg2Wfbs2alXr57L+7Rnzx5atGhBjhw58Pb2Jk+ePLRp04ZLly7d8fGHDh1KtmzZmDZtWqwkG0BgYGCs9mf+/Pl54oknWL58OZUqVcLHx4ePP/4YgBkzZvDoo4+SPXt2vLy8KFGiBB999FGs40YdY8WKFZQrVw5vb29KlCjBwoUL44wzLCyM/v37ExQUhJ+fH82bN+fMmTN3fG6SfumnE0lzzp07R6NGjWjTpg3PPPMMwcHBgPlS9ff3p3///vj7+/Pjjz8ydOhQQkJCGDdu3F2PO3v2bC5fvkz37t1xOByMHTuWp556iv3799/1l6m1a9eycOFCevbsScaMGXn//fdp0aIFhw8fJmvWrAD88ccfNGzYkJw5czJixAicTicjR44kKCgoXs97/vz5XLt2jR49epA1a1Y2bdrEpEmTOHr0KPPnz3fZ1ul00qBBA6pWrco777zDqlWrGD9+PIUKFaJHjx6AaXA0bdqUtWvX8vzzz1O8eHG++eYbOnXqFK942rdvz4gRI5g9ezYVKlRweex58+ZRq1YtHnjgAc6ePcunn35K27Zt6dq1K5cvX2batGk0aNCATZs2xepufzdDhw7ljTfeoHHjxjRu3JitW7dSv359wsPDXbbbv38/ixYtomXLlhQoUIBTp07x8ccfU7t2bXbs2EGuXLkoXrw4I0eOZOjQoXTr1o1atWoBUL169Tgf27IsnnzySX766SeeffZZypUrx/Lly3n55Zc5duxYrF/j4vO5uJNZs2ZRqFAhKleuTKlSpfD19eWrr77i5Zdfdtnu2Wef5bPPPqNRo0Y899xzRERE8Ouvv/Lbb79RqVIlAEaMGMHw4cOpXr06I0eOxNPTk40bN/Ljjz9Sv379eL/+N+vZsydBQUEMHTqUq1evArB582bWr19PmzZtyJMnDwcPHuSjjz7ikUceYceOHdG9B65cuUKtWrXYuXMn//vf/6hQoQJnz57lu+++4+jRo5QrV47mzZszd+5cJkyY4PLL9FdffYVlWS5Jslt9//33QOyeDvExatQoPD09GTBgAGFhYXh6erJjx467fp5u9uabb+JwOHj11Vc5ffo0EydOpG7duvz5558uv8ZeuHCBhg0b8tRTT9GqVSsWLFjAq6++SunSpWnUqFGCYxcRkbip/aj2Y3ppP95s1apVNGrUiIIFCzJ8+HBCQ0OZNGkSNWrUYOvWrdEJweeff54FCxbQu3dvSpQowblz51i7di07d+6kQoUKhIeH06BBA8LCwujTpw85cuTg2LFj/PDDD1y8eJHAwMA4H3/37t3s3r2b5557Dn9//wTFvmvXLtq2bUv37t3p2rUrRYsWBeCjjz6iZMmSPPnkk2TIkIHvv/+enj17EhkZSa9evVyOsWfPHlq3bs3zzz9Pp06dmDFjBi1btmTZsmXUq1fPZds+ffqQOXNmhg0bxsGDB5k4cSK9e/dm7ty5CYpb0glLJJXq1auXdetHuHbt2hZgTZkyJdb2165di7Wue/fulq+vr3X9+vXodZ06dbLy5csXffvAgQMWYGXNmtU6f/589Ppvv/3WAqzvv/8+et2wYcNixQRYnp6e1t69e6PX/fXXXxZgTZo0KXpdkyZNLF9fX+vYsWPR6/bs2WNlyJAh1jHjEtfzGzNmjOVwOKxDhw65PD/AGjlypMu25cuXtypWrBh9e9GiRRZgjR07NnpdRESEVatWLQuwZsyYcdeYKleubOXJk8dyOp3R65YtW2YB1scffxx9zLCwMJf9Lly4YAUHB1v/+9//XNYD1rBhw6Jvz5gxwwKsAwcOWJZlWadPn7Y8PT2txx9/3IqMjIze7vXXX7cAq1OnTtHrrl+/7hKXZZn32svLy+W12bx5822f762flajX7I033nDZ7umnn7YcDofLZyC+n4vbCQ8Pt7JmzWoNGjQoel27du2ssmXLumz3448/WoDVt2/fWMeIeo327Nljubm5Wc2bN4/1mtz8Ot76+kfJly+fy2sb9b7UrFnTioiIcNk2rs/phg0bLMD6/PPPo9cNHTrUAqyFCxfeNu7ly5dbgLV06VKX+8uUKWPVrl071n43a968uQVYFy9edFkfGhpqnTlzJnq5cOFC9H0//fSTBVgFCxaM9Tzi+3mKOkbu3LmtkJCQ6PXz5s2zAOu9996LXhf1/+zm1yUsLMzKkSOH1aJFizs+PxERiZvaj3d/fmo/Gmmt/Rj1mbw5pnLlylnZs2e3zp0753I8Nzc3q2PHjtHrAgMDrV69et322H/88YcFWPPnz79jDLeK+nuYOHGiy/rIyEiX9tiZM2esGzduRN+fL18+C7CWLVsW65hxfaYbNGhgFSxY0GVd1DG+/vrr6HWXLl2ycubMaZUvXz56XdTnpW7dui6fj379+lnu7u6x2pIilmVZGjoqaY6XlxddunSJtf7mXiKXL1/m7Nmz1KpVi2vXrvHvv//e9bitW7cmc+bM0bejfp3av3//XfetW7cuhQoVir5dpkwZAgICovd1Op2sWrWKZs2aufR8KVy4cLx7rdz8/K5evcrZs2epXr06lmXxxx9/xNr++eefd7ldq1Ytl+eyZMkSMmTIEP0LJZg5Lfr06ROveMD0Fjp69Ci//PJL9LrZs2fj6elJy5Yto48Z1U08MjKS8+fPExERQaVKleIcNnAnq1atIjw8nD59+rgMl3jxxRdjbevl5RU9r5bT6eTcuXP4+/tTtGjRBD9ulCVLluDu7k7fvn1d1r/00ktYlsXSpUtd1t/tc3EnS5cu5dy5c7Rt2zZ6Xdu2bfnrr79chjp8/fXXOBwOhg0bFusYUa/RokWLiIyMZOjQobHmGovPsJPb6dq1a6w5UG7+nN64cYNz585RuHBhMmXK5PK6f/3115QtW5bmzZvfNu66deuSK1cuZs2aFX3f9u3b+fvvv+/aUy0kJAQg1q+nU6ZMISgoKHqpWbNmrH07deoUaw6QhH6eOnbsSMaMGaNvP/300+TMmZMlS5a4bOfv7+/yXDw9PalSpUq8PiMiIhJ/aj+q/Zge2o83O3HiBH/++SedO3cmS5YsLserV6+eS5skU6ZMbNy4kePHj8d5rKgea8uXL+fatWvxjuF27bFLly65tMeCgoJiVXAtUKAADRo0iHXMmz/Tly5d4uzZs9SuXZv9+/fHGsaaK1cul7ZmQEAAHTt25I8//uDkyZMu23br1s3l81GrVi2cTieHDh2K9/OV9EOJNklzokpC3+qff/6hefPmBAYGEhAQQFBQUPQJ7N3mDgB44IEHXG5HNZouXLiQ4H2j9o/a9/Tp04SGhlK4cOFY28W1Li6HDx+O/qKMmjejdu3aQOznFzVP1+3iATOXVs6cOWN98UV1y46PNm3a4O7uzuzZswEzcfw333xDo0aNXBqdM2fOpEyZMnh7e5M1a1aCgoJYvHhxvN6Xm0V90RUpUsRlfVBQkMvjgWmUvfvuuxQpUgQvLy+yZctGUFAQf//9d4If9+bHz5Url0sCBWIqmd36RXy3z8WdfPnllxQoUAAvLy/27t3L3r17KVSoEL6+vi6Jp3379pErVy6XBtSt9u3bh5ubGyVKlLjr4yZEgQIFYq0LDQ1l6NCh0XOQRL3uFy9edHnd9+3bR6lSpe54fDc3N9q3b8+iRYuiG3WzZs3C29s7uiF+O1Hv0ZUrV1zWt2jRgpUrV7Jy5crbVjSL63kl9PN062fU4XBQuHDhWHPV5cmTJ1ayM76fERERiT+1H9V+TA/tx1sfF+J+b4oXL87Zs2ejp/4YO3Ys27dvJ2/evFSpUoXhw4e7JPYKFChA//79+fTTT8mWLRsNGjRg8uTJd31Nbtce8/f3j26P3Tolys2PGZd169ZRt27d6DnngoKCoudcvDWewoULx2pnPfjggwCx2mT387cs6Y8SbZLmxFVt5uLFi9SuXZu//vqLkSNH8v3337Ny5UrefvttgHiV2L5ddSLrlklKE3vf+HA6ndSrV4/Fixfz6quvsmjRIlauXBk96eqtzy+5Ki1FTZT69ddfc+PGDb7//nsuX77sMnfWl19+SefOnSlUqBDTpk1j2bJlrFy5kkcffTRJS5+PHj2a/v378/DDD/Pll1+yfPlyVq5cScmSJZOt5Pq9fi5CQkL4/vvvOXDgAEWKFIleSpQowbVr15g9e3aifbbi49ZJkKPE9bfYp08f3nzzTVq1asW8efNYsWIFK1euJGvWrPf0unfs2JErV66waNGi6CqsTzzxxG3nAolSrFgxwPSAu1nevHmpW7cudevWjdW4vtPzSqrPU1L/7xAREUPtR7Uf4yM1tx/vR6tWrdi/fz+TJk0iV65cjBs3jpIlS7r0ths/fjx///03r7/+OqGhofTt25eSJUvGWagryu3aYxkyZIhuj93uh+C4/mb37dvHY489xtmzZ5kwYQKLFy9m5cqV9OvXD4jf3+ztqE0mCaFiCJIurFmzhnPnzrFw4UIefvjh6PUHDhywMaoY2bNnx9vbm71798a6L651t9q2bRu7d+9m5syZdOzYMXr9ypUr7zmmfPnysXr1aq5cueLyq+SuXbsSdJz27duzbNkyli5dyuzZswkICKBJkybR9y9YsICCBQuycOFCl1+U4hrqGJ+YwUxsWrBgwej1Z86cifVr04IFC6hTpw7Tpk1zWX/x4kWyZcsWfTshQyfz5cvHqlWruHz5ssuvklFDS6Liu18LFy7k+vXrfPTRRy6xgnl/Bg8ezLp166hZsyaFChVi+fLlnD9//ra92goVKkRkZCQ7duy44+TBmTNnjlU1LDw8nBMnTsQ79gULFtCpUyfGjx8fve769euxjluoUKFYja64lCpVivLlyzNr1izy5MnD4cOHmTRp0l33e+KJJ3jrrbeYNWsWNWrUiHf8txPfz1OUPXv2uNy2LIu9e/fethediIgkP7UfE07tRyMlth/jelyI+735999/yZYtG35+ftHrcubMSc+ePenZsyenT5+mQoUKvPnmmy7DlEuXLk3p0qUZPHgw69evp0aNGkyZMoU33ngjzhiKFi1KkSJFWLRoERMnTnR5vHvx/fffExYWxnfffefSA+121Wj37t2LZVku79fu3bsBYlWGFUkI9WiTdCHqF4ibf3EIDw/nww8/tCskF+7u7tStW5dFixa5zH2wd+/eWPMy3G5/cH1+lmXx3nvv3XNMjRs3JiIiwqUcttPpjFcS42bNmjXD19eXDz/8kKVLl/LUU0/h7e19x9g3btzIhg0bEhxz3bp18fDwYNKkSS7HmzhxYqxt3d3dY/0CNX/+fI4dO+ayLuoLPz5l6Rs3bozT6eSDDz5wWf/uu+/icDgSrUrkl19+ScGCBXn++ed5+umnXZYBAwbg7+8fPXy0RYsWWJbFiBEjYh0n6vk3a9YMNzc3Ro4cGeuXvptfo0KFCrnMlwLwySef3LZHW1ziet0nTZoU6xgtWrTgr7/+4ptvvrlt3FE6dOjAihUrmDhxIlmzZo3X61yjRg3q1avHJ598wrfffhvnNgn5hTK+n6con3/+OZcvX46+vWDBAk6cOKFKoiIiKYjajwmn9qOREtuPt8qZMyflypVj5syZLnFu376dFStW0LhxY8C8f7cOucyePTu5cuUiLCwMMKMtIiIiXLYpXbo0bm5u0dvczvDhwzl79ixdu3blxo0bse5PaHvs1n0uXbrEjBkz4tz++PHjLm3NkJAQPv/8c8qVK0eOHDni/bgit1KPNkkXqlevTubMmenUqRN9+/bF4XDwxRdfpKiuvsOHD2fFihXUqFGDHj16RH/hlipVKtbkn7cqVqwYhQoVYsCAARw7doyAgAC+/vrr+5ozoEmTJtSoUYPXXnuNgwcPUqJECRYuXJjg+Sf8/f1p1qxZ9DwbN3f7B9OzaOHChTRv3pzHH3+cAwcOMGXKFEqUKBFrvoa7CQoKYsCAAYwZM4YnnniCxo0b88cff7B06dJYvYqeeOIJRo4cSZcuXahevTrbtm1j1qxZLr9kgkkuZcqUiSlTppAxY0b8/PyoWrVqnPNCNGnShDp16jBo0CAOHjxI2bJlWbFiBd9++y0vvviiy8S19+r48eP89NNPsSbMjeLl5UWDBg2YP38+77//PnXq1KFDhw68//777Nmzh4YNGxIZGcmvv/5KnTp16N27N4ULF2bQoEGMGjWKWrVq8dRTT+Hl5cXmzZvJlSsXY8aMAeC5557j+eefp0WLFtSrV4+//vqL5cuXx9lj63aeeOIJvvjiCwIDAylRogQbNmxg1apVscrRv/zyyyxYsICWLVvyv//9j4oVK3L+/Hm+++47pkyZQtmyZaO3bdeuHa+88grffPMNPXr0wMPDI16xfPnllzRs2JBmzZrRqFGj6OGiJ0+eZNWqVfzyyy/xbtzG9/MUJUuWLNSsWZMuXbpw6tQpJk6cSOHChenatWu8Hk9ERJKe2o8Jp/ajkdLaj7czbtw4GjVqRLVq1Xj22WcJDQ1l0qRJBAYGMnz4cMAUAcmTJw9PP/00ZcuWxd/fn1WrVrF58+boEQo//vgjvXv3pmXLljz44INERETwxRdf4O7uTosWLe4YQ7t27di+fTtjxoxh06ZNtGnThgIFCnD16lW2b9/OV199RcaMGW87pcfN6tevj6enJ02aNKF79+5cuXKFqVOnkj179jhHYDz44IM8++yzbN68meDgYKZPn86pU6dum5gTibckrGgqkqRuV569ZMmScW6/bt0666GHHrJ8fHysXLlyWa+88oq1fPlyC7B++umn6O1uV5593LhxsY7JLeXCb1eePa5y2Pny5XMpF25ZlrV69WqrfPnylqenp1WoUCHr008/tV566SXL29v7Nq9CjB07dlh169a1/P39rWzZslldu3aNLvd9cxnvTp06WX5+frH2jyv2c+fOWR06dLACAgKswMBAq0OHDtHlu+NTnj3K4sWLLcDKmTNnrJLokZGR1ujRo618+fJZXl5eVvny5a0ffvgh1vtgWXcvz25ZluV0Oq0RI0ZYOXPmtHx8fKxHHnnE2r59e6zX+/r169ZLL70UvV2NGjWsDRs2WLVr17Zq167t8rjffvutVaJECStDhgwuzz2uGC9fvmz169fPypUrl+Xh4WEVKVLEGjdunEs58KjnEt/Pxc3Gjx9vAdbq1atvu81nn31mAda3335rWZZlRUREWOPGjbOKFStmeXp6WkFBQVajRo2sLVu2uOw3ffp0q3z58paXl5eVOXNmq3bt2tbKlSuj73c6ndarr75qZcuWzfL19bUaNGhg7d27N1bMUe/L5s2bY8V24cIFq0uXLla2bNksf39/q0GDBta///4b5/M+d+6c1bt3byt37tyWp6enlSdPHqtTp07W2bNnYx23cePGFmCtX7/+tq9LXEJDQ62JEyda1apVswICAqwMGTJYOXLksJ544glr1qxZVkRERPS2P/30021L18f38xR1jK+++soaOHCglT17dsvHx8d6/PHHrUOHDrkc83b/z+L63ImISPyo/ehK7UcjrbcfLSvmM3nre7Bq1SqrRo0alo+PjxUQEGA1adLE2rFjR/T9YWFh1ssvv2yVLVvWypgxo+Xn52eVLVvW+vDDD6O32b9/v/W///3PKlSokOXt7W1lyZLFqlOnjrVq1ao7xnSzNWvWWE8//bSVM2dOy8PDwwoICLAqVapkDRs2zDpx4kSs5/v444/HeZzvvvvOKlOmjOXt7W3lz5/fevvtt63p06fHes+jjrF8+XKrTJkylpeXl1WsWLFY7bzbtWuj2nQ3/x8QieKwrBT0k4yIxNKsWTP++eefWHM6iUiM5s2bs23btnjNSWOnNWvWUKdOHebPn8/TTz9tdzgiIpJGqf0ocmf58+enVKlS/PDDD3aHImmQ5mgTSUFCQ0Ndbu/Zs4clS5bwyCOP2BOQSCpw4sQJFi9eTIcOHewORUREJNmp/SgikrJojjaRFKRgwYJ07tyZggULcujQIT766CM8PT155ZVX7A5NJMU5cOAA69at49NPP8XDw4Pu3bvbHZKIiEiyU/tRRCRlUaJNJAVp2LAhX331FSdPnsTLy4tq1aoxevRoihQpYndoIinOzz//TJcuXXjggQeYOXOmqkOJiEi6pPajiEjKojnaREREREREREREEoHmaBMREREREREREUkESrSJiIiIiIiIiIgkAs3RFofIyEiOHz9OxowZcTgcdocjIiIiqYBlWVy+fJlcuXLh5qbfMlMqtfNERETkXsS3radEWxyOHz9O3rx57Q5DREREUqEjR46QJ08eu8OQ21A7T0RERO7H3dp6SrTFIWPGjIB58QICAmyORkRERFKDkJAQ8ubNG92OkJRJ7TwRERG5F/Ft6ynRFoeoYQQBAQFqgImIiEiCaDhiyqZ2noiIiNyPu7X1NIGIiIiIiIiIiIhIIlCiTUREREREREREJBEo0SYiIiIiIiIiIpIINEfbPbIsi4iICJxOp92hSCrg7u5OhgwZNG+PiIiIiIhIMnE6ndy4ccPuMCSVSKzzdiXa7kF4eDgnTpzg2rVrdociqYivry85c+bE09PT7lBERERERETStCtXrnD06FEsy7I7FElFEuO8XYm2BIqMjOTAgQO4u7uTK1cuPD091UtJ7siyLMLDwzlz5gwHDhygSJEiuLlp1LaIiIiIiEhScDqdHD16FF9fX4KCgnTOLneVmOftSrQlUHh4OJGRkeTNmxdfX1+7w5FUwsfHBw8PDw4dOkR4eDje3t52hyQiIiIiIpIm3bhxA8uyCAoKwsfHx+5wJJVIrPN2dau5R+qRJAmlz4yIiIiIiEjyUU82SajEOG/Xmb+IiIiIiIiIiEgiUKJNREREREREREQkESjRJvcsf/78TJw4Md7br1mzBofDwcWLF5MsJhERERERERExdN6e/JRoSwccDscdl+HDh9/TcTdv3ky3bt3ivX316tU5ceIEgYGB9/R48RX1j8HhcODm5kZgYCDly5fnlVde4cSJEwk+nsPhYNGiRYkfqIiIiIiIiAg6b09L5+2qOpoO3PwhnTt3LkOHDmXXrl3R6/z9/aOvW5aF0+kkQ4a7fzSCgoISFIenpyc5cuRI0D73Y9euXQQEBBASEsLWrVsZO3Ys06ZNY82aNZQuXTrZ4hARERERERG5E523p53zdvVoSwyWBVevJv9iWfEKL0eOHNFLYGAgDocj+va///5LxowZWbp0KRUrVsTLy4u1a9eyb98+mjZtSnBwMP7+/lSuXJlVq1a5HPfWLqgOh4NPP/2U5s2b4+vrS5EiRfjuu++i77+1C+pnn31GpkyZWL58OcWLF8ff35+GDRu6/IOJiIigb9++ZMqUiaxZs/Lqq6/SqVMnmjVrdtfnnT17dnLkyMGDDz5ImzZtWLduHUFBQfTo0SN6m82bN1OvXj2yZctGYGAgtWvXZuvWrS7PEaB58+Y4HI7o2/F5fURERERERCQFsOucXeftd33eafG8XYm2xHDtGvj7J/9y7VqiPYXXXnuNt956i507d1KmTBmuXLlC48aNWb16NX/88QcNGzakSZMmHD58+I7HGTFiBK1ateLvv/+mcePGtG/fnvPnz9/hpbvGO++8wxdffMEvv/zC4cOHGTBgQPT9b7/9NrNmzWLGjBmsW7eOkJCQe+4O6uPjw/PPP8+6des4ffo0AJcvX6ZTp06sXbuW3377jSJFitC4cWMuX74MmD9ogBkzZnDixIno2/f6+oiIiIiIiEgys+ucXeftCZYmztstieXSpUsWYF26dCnWfaGhodaOHTus0NDQmJVXrliWyVMn73LlSoKf24wZM6zAwMDo2z/99JMFWIsWLbrrviVLlrQmTZoUfTtfvnzWu+++G30bsAYPHnzTy3LFAqylS5e6PNaFCxeiYwGsvXv3Ru8zefJkKzg4OPp2cHCwNW7cuOjbERER1gMPPGA1bdr0tnHe+jg3W7p0qQVYGzdujHNfp9NpZcyY0fr+++9dntc333xz28eLcuvrc6s4PzsiIpJm3Kn9ICmH3icRkbQv1rmXXefsOm+/bZyp8bw9vm0IzdGWGHx94coVex43kVSqVMnl9pUrVxg+fDiLFy/mxIkTREREEBoaetfMb5kyZaKv+/n5ERAQEJ2Fjouvry+FChWKvp0zZ87o7S9dusSpU6eoUqVK9P3u7u5UrFiRyMjIBD2/KNZ/3XYdDgcAp06dYvDgwaxZs4bTp0/jdDq5du3aXZ/nvb4+IiJio0OHYPVqqFMHChSwOxpJi5xO2LgRtm2DZ5+FeMydIyIiycCuc/aox04kOm9PHeft+vZPDA4H+PnZHcV98bsl/gEDBrBy5UreeecdChcujI+PD08//TTh4eF3PI6Hh4fLbYfDccc/rri2j/qjSgo7d+4EYsZwd+rUiXPnzvHee++RL18+vLy8qFat2l2f572+PiIikozOnoWffjLJtdWrYe9es/7dd+HFF20NTdIohwPq1TPDhGrXhmLF7I5IREQgTZyzg87bU8t5uxJtEqd169bRuXNnmjdvDphM8MGDB5M1hsDAQIKDg9m8eTMPP/wwAE6nk61bt1KuXLkEHy80NJRPPvmEhx9+OLryyrp16/jwww9p3LgxAEeOHOHs2bMu+3l4eOB0Ol3WpYTXR0REbnHlCvz6a0xi7c8/Xe93d4fKlSGB1bdE4s3NDUqWhM2bTa82JdpERCQJpYTzUp23x6ZEm8SpSJEiLFy4kCZNmuBwOBgyZMg9d/u8H3369GHMmDEULlyYYsWKMWnSJC5cuBDdhfROTp8+zfXr17l8+TJbtmxh7NixnD17loULF0ZvU6RIEb744gsqVapESEgIL7/8Mj4+Pi7HyZ8/P6tXr6ZGjRp4eXmROXPmFPP6iIikW5cuwfbtZtm2Df74AzZtgogI1+1KlYLHHjNL7doQEGBPvJJ+lC4dk2hr2dLuaEREJA1LKeelOm93pUSbxGnChAn873//o3r16mTLlo1XX32VkJCQZI/j1Vdf5eTJk3Ts2BF3d3e6detGgwYNcHd3v+u+RYsWxeFw4O/vT8GCBalfvz79+/cnR44c0dtMmzaNbt26UaFCBfLmzcvo0aNdqqcAjB8/nv79+zN16lRy587NwYMHU8zrIyKS5oWGwu7dJmkRlVTbvh1uN7dG/vwxibVHH4Xg4GQNV4TSpc3l9u32xiEiImleSjkv1Xm7K4eVlANrU6mQkBACAwO5dOkSAbf88n39+nUOHDhAgQIF8Pb2tinC9CsyMpLixYvTqlUrRo0aZXc4CaLPjogIcOOGSUD8/jscPWp6pt1pudMcGnnymB5rpUuby5o1oWDB5Hsut7hT+0FSjiR/n1atMvO0FS4Me/Yk/vFFROSudO5lr7R63h7fNoR6tEmKdujQIVasWEHt2rUJCwvjgw8+4MCBA7Rr187u0ERE5G6cTti50yTVopY//4SwsIQdJ1OmmGRa1GWpUpA5c1JELXJ/onq07dsHV6+micm3RURE7kTn7a6UaJMUzc3Njc8++4wBAwZgWRalSpVi1apVFC9e3O7QREQkyo0bcOQI7N8PBw7Ajh0mqbZ1q6m+eKvAQKhUCR580Fy/2xIQYKqFiaQGwcGm4MaZM+ZvoXJluyMSERFJUjpvd6VEm6RoefPmZd26dXaHISKSflkWhITAuXNw+rRJpEUl1KIujxwxvdfi4u8PFSuaxFrUUrCgqc4oklaVLg0//mjmFFSiTURE0jidt7uyPdE2efJkxo0bx8mTJylbtiyTJk2iSpUqcW5748YNxowZw8yZMzl27BhFixbl7bffpmHDhvd8TBERkXQnPByOHTMFBQ4fNnOlnT1rkmnnzsH58zGX58/fPol2M29vU4igYEEoUiQmufbggxCPiXBF0pSoRJsKIoiIiKQ7tiba5s6dS//+/ZkyZQpVq1Zl4sSJNGjQgF27dpE9e/ZY2w8ePJgvv/ySqVOnUqxYMZYvX07z5s1Zv3495cuXv6djioiIpDkhIaan2YEDcOiQ6XEWlVQ7fBhOnjQ91RLC1xeyZoUCBcxSsKDrZY4c6qUmEqVUKXO5bZu9cYiIiEiys7XqaNWqValcuTIffPABYCpT5M2blz59+vDaa6/F2j5XrlwMGjSIXr16Ra9r0aIFPj4+fPnll/d0TICwsDDCbpqYOSQkhLx586rqqCQqfXZE5K6ihmnGZ7tz52IP4Yy6fu7c3Y/h5QUPPGCWPHkge3aTSMuSJfZllizg43P/zy+NU9XR1CFZ3qeNG+Ghh8x8bSdPJs1jiIjIbencS+5Vqq46Gh4ezpYtWxg4cGD0Ojc3N+rWrcuGDRvi3CcsLCzWE/Xx8WHt2rX3fEyAMWPGMGLEiPt5OiIiIvfGssxJ+bx5sGCB6X2WGLJlMz3N8ueHvHljkmpRS7ZsKjAgklRKljSXp06ZoghBQfbGIyIiIsnGtkTb2bNncTqdBAcHu6wPDg7m33//jXOfBg0aMGHCBB5++GEKFSrE6tWrWbhwIc7/5o65l2MCDBw4kP79+0ffjurRJiIikiQsCzZtMsm1+fPvLbl285xotw7jLFDAVOoUEXv4+5u/x/37zfDRRx+1OyIRERFJJrYXQ0iI9957j65du1KsWDEcDgeFChWiS5cuTJ8+/b6O6+XlhZeXVyJFKSIi6YJlmUIBR46Ahwf4+cUsPj6xe4tZFmzeHJNcO3w45j5/f3jySWjZEh57DDw97/74Hh6aE00kJStd2iTatm9Xok1ERCQdsS3Rli1bNtzd3Tl16pTL+lOnTpEjR4449wkKCmLRokVcv36dc+fOkStXLl577TUKFix4z8cUERG5rdBQOHgw9hxoUZeXL8e9n8Phmnjz84OLF117rvn5xSTXGjbUHGgiaU2pUvDttyqIICIiks7Y9lO4p6cnFStWZPXq1dHrIiMjWb16NdWqVbvjvt7e3uTOnZuIiAi+/vprmjZtet/HTMscDscdl+HDh9/XsRctWpSgGPz8/ChSpAidO3dmy5YtCX7MRx55hBdffDHhwYqI3MnZs7BsGbzxBjRrZuY18/WFEiXgiSegTx+YMAEWLYK//opJskUVEbh5DlHLgitXzPxMUUPHjhwxybU2bWDhQjNv0+zZ0Ly5kmwiaVHp0uZSiTYREYkHnbenHbYOHe3fvz+dOnWiUqVKVKlShYkTJ3L16lW6dOkCQMeOHcmdOzdjxowBYOPGjRw7doxy5cpx7Ngxhg8fTmRkJK+88kq8j5kenThxIvr63LlzGTp0KLt27Ype5+/vnyxxzJgxg4YNG3L9+nV2797NJ598QtWqVZk+fTodO3ZMlhhERADTu2zLFvj995jl4MG4t82YMfYcaFGX+fO7JsmcTrh2Da5ejVmuXDGXDgfUqKGkmkh6EZVo274dIiM11FtERO5I5+1piGWzSZMmWQ888IDl6elpValSxfrtt9+i76tdu7bVqVOn6Ntr1qyxihcvbnl5eVlZs2a1OnToYB07dixBx4yPS5cuWYB16dKlWPeFhoZaO3bssEJDQ6PXRUZa1pUryb9ERiboaVmWZVkzZsywAgMDXdZNnTrVKlasmOXl5WUVLVrUmjx5cvR9YWFhVq9evawcOXJYXl5e1gMPPGCNHj3asizLypcvnwVEL/ny5bvt4wLWN998E2t9x44drYwZM1rnz5+3LMuyzp49a7Vp08bKlSuX5ePjY5UqVcqaPXt29PadOnVyeUzAOnDggBUREWH973//s/Lnz295e3tbDz74oDVx4sSEv0BJKK7PjogkschIyzp2zLIWL7asN96wrKeftqxChSzL9DmLvTz4oGW1a2dZEyZY1s8/W9bZs/f2z1bSpTu1HyTlSLb3KTzcsjw9zf+WffuS9rFERMTFrededp2z67w9bZ23x7cNYXsxhN69e9O7d+8471uzZo3L7dq1a7Njx477OmZSuHbNzGOd3K5cMaOQ7sesWbMYOnQoH3zwAeXLl+ePP/6ga9eu+Pn50alTJ95//32+++475s2bxwMPPMCRI0c48t8cQ5s3byZ79uzRGW93d/cEP36/fv34/PPPWblyJa1ateL69etUrFiRV199lYCAABYvXkyHDh0oVKgQVapU4b333mP37t2UKlWKkSNHAmbuvsjISPLkycP8+fPJmjUr69evp1u3buTMmZNWrVrd34skIqnDjRuwbx/8+Sf88UfM5ZkzcW9fsCBUqhSzVKgAgYHJGbEkgtBQOHoUjh8HLy/zFkYtvr6xa1KIJBsPDyhe3Aw137bN/M8RERFb2HXODjpvT4/n7bYn2sRew4YNY/z48Tz11FMAFChQgB07dvDxxx/TqVMnDh8+TJEiRahZsyYOh4N8+fJF7xsUFARApkyZ7rnYRLFixQA4+N+Qrdy5czNgwIDo+/v06cPy5cuZN28eVapUITAwEE9PT3x9fV0e093dnREjRkTfLlCgABs2bGDevHlp6g9WJF2KjDRznR0/fuflzBnTL+1Wbm7mZLdcObOUL28us2ZN5iciCeF0QkgIXLpk3t4jR0yh1lsvz569/THc3SEgICbxFnW9Uyd4+unkey6SjpUqZRJt27fDf3MKi4iIJJTO21MXJdoSga+vyVLb8bj34+rVq+zbt49nn32Wrl27Rq+PiIgg8L9eHZ07d6ZevXoULVqUhg0b8sQTT1C/fv37e+CbWP+dFDv+63LgdDoZPXo08+bN49ixY4SHhxMWFoZvPJ7s5MmTmT59OocPHyY0NJTw8HDKlSuXaLGKSBIJCTEZk5uzJzffPnrU9FaLD19fKFMmJplWvrw50dW8aClKaCjMmGE6HF66FJNQi1pCQhL2verrC7lzm49J1DEiI02y7sIFs9ysdu3EfT5yfyZPnsy4ceM4efIkZcuWZdKkSVSpUiXObR955BF+/vnnWOsbN27M4sWLkzrUhFNBBBGRFMGuc/aox74fOm9PfZRoSwQOx/13BbXDlf/+00ydOpWqVau63BfVnbRChQocOHCApUuXsmrVKlq1akXdunVZsGBBosSwc+dOwGSyAcaNG8d7773HxIkTKV26NH5+frz44ouEh4ff8Thz5sxhwIABjB8/nmrVqpExY0bGjRvHxo0bEyVOEUkE58+bk81t20zvjm3bYMcOU5jgbtzcIDgYcuWKWXLndr2dK5fppaYJx1Os8HCYPh1GjTK91OLDywty5DBFYB94IO7LzJldh4halhkicmvyLur6bXI4YoO5c+fSv39/pkyZQtWqVZk4cSINGjRg165dZM+ePdb2CxcudGkTnDt3jrJly9KyZcvkDDv+lGgTEUkRUus5O+i8PTVSoi0dCw4OJleuXOzfv5/27dvfdruAgABat25N69atefrpp2nYsCHnz58nS5YseHh44HQ67zmGiRMnEhAQQN26dQFYt24dTZs25ZlnngEgMjKS3bt3U6JEieh9PD09Yz3munXrqF69Oj179oxet2/fvnuOS0QSIDLSdFG6udLm5cuwe7drYu1OmZUsWWIyJzdnUaKu58oFGfSVlVo5nfDllzBiBBw4YNblzQudO0O2bLGHdt5828sr4Y8X1Zj28zMfHUm5JkyYQNeuXaOrw0+ZMoXFixczffp0XnvttVjbZ8mSxeX2nDlz8PX1vWOiLSwsjLCwsOjbISEhiRR9PEQl2nbtgrCwe/tAi4hIuqbz9tRHZy3p3IgRI+jbty+BgYE0bNiQsLAwfv/9dy5cuED//v2ZMGECOXPmpHz58ri5uTF//nxy5MhBpkyZAMifPz+rV6+mRo0aeHl5kTlz5ts+1sWLFzl58iRhYWHs3r2bjz/+mEWLFvH5559HH69IkSIsWLCA9evXkzlzZiZMmMCpU6dc/mDz58/Pxo0bOXjwIP7+/mTJkoUiRYrw+eefs3z5cgoUKMAXX3zB5s2bozPuInIfzp2DjRvht9/M5fHjpu99VFLt2rX4Hyt/fnPiWapUzGWBAvbNTitJKjISFiyAYcPg33/NuuBgGDQIunVTziG9Cw8PZ8uWLQwcODB6nZubG3Xr1mXDhg3xOsa0adNo06YNfnfopjBmzBiX+WCSVZ48Jmt86ZL5Iyhb1p44REQkVdN5e+qiRFs699xzz+Hr68u4ceN4+eWX8fPzo3Tp0rz44osAZMyYkbFjx7Jnzx7c3d2pXLkyS5Yswe2/oVnjx4+nf//+TJ06ldy5c0dPjhiXqF+rvb29yZ07NzVr1mTTpk1UqFAhepvBgwezf/9+GjRogK+vL926daNZs2ZcunQpepsBAwbQqVMnSpQoQWhoKAcOHKB79+788ccftG7dGofDQdu2benZsydLly5N/BdNJC27cQP+/jsmsfbbb7BnT/z39/ExSTM/v5ikWtRSooTpoiRpnmXBDz/AkCFmHngwnRZffRV6977/uUokbTh79ixOp5Pg4GCX9cHBwfwblZm9g02bNrF9+3amTZt2x+0GDhxI//79o2+HhISQN2/eews6oRwO8/9v7VrTs1eJNhERuQc6b09dHJYVV4m29C0kJITAwEAuXbpEwC0nhdevX+fAgQMUKFAAb29vmyKU1EifHUkxbtyAY8diFx3Yvh1+/x2uX4+9T9Gi8NBDULUqFCkSk0y7efH11fxo6ZBlmU6PN9exmDXL5GoBMmaEl16Cfv3Sfp71Tu0Hie348ePkzp2b9evXU61atej1r7zyCj///PNd52vp3r07GzZs4O+//07Q4yb7+9SjB0yZYjLNb72V9I8nIiI695J7dqfPTnzbEOrRJiKSVh0+DOvWwdatcOhQTCbkxAmTHbmdTJlMQu2hh8xSpYrpjiRpjmXB3r3mI3KXuWsBM8XU0aOuBWKPHDFT9N3Kxwf69oWXXzY1KkRulS1bNtzd3Tl16pTL+lOnTpEjR4477nv16lXmzJnDyJEjkzLExKGCCCIiIumKEm0iImmB02lO4tauNcm1tWtNRuR2vLxiFxwoVMgk2B58UD3T0qiwMJNUW7fOLOvXw+nTiXPs4OCYj1TJktCzp6kWKnI7np6eVKxYkdWrV9OsWTPATKa8evVqevfufcd958+fT1hYWPQkzCmaEm0iIiLpihJtIiKpUWgobNgQk1jbsMFU+rxZhgxQvrzplVawYExS7YEHICjIzB0kKYrTaYZhZswI3t73/hZZlvmIXLjgmljbvNkk227m6Wk+Jv/NbXtHGTJA7tyuhWHz5jXzvauwgdyL/v3706lTJypVqkSVKlWYOHEiV69ejZ4fpmPHjuTOnZsxY8a47Ddt2jSaNWtG1tTQXbJUKXN55AhcvBi/PzYRERFJtZRoExFJDSIiYMsWWLUKVq82XZFuzZhkzAjVq0PNmlCjhhnyeYdKfJJyXLkCn34KEyaYc3EwSa3AQLMEBMS+DqaQYdQSEuJ6PSIi7sfKls18PKKWChVMUk/EDq1bt+bMmTMMHTqUkydPUq5cOZYtWxZdIOHw4cPREzlH2bVrF2vXrmXFihV2hJxwmTObbPTRo/DPP+YPT0RERNIsJdrukWpISELpMyMJYlmwY4dJqq1eDWvWmOzJzXLlgocfNom1mjVNrwl3d1vClXtz8iRMmgQffmg6utwsIsL0bjt37t6P7+ZmRgLfnFgrUkSdGSVl6d27922Hiq5ZsybWuqJFi6a+79RSpUyibds2JdpERJJRqvu+ENslxmdGibYE8vDwAODatWv4+PjYHI2kJteuXQNiPkMisVy6BMuWwfffm+TayZOu92fKBHXqwGOPmaVoUWVMUqndu2H8eJg5M6Zj4oMPwoAB8MwzJsl2u95qUYvDEbu326293vz99RERSRFKlzb/3zVPm4hIsnD/78fn8PBwnbdLgiTGebsSbQnk7u5OpkyZOP3f7NG+vr44dBYjd2BZFteuXeP06dNkypQp+p++CGCqgX73nVnWrHEd7+fjY3qqRSXWypdXj7VU7rffYOxYWLQopvDrQw/BK6/Ak0+6vr0ZM5rRZiKSely7Bm+8Ab/8Yn4viZ67UAURRESSVYYMGfD19eXMmTN4eHjEmoZA5FaJed6uRNs9iCo5fzqxSrVJupApU6boz46kY5GRZnb6qOTaX3+53l+smMm4NGoE1apphvlUzLLMfGvbt5vl++9N7YooTZqYBFuNGup1JpJWeHvDtGmmmu+GDfDII//dcXOizbL0Ry8iksQcDgc5c+bkwIEDHDp0yO5wJBVJjPN2JdruQdQfbfbs2blx44bd4Ugq4OHhoZ5s6VVYmDmx+v132LQJli+H48dj7ndzM73WnnzSZF4efNC+WOWenTkTk1Dbvt285f/8E3taPQ8P6NABXnoJSpSwJ1YRSTpublCvHsyaBStW3JRoK1bMdFm9eNF8B+TObWOUIiLpg6enJ0WKFCE8PNzuUCSVSKzzdiXa7oO7u7uSJyIS48YNk135/feY5e+/zfqb+flBw4Ymufb445A1qz3xym2dOWPyoqdOxZ4b7db50u5UsCBDBnN+XaoUlC1rkmw6vxZJ2+rXj0m0jR7930pvb1OJ5N9/TSZe/whERJKFm5sb3iqvLslMiTYRkftx8iR8/DEsXQp//hkzs/3NsmaFSpXMUrOm6eKgL/wUw7Jg1y5Yty5m2b074ccpWNCMDitVKmZ58EHw9Ez8mEUk5apXz1xu3WqS9kFB/91RunRMoq1hQ9viExERkaSlRJuIyL3YuhXeew+++sq1x1pgIFSsaJJqlSuby3z5NB9PChEZaXqkbd8ek1Rbvz7uHmnFi5vk2c1VPW+t8BkQYIrBFi5sOiqKiOTMCWXKmA7Nq1ZB27b/3VG6NMyfr4IIIiIiaZwSbSIi8eV0wrffwsSJ8OuvMeurVYNu3cys9oUKmUl6JNlERsLOnSZhtnt37KGdN9++fDnuY3h7Q5Uq5i2sXt28pRrRKyL3qn59k2hbseKWRBso0SYiIpLGKdEmInI3Fy+aMnIffAAHD5p1GTJAq1bwwgsmQyPJ5to12Lw5pkfahg1w4ULCjhEcbJJqUUv58hriKSKJp359eOcdk2iLLjIalWjbuRMiIsz3iIiIiKQ5+oYXEbmdnTvhww9hxgy4etWsy5oVnn8eevTQZNZ38OefJid5c2+yuK5fuQK+vrcflhl1/cYN+O03k1jbutWco97MxweqVoVy5SBLlrsP99QUeSKSlGrWNP9njh+HHTugZEmgQAHzD+/aNdi711RKERERkTRHiTYRkZtdu2bm0Jk61WR1opQsCS++CO3bm6yOxGn9ehg8GH76KWkfJ2dO1x5p5cqBh0fSPqaISHz5+EDt2rB8uenVVrIkZlqBkiVNl9xt25RoExERSaOUaBMRAdNN6tNPYdYs090KwN0dHn8c+vaFRx9VQYM72LoVhgyBJUvMbU9PMxzzdr3Kotb5+5vc5q093m69HRFhakxEJdby59fbISIpW/36JtG2fDn06/ffytKlYxJtLVvaGp+IiIgkDSXaRCT9unQJZs82CbatW2PWFygAzz0HnTtDrly2hZca7NgBQ4fC11+b2+7u8L//mV5tDzxgb2wiInaqX99c/vwzXL/+35B1FUQQERFJ85RoE5H05fp1+PFHmDfPLKGhZr2nJzz1lEmw1amjyqF3sW8fDB9uOgBGTfTdrp1ZV7iw3dGJiNivZEnzW83x47B2LdStS0yibft2W2MTERGRpKNEm4ikfWfOwOLF8N13ZgzPtWsx95UoAV27wjPPQLZs9sWYClgW7NljKulNnw5Op1nfogWMGPHfHEQiIgKYHyDq14fPPjPztNWtC5QqZe7ct88U2fHzszNEERERSQJKtIlI2rRrl0msffutmaHfsmLuy5MHmjQxybVq1TTZVxxOnzYdLrZtM5fbt8M//8DlyzHbNGoEo0aZudNERCS2mxNtY8cCwcEQFGR+ANqxAypXtjtEERERSWRKtIlI2uB0moTad9+ZZfdu1/vLl4cnnzRL+fJKrv0nJMQk0G5OqG3fbs4B4+LhYSrpDR9uihKIiMjt1a1rLv/6C06ehBw5MMNHf/zR/ONVok1ERCTNUaJNRFKvK1dMN4HvvoMffoBz52Lu8/AwlUKffNL0Xsub1744U4Dr12HnTtdk2vbtcPhw3Ns7HGautVKlXJciRcxLKyIidxcUBBUqmHo7K1dChw64JtpEREQkzVGiTURSl2PH4PvvTXJt9WoID4+5L3NmePxxk1xr0AACAuyL02aXL5uXZ8kS+OUXM7daZGTc2+bJE5NIK1nSnAMWLw6+vskbs4hIWlS/vkm0rVhxU6INVBBBREQkjVKiTURSthMn4PffYdMmWLbMXL9ZoULQtKlJrtWoARnS5781y4J//zWJtSVL4Ndf4cYN120yZzbnd6VLuybWMme2J2YRkfSgQQN46y3Toy0yEtyiEm3q0SYiIpImpc8zUhFJmc6cMYm0m5fjx123cTjgoYdi5lsrXjzdzrd29Sr89FNMcu3QIdf7CxeGxo1Nb4oKFczcQOn0pRIRsU21aqa46KlTJrdWtkQJc8epU+Z7LyjI3gBFREQkUSnRJiL2OXECvv4a1qwxSbVbM0UAbm5QogRUqgQ1a8ITT5iqbemQZZkhoEuXmsTazz9DWFjM/V5e8MgjJrnWqJGZT01EROwV9b958WJYvhzKvuIPBQvC/v0m8/boo3aHKCIiIolIiTYRSV5RybX58834Rstyvb9oUZNUi1rKlQN/f1tCTQlCQ00ecskSk2Dbt8/1/vz5TWKtcWOoU0fzqomIpET165tE24oV8MormDH8SrSJiIikSUq0iUjSO3nSJNfmzYudXHvoITPH2kMPQfnyEBhoX5wpxP79McNBf/rJVAyN4uEBtWubHmuNGkGxYhoOKiKS0jVoYC5//RWuXQPf0qXh2281T5uIiEgapESbiCQ+y4IDB0zxgnnzTNnLW5NrLVvC00/DAw/YF2cKERZmXqKo5Nru3a73580b02vt0UfTdQc/EZFU6cEHzdfd4cPm/31DVR4VERFJs5RoE5H7FxEBf/4Ja9fCunXm8uRJ122qVoVWrZRc+8/Bg2Yo6NKlsHq16eEQJUMGU0D18cdNcq1ECfVaExFJzRwOM3z000/N8NGGz5Uyd2zbZn5t8fKyN0ARERFJNEq0iUjChYTAb7/FJNV++801UwRmjGPlyvDUUya5li+fPbEmkRMnYP168xKsW2duBwSYka+BgXFfz5jRdF5YuhR27HA9Xq5cZiho48ZQt67ZR0RE0o6oRNvy5cA7xSBPHjh61HRlbt7c7vBEREQkkSjRJiLx988/MGYMzJkDTqfrfZkyQfXqpjJojRomyebjY0uYiS0y0jz1qKTaunVmZOz9cHc3L1dUcq1MGfVaExFJyx57zBTS3rEDjh53I0/btjBuHMyapUSbiIhIGqJEm4jc3e+/w5tvwqJFMesKFDAJtajEWokS5gwilQsPh127TM+z7dth61bYsAEuXXLdzuEwybEaNUzCrEgRuHzZdPa7dMksN1+PWqJ6rtWrB5kz2/McRUQk+WXJYn6D2rgRVq6ELu3amUTbDz+YLwgVAxIREUkTlGgTkdv75ReTYFuxwtx2OKBFCxg4ECpUsDe2+xQZaap7RiXUopZdu8yUc7fy8zM1HGrUMMtDD2l4p4iIJEz9+ibRtmIFdOlc1vxItWOHqcz9v//ZHZ6IiIgkAiXaRMSVZZlqoaNHm/nXwIxzbN8eXnsNihe3N74Esiwzf9q2ba4JtX/+gdDQuPcJCIDSpaFUKXNZrZrpvZZB/zFFROQ+1K8Po0aZHm2RlgO39u1h0CAzfFSJNhERkTRBp40iYkRGmqGhb75pxksCeHqahv8rr5ihoqnA77/Dpk2uSbULF+Le1tvbdCYoVcp1yZNH86WJiEjiq1rV/Jhz7hz88QdUbNfOJNp++gmOHYPcue0OUURERO6TEm0i6Z3TCQsWmJ/Y//nHrPP1heefh5deMpOKpQIXLkCfPqZTwK3c3c0calE91KISaoUKmftERESSg4cHPPqo+V1r+XKo+Hp+Mx/BunWm0NBLL9kdooiIiNwnJdpE0iunE+bOhTfegJ07zbrAQJOteuEFyJbN3vgSYNUq6NzZdAZwdzdDc8qUiUmsFS1qeq+JiIjYrX59k2hbsQJefx0zNcO6deaXIiXaREREUj3bSwROnjyZ/Pnz4+3tTdWqVdm0adMdt584cSJFixbFx8eHvHnz0q9fP65fvx59//Dhw3E4HC5LsWLFkvppiKQeERHwxRdmzGT79ibJlikTjBgBBw+anm2pJMl27Rr07WsqeB47ZnqtrVsHS5bAW2/BM89A2bJKsomISMpRv765XL/eVKumZUszCegff8T88CUiIiKplq2Jtrlz59K/f3+GDRvG1q1bKVu2LA0aNOD06dNxbj979mxee+01hg0bxs6dO5k2bRpz587l9ddfd9muZMmSnDhxInpZGzWhu0h6FhEBn31mihl07Ai7d0OWLKZH28GDMHSoSbilEps3m8KnkyaZ2716mXOUqlXtjUtEROROChUyy40b8PPPmB+3GjY0d86ebWtsIiIicv9sTbRNmDCBrl270qVLF0qUKMGUKVPw9fVl+vTpcW6/fv16atSoQbt27cifPz/169enbdu2sXrBZciQgRw5ckQv2VJJ7xyRJHH1KkydasZPdukCe/dC1qwwZoxJsA0aZIaMphI3bsDw4aYS6K5dZgq55cvhgw/Az8/u6ERERO4uqlfbihX/rWjf3lzOnm3KZYuIiEiqZVuiLTw8nC1btlC3bt2YYNzcqFu3Lhs2bIhzn+rVq7Nly5boxNr+/ftZsmQJjRs3dtluz5495MqVi4IFC9K+fXsOHz58x1jCwsIICQlxWURSNcsy5Te7d4ecOaFbN9i/H4KCYOxYk2B77TXImNHuSBPk33+henUzytXphDZtYNu2mBMWERGR1CDqe2vZsv/yak2amF+L9u+H336zNTYRERG5P7YVQzh79ixOp5Pg4GCX9cHBwfz7779x7tOuXTvOnj1LzZo1sSyLiIgInn/+eZeho1WrVuWzzz6jaNGinDhxghEjRlCrVi22b99OxtskFcaMGcOIESMS78mJ2OXiRTOZ8tSp8NdfMesLF4YePUziLYV2+4qIgJAQuHQp5vLm64cPw3vvwfXrkDkzfPihSbSJiIikNo8+Cj4+sGePGT76yCN+0Lw5fPml+R6vVs3uEEVEROQepaqqo2vWrGH06NF8+OGHVK1alb179/LCCy8watQohgwZAkCjRo2ity9TpgxVq1YlX758zJs3j2effTbO4w4cOJD+/ftH3w4JCSFv3rxJ+2REEotlwdq1Jrk2f77JRAF4eUGLFtC1K9SuDQ6HvXHeIjQUFiwwYW/daka4xkeDBjBtGuTOnbTxiYiIJJWAADObw4cfwrhx8MgjmOGjX35pKoK/+y54eNgdpoiIiNwD2xJt2bJlw93dnVOnTrmsP3XqFDly5IhznyFDhtChQweee+45AEqXLs3Vq1fp1q0bgwYNws0t9kjYTJky8eCDD7J3797bxuLl5YWXl9d9PBsRGzidJks1caKZrCxKqVImufbMM6bYQQrz77/w8ccwcyZcuBD7fh8fcwISGBizRN2uXdvUcUhhOUMREZEE69cPPvrIVMr+5x8oWbcuZM8Op0/DypVwy9QoIiIikjrYNkebp6cnFStWZPXq1dHrIiMjWb16NdVu013+2rVrsZJp7u7uAFi3mTj2ypUr7Nu3j5w5cyZS5CIpwJ9/mmElPXqYJJufHzz7rJnX5e+/oW/fFJVkCwuDr74yv9gXL25ygxcuwAMPwKhRsHMnnDljtrt2DU6eNE9r0yZzrvH11zB9OnTqpCSbiIikDYULw1NPmesTJgAZMkDr1mbFrFm2xSUiIiL3x9aqo/3792fq1KnMnDmTnTt30qNHD65evUqXLl0A6NixIwMHDozevkmTJnz00UfMmTOHAwcOsHLlSoYMGUKTJk2iE24DBgzg559/5uDBg6xfv57mzZvj7u5O27ZtbXmOIonqyhUYMAAqVYLNm003r4kT4cQJ+PRTqFo1RWWi9uyBl1+GPHmgXTszD42bGzz5JCxebOZ8HjwYihWDbNnA09PuiEVERJLPgAHm8ssvzVd5dPXRRYvMd76IiIikOrbO0da6dWvOnDnD0KFDOXnyJOXKlWPZsmXRBRIOHz7s0oNt8ODBOBwOBg8ezLFjxwgKCqJJkya8+eab0dscPXqUtm3bcu7cOYKCgqhZsya//fYbQUFByf78RBLVDz9Ar16mKgBAq1YmyZbCemuePm2mipszx0wdFyV3bnjuOdPxTlMgioiIwEMPQY0asG4dfPABvPlGFShUCPbtg+++M79SiYiISKrisG435jIdCwkJITAwkEuXLhEQEGB3OJLeHTsGL7xgxk8C5M9vZk++qfCH3S5ehG++McNDV6+GyEiz3uEwYXbvbqaayZCqyq+IiCSM2g+pQ0p7nxYtMgVHM2c2v6X5jxsGI0eaL87Fi+0OT0RERP4T3zaErUNHReQOnE7z83bx4ibJ5u4Or7xiZkxOAUm2q1dNr7WmTSE4GP73PzOfWmQkVK4M48ebE4bFi81QUSXZREREYmvSBIoUMXOXzphBTC+25cvNBKYiIiKSqujUVySlcTrhxx9h0CAzDxuYudc++QTKlLEtrMhIU6Bg3TpYtQq+/94ULohSqhS0aWPmcS5c2LYwRUREUhV3d+jf39Q3evdd6NGjKBkqVoQtW2DePDNthIiIiKQaSrSJpASWBRs3wuzZplF96pRZHxAAb71lxl66JW8H1NBQk+dbt84sGzbA+fOu2xQsCG3bmgRbqVLJGp6IiEia0akTDBkCBw6YqRhatm9vEm2zZinRJiIiksoo0SZip+3bTXJtzhzTuo6SJYvpGjZkSLIVOwgNhRUr4JdfTGJt61a4ccN1Gx8fqFLFTNzcrJkpfpqCipyKiIikSj4+0Ls3DB8O48bB04va4BgwwPzKtX+/+WVLREREUgUl2kSS24EDpmrAV1+ZRFsUPz+TvWrbFurVA0/PJA8lPNwk1+bMgW+/hStXXO/PkcMk1aKW8uXBwyPJwxIREUl3evY0ndg3b4Zf9+bk4UcfNXM1zJ4NgwfbHZ6IiIjEkxJtIsnl2jV46SWYMiVmnaenKWzQtq2ZDdnXN8nDcDrh559Nnu/rr83ky1Hy5TPhRCXW8udXjzUREZHkEBQEnTubZsI778DD7dubRNusWWbeVn0hi4iIpApKtIkkhz/+MMm0XbvM7cceM7efegoyZ07yh7cs+O03k1ybPx9Onoy5L0cOaNXKhFO1qtrxIiIidunXDz7+2BQc+nfo0xTz7gH//mvaERUq2B2eiIiIxIMSbSJJKTISJkyA1183E57lygUzZ0Ldukn6sBER8OefsH69mW9t7Vo4fjzm/syZ4emnTRGD2rVNxTMRERGx14MPQtOmsGgRTPjEn0+aNDG/kM2apUSbiIhIKuGwLMuyO4iUJiQkhMDAQC5dukRAQIDd4UhqdeyYKSO2erW53bw5TJ0KWbMm+kNdumTmS46qELpxoxmpejN/fzMFXJs2yTYFnIhIuqL2Q+qQ0t+ndeugZk3w8oJDnywnuFNDUyTp0CHzZS4iIiK2iG8bQj3aRJLCN9/Ac8/B+fNm3rX33oNnn02UcZmWBQcPxiTV1q0zNRVuTZkHBkL16jHzrVWtaqqaiYiISMpVvTo89JCZ8mHy7nqMLFIE9uyBTz6B/v3tDk9ERETuQok2kcR09aqZYGXqVHO7YkUz3KNo0Xs+5I0bZhjozYm1Eydib1eokEmoRSXXSpQAN7d7flgRERGxgcMBL78MLVrA5I/ceG3U6/j26gLjx0OvXqarm4iIiKRYSrSJJJYtW6BdO9i927SSX30VRoy4pzGaf/1lpmRZtw42bYo9DNTDw0zVEtVbrXp1U9RAREREUr+mTc0PaPv2wYwbz9ArzxA4ehQ+/xy6drU7PBEREbkDJdpE7ldoKLz5Jrz9tqlCkDs3fPEF1KmToMNYFvz4I4wdCytWuN6XObPrMNDKlTUMVEREJK1ydzejRHv1ggnvZ+D5fgNwf+lF09bo0gUyqAkvIiKSUulbWuR+rFwJPXqYn5zBlPL8+GMzaXE8RUTA11+bBNvWrWadm5upndCggUmsFSumYaAiIiLpSefOMHQo7N8Pi4K70yLrKNPeWLDAVDYSERGRFEmn7iL34vRpeOYZqF/fNHpz5zYFEObPj3eS7epV+OADePBB017eutX0UuvdG/buNe3orl0115qIiEh65OsLPXua629N9Mbq+4K5MWZM7ApIIiIikmLo9F0kISIj4dNPTRezWbNMBuyFF2DnTmjWLF6HOHMGhg+HfPmgTx84cACyZjXrDh+GSZOgQIGkfBIiIiKSGvTpA35+8Pvv8G3BfuDvD3//DUuW2B2aiIiI3IYSbSLxtWMH1K5tuplduADly8PGjTBxImTMeNfdw8Jg5EiTYBsxAs6dMwm1Dz4wCbZhwyBbtqR/GiIiIpI6BAXBiy+a60Pe9sfZ/b8ubqNHq1ebiIhICqVEm8jdhIbC4MFQrhysXWt+Wp4wwZQDrVQpXodYu9bk5YYNM4erUAHmzDEFSnv1MsNDRERERG41YABkygTbt8OcAq+BlxesXw+//mp3aCIiIhIHJdpE7uTQIZMhe/NNuHEDmjQxPdv69YtXxa+LF+H556FWLTO6NHt2mD3bDAFp3VpFw0REROTOMmWCl18214e9m5kbHZ81N0aPti0mERERuT0l2kRu5+hRePRR2LULcuWChQvh22/hgQfuuqtlmWIGxYubIqQAzz5rkm1t24LDkcSxi4iISJrRt6/5sW7fPvgs/3Bwd4fly2PKlYuIiEiKoUSbSFyOH4c6dWD/fihY0MzF1rx5vDJkR45A06bQsiWcPGmqiv70k6mhEM+CpCIiIiLR/P3h9dfN9ZEfBXG9ZQdzY8wY+4ISERGROCnRJnKrkydNT7a9eyF/fpMly5Pnrrs5nfD++1CiBHz/PXh4wJAh8Ndf8MgjSR61iIiIpGHdu5vmyNGj8HG+/4aNfv216XkvIiIiKYYSbSI3O306Zrho3rwmyRaPoaJ//w3Vq8MLL8CVK+b6H3+YKqPe3skQt4iIiKRp3t4wdKi5PnpGTq40bmXmqnj7bXsDExERERdKtIlEOXsWHnvMTKSWO7dJsuXPf8ddQkNh4ECoWNEUIQ0IgI8+MoXASpZMnrBFREQkfejcGQoVMr8Lvp93nFn5xRdw+LCtcYmIiEgMJdpEAM6fh7p1Yft2yJnTJNkKFbrjLqtWQenS8NZbEBEBLVqYHN3zz4Ob/rJEREQkkXl4wIgR5vq4uQ9wseYTphEyfry9gYmIiEg0pQNELlyAevXMZGrBwfDjj1CkyG03P3sWOnY0u+zbZzq/LVpkqozmypV8YYuIiEj606aN6TV/8SK8k/c9s3LqVDhzxta4RERExFCiTdK3S5egQQPYuhWCgkySrVixODe1LPj8c3P3F1+YAqR9+sCOHabKqIiIiCTc5MmTyZ8/P97e3lStWpVNmzbdcfuLFy/Sq1cvcubMiZeXFw8++CBLlixJpmjt5+4Oo0aZ6xO/K8DpsvXMXBbvvWdvYCIiIgIo0SbpWUgINGwImzdD1qywerUpGRqHffugfn3o1AnOnTNDRjdsMFVGAwKSOW4REZE0Yu7cufTv359hw4axdetWypYtS4MGDTh9+nSc24eHh1OvXj0OHjzIggUL2LVrF1OnTiV37tzJHLm9mjWDSpXg6lUHb+WdbFZ+8IFp24iIiIitlGiT9OnKFXj8cfjtN8icOWbCtVuEhsKYMVCqlNnE29vc3rIFqla1IW4REZE0ZMKECXTt2pUuXbpQokQJpkyZgq+vL9OnT49z++nTp3P+/HkWLVpEjRo1yJ8/P7Vr16Zs2bLJHLm9HA54801z/cOVhTlaqLbppT95sr2BiYiIiBJtkg5dvWqSbGvXQmAgrFwJ5cq5bBIebtqqhQrB66/D9esxtRJee81MRiwiIiL3Ljw8nC1btlC3bt3odW5ubtStW5cNGzbEuc93331HtWrV6NWrF8HBwZQqVYrRo0fjdDpv+zhhYWGEhIS4LGlBvXrw8MMQFuZg1AOfmJXvvKNebSIiIjZTok3Sl2vXoEkT+OUXM+Zz5UqoWDH67ogImDEDHnwQeveGEycgXz4zJ9uKFXctRCoiIiLxdPbsWZxOJ8HBwS7rg4ODOXnyZJz77N+/nwULFuB0OlmyZAlDhgxh/PjxvPHGG7d9nDFjxhAYGBi95M2bN1Gfh11u7tU2/dci7CtQ11RRnzjR1rhERETSOyXaJP24ft1MavLTT5AxIyxfDpUrAxAZCXPmmCpe//sfHDoEOXOaXm27d8Mzz5gGrYiIiNgnMjKS7Nmz88knn1CxYkVat27NoEGDmDJlym33GThwIJcuXYpejhw5kowRJ62aNc10sxERDobnnmpWjh9vEm4iIiJiCyXaJH0IC4PmzU0PNj8/WLoUHnoIy4JvvzUjR9u2NUm1bNnMyIu9e6FnT/D0tDt4ERGRtCdbtmy4u7tz6tQpl/WnTp0iR44cce6TM2dOHnzwQdzd3aPXFS9enJMnTxIeHh7nPl5eXgQEBLgsaUlUZ75Z6/LxT5FmZujo+PG2xiQiIpKeKdEmaV9YGLRoAcuWga8vLFkCNWrw66/w0EOmk9u2bWa6tlGjYP9+eOkls6mIiIgkDU9PTypWrMjq1auj10VGRrJ69WqqVasW5z41atRg7969REZGRq/bvXs3OXPmxDOd/jJWsSI89RRYloNBmT80K997D86csTcwERGRdEqJNknbbtyA1q1h8WLw8YEffoCHH+bzz6FOHdi0ySTUBg40CbbBg82oUhEREUl6/fv3Z+rUqcycOZOdO3fSo0cPrl69SpcuXQDo2LEjAwcOjN6+R48enD9/nhdeeIHdu3ezePFiRo8eTa9evex6CinCG2+Amxt8uykna4v+zxR+evttu8MSERFJl5Rok7Trxg0zHvTbb8HLC777DurUYeJE6NQJnE5z94EDMHo0ZMlid8AiIiLpS+vWrXnnnXcYOnQo5cqV488//2TZsmXRBRIOHz7MiRMnorfPmzcvy5cvZ/PmzZQpU4a+ffvywgsv8Nprr9n1FFKE4sXhuefM9Zcd72CBmWj2ptdOREREkofDsizL7iBSmpCQEAIDA7l06VKam8cj3YiIgPbtYd48M8nat99iNWjIkCExFbr69TNzsbkp3SwiIolA7YfUIa2+TydOQOHCpsD6gqKDaLFrtCmhPmmS3aGJiIikCfFtQyjFIGmP02m6rM2bBx4esHAhznoN6dEjJsk2erSZJ1hJNhEREUkLcuY0c8wCDLwyiBtkgE8+gcOH7Q1MREQknVGaQdIWy4Lu3WH2bMiQAebPJ6zu47RpAx9/DA6HuRw40FwXERERSStefhmCgmDPMV+mPjgOwsNjypKKiIhIslCiTdKWt9+GadNMV7U5c7jyWFOeeAIWLDAjSOfNg27d7A5SREREJPFlzAjDhpnrI8705DL+MGMG7Ntnb2AiIiLpiBJtknZ8/bXpqgbw/vucrd2Cxx6DVavAz88UHn36aXtDFBEREUlK3bpBkSJw+oIn7xSaYuatHTnS7rBERETSDSXaJG34/Xfo0MFc79OHI0/2olYt2LQJsmaFH3+EunXtDVFEREQkqXl4mLloAd451oYT5IAvv4R//7U3MBERkXRCiTZJ/Y4cgSZNIDQUGjViV/cJ1Khh2pN58sCvv0KVKnYHKSIiIpI8WrSAqlXh2nV3RuSfAZGRMHy43WGJiIikC0q0Sep2+TI88QScPAmlSrHnzXk8UjcDR45A0aKwbh0UL253kCIiIiLJx+GAcePM9U+PNOBfisLcufD33/YGJiIikg4o0Sapl9MJbduaRmNwMAc+WsajT/pz8iSUKWN6sj3wgN1BioiIiCS/WrXgySfB6XQwMPfnZmVUpQQRERFJMkq0Seo1YICpcODtzdGpS3msY26OHjU92FauNOXtRURERNKrt94yhdgXHavCOkdNWLQItmyxOywREZE0zfZE2+TJk8mfPz/e3t5UrVqVTZs23XH7iRMnUrRoUXx8fMibNy/9+vXj+vXr93VMSYU++ggmTgTg5PtzeWxAeQ4cgEKFTJXR7NntDU9ERETEbsWLw7PPmusvZ5uOBTBkiJ0hiYiIpHm2Jtrmzp1L//79GTZsGFu3bqVs2bI0aNCA06dPx7n97Nmzee211xg2bBg7d+5k2rRpzJ07l9dff/2ejymp0PLl0KcPAGdfn0Dd955k927Il89UF82Vy+b4RERERFKI4cPB1xc2nCnCN24tYOlSM4mtiIiIJAlbE20TJkyga9eudOnShRIlSjBlyhR8fX2ZPn16nNuvX7+eGjVq0K5dO/Lnz0/9+vVp27atS4+1hB5TUpl//oFWrcDp5EKbHtRb8iL//AO5c8Pq1ZqTTURERORmuXJB//7m+mv+k7lBBnjtNbAsewMTERFJo2xLtIWHh7Nlyxbq1q0bE4ybG3Xr1mXDhg1x7lO9enW2bNkSnVjbv38/S5YsoXHjxvd8TICwsDBCQkJcFkmBTp82FUZDQgip1oCG+z7gzz8dBAebJFuhQnYHKCIiIpLyvPyymbt2T0gwn2boAWvXmnluRUREJNHZlmg7e/YsTqeT4OBgl/XBwcGcPHkyzn3atWvHyJEjqVmzJh4eHhQqVIhHHnkkeujovRwTYMyYMQQGBkYvefPmvc9nJ4nOsuC55+DgQa4WKMXjkd+zabMbWbOaOdmKFrU7QBEREZGUKSAgpuDocM83uYy/6dXmdNobmIiISBpkezGEhFizZg2jR4/mww8/ZOvWrSxcuJDFixczatSo+zruwIEDuXTpUvRy5MiRRIpYEs28efD994RmyMiT2TewdqMHgYGwYgWUKmV3cCIiIiIpW7duULgwnL6Wkbe9h5npOL74wu6wRERE0hzbEm3ZsmXD3d2dU6dOuaw/deoUOXLkiHOfIUOG0KFDB5577jlKly5N8+bNGT16NGPGjCEyMvKejgng5eVFQECAyyIpyLlz0KcPYXjSIv8Wftzoj78/LFsGFSrYHZyIiIhIyufhAWPHmuvjI17gEA+YCqShofYGJiIiksbYlmjz9PSkYsWKrF69OnpdZGQkq1evplq1anHuc+3aNdzcXEN2d3cHwLKsezqmpAIvvQRnztA70yyW7i2Cry8sWQIPPWR3YCIiIiKpR7Nm8MgjcD3Cg9d834ejR2HyZLvDEhERSVNsHTrav39/pk6dysyZM9m5cyc9evTg6tWrdOnSBYCOHTsycODA6O2bNGnCRx99xJw5czhw4AArV65kyJAhNGnSJDrhdrdjSiqzYgXMnMk8WvHpxadxOGDhQqhVy+7ARERERFIXhwPefddczrnWlPVUg9Gj4cIFu0MTERFJMzLY+eCtW7fmzJkzDB06lJMnT1KuXDmWLVsWXczg8OHDLj3YBg8ejMPhYPDgwRw7doygoCCaNGnCm2++Ge9jSipy9Sp0785B8tHNcwaEw+uvQ4MGdgcmIiIikjqVKwfPPguffgov+nzMbxfK4vb22/DWW3aHJiIikiY4LMuy7A4ipQkJCSEwMJBLly5pvjY79e9PxLvvU9vzN9aHV+Khh+CXX8wcIyIiIimN2g+pg94nOHUKihSBy5fhczrQwXsB7N0LuXPbHZqIiEiKFd82RKqqOirpyKZN8N57jGII68MrERAAs2crySYiIiJyv4KDYdAgc/01zwlcve4Gw4fbGpOIiEhaoUSbpDzh4fDcc/wSWYM3HEMAmDIFChSwOS4RERGRNOKFF0zb6nh4EGN5BaZPh5077Q5LREQk1VOiTVKeceM4v+0o7d2+ItJyo3NnaNvW7qBERERE0g5vbxg71lwf6/YahyNzm8lwRURE5L4o0SYpy7//Yo0YSVemcjQyN0WKwKRJdgclIiIikva0aGEquV+P9GIgb8GiRbB+vd1hiYiIpGpKtEnKERkJXbsy9UYnFtICDw+Lr74Cf3+7AxMRERFJexwOePddczmbdmzgIXj1VVCtNBERkXumRJukHB9/zI6153iRiQCMGeOgYkV7QxIRERFJyypWhM6dzfV+jveIXLsOfvjB1phERERSMyXaJGU4epTrrwylDXMIxZf69aFfP7uDEhEREUn73nwT/Pxgo1WFObSBgQPB6bQ7LBERkVRJiTaxn2VBz568cmUI2yhD9uwWM2eCmz6dIiIiIkkuZ86YOgivOsZx7Z/98MUX9gYlIiKSSimVIfb77ju+/95iEn0BmDnTQY4cNsckIiIiko706wf58sFRKzfvMACGDIHQULvDEhERSXWUaBN7RUZycuB7dGEGYBp5DRvaHJOIiIhIOuPjA2PHmutvO17j6FELJk60NSYREZHUSIk2sdeiRYza2YJzZKNc6QjGjLE7IBEREZH0qWVLqFEDrlm+vM5oGD0aTp2yOywREZFURYk2sU9kJEcHfcSnPAfAu+9nwMvL5phERERE0imHI6YT2xd0ZMOVUmYIqYiIiMSbEm1in2++4a1/mxKOFw9Xv8Ejj9gdkIiIiEj6VqkSdOlirvdiMs5PZ8Dff9sblIiISCqiRJvYIzKSY4M+ZCpdARg2ysPmgEREREQE4K23IFMm+IMKfGx1hZdeMlXiRURE5K6UaBN7LFzI27tMb7aaD92gTh27AxIRERERgOzZ4c03zfVBvMnpVX/BkiX2BiUiIpJKKNEmyS8ykuODP+QTugGmN5vDYXNMIiIiIhKte3coXx4ukpnXeAsGDIAbN+wOS0REJMVTok2S39dfM3bXk4ThTY2qETz2mN0BiYiIiMjN3N3hww/N9Rn8j/X/ZoaPP7Y3KBERkVRAiTZJXpGRnBg8mY/pDsCwURnUm01EREQkBXroIXj2WXO9F5OJGDYKLlywNygREZEUTok2SV4LFjBu95Ncx4dqlSOoW9fugERERETkdsaMgcyZLf6kPFPOt4yZvE1ERETipESbJB+nk1NDPmAKzwPqzSYiIiKS0gUFwejRpsE2mDc49d4c2LvX5qhERERSLiXaJPn815stFF+qVoqgfn27AxIRERGRu+naFSpWhEtk4tWIN+DVV+0OSUREJMVSok2Sh9PJ6SGT+JCeAAwbqd5sIiIiIqlBVGEEh8NiJp1Zu/AU/Pyz3WGJiIikSEq0SfKYP5939pjebJUrRNCwod0BiYiIiEh8VakCzz1nfiXtxWQi+r0MkZE2RyUiIpLyKNEmSc/p5MyQ95lML0C92URERERSo9GjIUvmSP6mLB/+8RB8+aXdIYmIiKQ4SrRJ0ps3j3f2NuUaflQqH0HjxnYHJCIiIiIJlS0bjHnLnD4MYRQnX5kAV6/aHJWIiEjKokSbJC2nk7ND1ZtNREREJC149lmoXDGSEAJ55VR/eOcdu0MSERFJUZRok6Q1dy7j9z7JVfypWM7J44/bHZCIiIiI3Ct3d5j8kRsOh8UXdOSX0WvhyBG7wxIREUkxlGiTpON0cm7Y+3xAbwCGjnBXbzYRERGRVK5yZejW1VzvFT6BG/1ftTcgERGRFESJNkk6P/zAhL1NuEJGypdx0qSJ3QGJiIiISGJ4c7SDrJki2E5pxi94AH76ye6QREREUgQl2iTJnH53FpPoA6g3m4iIiEhakjUrvPt+BgBGMIy93cfBjRs2RyUiImI/JdokaezZwws/N+cyAVQoGUbTpnYHJCIiIiKJ6ZlnoG7tG1zHh+f39Mea/KHdIYmIiNhOiTZJEj+88jNzaIsbTj6Z6aXebCIiIiJpjMMBU6Z54O0RwWrq8sXrO+H0abvDEhERsZUSbZLoQk5eo8e3jQB46amDVKxoc0AiIiIikiQKFYJhw80pRf/QNzjb702bIxIREbGXEm2S6Aa2O8RRKzeFMhxk+Gf57Q5HRERERJLQSy+7UbrQVc6RjZdmV4BNm+wOSURExDZKtEmiWrsWPvypOACfdN6Ab0Z3myMSERERkaTk4QFTZ/nhIJLP6cSqDjMhMtLusERERGyhRJskmuvX4blnQgF41m06j46ua3NEIiIiIpIcqlaF3s+admD33f259vEXNkckIiJiDyXaJNG8+SbsOuRDDk4wrsVGCAqyOyQRERERSSZvTPAjd+Bl9lOIUS9dhIsX7Q5JREQk2SnRJoni77/hrbcsAD6gN5n7dbY3IBERERFJVgEBMPlTbwDGhfbi714f2xyRiIhI8lOiTe6b0wnPPQcREQ6as5AW5fbDQw/ZHZaIiIiIJLOmT3vwVM1TOMlAt9mP4Pxru90hiYiIJCsl2uS+vfcebN4MgW4hfEBv6NkTHA67wxIRERERG7w/J5iADFfZSFU+avkjWJbdIYmIiCQbJdrkvuzfD4MHm+vvRPYnV8BVaNfO3qBERERExDa5c8Nbw64DMHBPF45MWWxzRCIiIslHiTa5Z5YF3btDaCg8knUbzzINOncGPz+7QxMRERERG3V/PSvV8hzhChnp3d8T68pVu0MSERFJFkq0yT2bORNWrQJvr0imnm+BA6BHD7vDEhERERGbubnBJ98EkYEbfHe9Pt90/tbukERERJKFEm1yT06dgv79zfUR1VdQ2NoDjz4KxYrZG5iIiIiIpAilKnnz6tP7AOj1dR3O/7bb5ohERESSnhJtck9eeAEuXIAK5SPpv/1/ZmXPnvYGJSIiIiIpyuDPi1LM7wgnyckLTQ+qMIKIiKR5SrRJgu3cCXPnmiEBn7ZcQYYzJyBXLnjySbtDExEREZEUxNvHwWdfuOOGky9P1+e7fj/ZHZKIiEiSShGJtsmTJ5M/f368vb2pWrUqmzZtuu22jzzyCA6HI9by+OOPR2/TuXPnWPc3bNgwOZ5KujB5srls0gTKL3nT3OjWDTw87AtKRERERFKkqs1zMaD2ZgC6v1+S83vP2xyRiIhI0rE90TZ37lz69+/PsGHD2Lp1K2XLlqVBgwacPn06zu0XLlzIiRMnopft27fj7u5Oy5YtXbZr2LChy3ZfffVVcjydNC8kxBRBAOjz+H5YuxYyZICuXe0NTERERERSrBHfV6SY135OWsH0bbjL7nBERESSjO2JtgkTJtC1a1e6dOlCiRIlmDJlCr6+vkyfPj3O7bNkyUKOHDmil5UrV+Lr6xsr0ebl5eWyXebMmZPj6aR5M2fClStQvDg8umWcWdm8uRk6KiIiIiISB++MHnw26QpuOJm1rxrfjv7H7pBERESSRIITbfnz52fkyJEcPnz4vh88PDycLVu2ULdu3ZiA3NyoW7cuGzZsiNcxpk2bRps2bfDz83NZv2bNGrJnz07RokXp0aMH586du+0xwsLCCAkJcVkktshI+OADc733s6E4vvzC3FARBBERERG5i6pdyzCgzEoAug8N5tyJcJsjEhERSXwJTrS9+OKLLFy4kIIFC1KvXj3mzJlDWFjYPT342bNncTqdBAcHu6wPDg7m5MmTd91/06ZNbN++neeee85lfcOGDfn8889ZvXo1b7/9Nj///DONGjXC6XTGeZwxY8YQGBgYveTNm/eenk9at2oV7N4NGTNCB76Aq1dN17bate0OTURERERSgRFLq1DcfRennNno22i33eGIiIgkuntKtP35559s2rSJ4sWL06dPH3LmzEnv3r3ZunVrUsR4W9OmTaN06dJUqVLFZX2bNm148sknKV26NM2aNeOHH35g8+bNrFmzJs7jDBw4kEuXLkUvR44cSYboU59Jk8xll84WGae/Z2707AkOh31BiYiIiEiq4Z0rC58N2Y8bTmb/VYpFU07YHZKIiEiiuuc52ipUqMD777/P8ePHGTZsGJ9++imVK1emXLlyTJ8+Hcuy7nqMbNmy4e7uzqlTp1zWnzp1ihw5ctxx36tXrzJnzhyeffbZuz5OwYIFyZYtG3v37o3zfi8vLwICAlwWcbV/PyxebK73engb7NgBPj7QoYO9gYmIiEiqlpDq85999lmsyvLe3t7JGK0khipDG/JyvvkAPP+CF+fO3v28QUREJLW450TbjRs3mDdvHk8++SQvvfQSlSpV4tNPP6VFixa8/vrrtG/f/q7H8PT0pGLFiqxevTp6XWRkJKtXr6ZatWp33Hf+/PmEhYXxzDPP3PVxjh49yrlz58iZM+fdn5jE6cMPwbKgQQN4cM0nZmXz5hAYaG9gIiIikmoltPo8QEBAgEtl+UOHDiVjxJIoHA6Gf1+REo4dnArPQp9m9z/3s4iISEqR4ETb1q1bXYaLlixZku3bt7N27Vq6dOnCkCFDWLVqFd988028jte/f3+mTp3KzJkz2blzJz169ODq1at06dIFgI4dOzJw4MBY+02bNo1mzZqRNWtWl/VXrlzh5Zdf5rfffuPgwYOsXr2apk2bUrhwYRo0aJDQpyvAtWswbZq53uf5G/DVV+ZGx472BSUiIiKpXkKrzwM4HA6XyvK3zvUrqYN36SLMeHYdbjj5al0+vvnyqt0hiYiIJIoMCd2hcuXK1KtXj48++ohmzZrh4eERa5sCBQrQpk2beB2vdevWnDlzhqFDh3Ly5EnKlSvHsmXLohtNhw8fxs3NNR+4a9cu1q5dy4oVK2Idz93dnb///puZM2dy8eJFcuXKRf369Rk1ahReXl4JfboCzJoFFy9CwYLQ0LkYzp+HnDnhpmqxIiIiIgkRVX3+5h9U41N9/sqVK+TLl4/IyEgqVKjA6NGjKVmy5G23DwsLcyncperyKUeVDzry8tfTePtCN3p0c/JwI7jlN3QREZFUJ8GJtv3795MvX747buPn58eMGTPifczevXvTu3fvOO+Lq4BB0aJFbzsHnI+PD8uXL4/3Y8udWRZ88IG53qsXuM/63Nx45hlwd7cvMBEREUnV7lR9/t9//41zn6JFizJ9+nTKlCnDpUuXeOedd6hevTr//PMPefLkiXOfMWPGMGLEiESPXxKBlxfDvyrK9w3/YUdoSfq0O8fs5cq0iYhI6pbgoaOnT59m48aNsdZv3LiR33//PVGCkpTj11/h77/B1xe6ND0PP/xg7tCwUREREUlm1apVo2PHjpQrV47atWuzcOFCgoKC+Pjjj2+7j6rLp2zeDWozo9F8M4R0RVYWznfaHZKIiMh9SXCirVevXnE2UI4dO0avXr0SJShJOaJ6sz3zDGRe9hXcuAHly0OpUvYGJiIiIqna/VSfj+Lh4UH58uVvW1keVF0+NajyWU9e8X4fgOf/F8YdamGIiIikeAlOtO3YsYMKFSrEWl++fHl27NiRKEFJynD0KCxcaK737g18/t+wUfVmExERkft0P9XnozidTrZt26bK8qld9uwMfzcTpfmbM1d86db+KreZJUZERCTFS3CizcvLK9YvjwAnTpwgQ4YET/kmKdjHH4PTCbVrQ2mPf2HTJjMvW9u2docmIiIiaUBCq8+PHDmSFStWsH//frZu3cozzzzDoUOHeO655+x6CpJIvLp35ovK7+NBON+u8mPmZ8q0iYhI6pTgRFv9+vWj57qIcvHiRV5//XXq1auXqMGJfcLC4JNPzPXevYEvvjA3GjaEWyYtFhEREbkXrVu35p133mHo0KGUK1eOP//8M1b1+RMnTkRvf+HCBbp27Urx4sVp3LgxISEhrF+/nhIlStj1FCSxOByU/WogIzOMAqBvzxscOmRzTCIiIvfAYd2ufOdtHDt2jIcffphz585Rvnx5AP7880+Cg4NZuXIlefPmTZJAk1NISAiBgYFcunQp3c7j8eWX0KED5MkDB/ZFkqFwfjhyBObOhVat7A5PREQkxVH7IXXQ+5SyOd95l4dfrsJ6avBItTBWr/XCLcFdA0RERBJffNsQCf7ayp07N3///Tdjx46lRIkSVKxYkffee49t27aliSSbGJMmmcvnn4cMa9eYJFtgIDz5pK1xiYiIiEja5d6vLzPLTMCXq6zZ4MX772kIqYiIpC73NKman58f3bp1S+xYJIXYtMksnp7QtSvwyn9FEFq3Bm9vW2MTERERkTTM3Z3Cs0Ywvuwr9IiczGuvRlK/gTsaHSwiIqnFPVcv2LFjB4cPHyY8PNxl/ZPq8ZTqffCBuWzdGrL7XYUFC8wKVRsVERERkaRWqhTdBwexaOQylt9oSMd2EWzYnAEPD7sDExERubsEJ9r2799P8+bN2bZtGw6Hg6gp3hwOB2DKrEvqdfq0mYYNoE8f4Jtv4OpVKFgQqle3NTYRERFJGY4cOYLD4SBPnjwAbNq0idmzZ1OiRAmNepBE4Xh9INPmNKL07ips+SsLb74Jw4fbHZWIiMjdJXiOthdeeIECBQpw+vRpfH19+eeff/jll1+oVKkSa9asSYIQJTlNnQrh4VClClSuDHz+37DRjh3hv2SqiIiIpG/t2rXjp59+AuDkyZPUq1ePTZs2MWjQIEaOHGlzdJImeHmR+/MxfEgvAN4YFcnmzTbHJCIiEg8JTrRt2LCBkSNHki1bNtzc3HBzc6NmzZqMGTOGvn37JkWMkkwsC2bMMNd79waOHYNVq8yKDh1si0tERERSlu3bt1OlShUA5s2bR6lSpVi/fj2zZs3is88+szc4STuqVqVNv5y0Zg7OSDc6tHcSGmp3UCIiIneW4ESb0+kkY8aMAGTLlo3jx48DkC9fPnbt2pW40Umy2r4d9u0DLy9o3hyYNctk32rWNENHRURERIAbN27g5eUFwKpVq6Ln6C1WrBgnTpywMzRJa0aNYnK+ceTkOLv2uDNwoN0BiYiI3FmCE22lSpXir7/+AqBq1aqMHTuWdevWMXLkSAoqGZOqffONuaxXD/z9LJg506xQEQQRERG5ScmSJZkyZQq//vorK1eupGHDhgAcP36crFmz2hydpCl+fmSdPo5pPAvAe+/Bjz/aHJOIiMgdJDjRNnjwYCIjIwEYOXIkBw4coFatWixZsoT3338/0QOU5LNokbls3hzYuhV27DDd21q1sjMsERERSWHefvttPv74Yx555BHatm1L2bJlAfjuu++ih5SKJJpHH6XRc3nozhQAOneK5OJFe0MSERG5HYcVVTb0Ppw/f57MmTNHVx5N7UJCQggMDOTSpUsEBATYHU6yOHgQChQANzc4eRKC3ngB3n8fWreGOXPsDk9ERCTFS2/tB6fTSUhICJkzZ45ed/DgQXx9fcmePbuNkd1Zenuf0oyLF7lSrBLlTi1jH4Vp3Rq++kq1ukREJPnEtw2RoB5tN27cIEOGDGzfvt1lfZYsWdJMki29iurNVqsWBGW6AbNnmxUaNioiIiK3CA0NJSwsLDrJdujQISZOnMiuXbtSdJJNUrFMmfD/eDxf8gwZuMHcufDpp3YHJSIiEluCEm0eHh488MADOJ3OpIpHbBI1P1vz5sCyZXD2LGTPDvXr2xqXiIiIpDxNmzbl888/B+DixYtUrVqV8ePH06xZMz766CObo5M0q2lTHmqVjzcZBEDfvha3/P4vIiJiuwTP0TZo0CBef/11zp8/nxTxiA3OnIG1a831Zs2A/xrOtG8PGTLYFZaIiIikUFu3bqVWrVoALFiwgODgYA4dOsTnn3+uOXslaX3wAQOyzaQBy7h+3UHr1nDtmt1BiYiIxEhwFuWDDz5g79695MqVi3z58uHn5+dy/9atWxMtOEke330HkZFQoQLky3jerAANGxUREZE4Xbt2jYwZMwKwYsUKnnrqKdzc3HjooYc4dOiQzdFJmhYUhNsnU/j8qY6U40927MhF374aRioiIilHghNtzZo1S4IwxE5Rw0abNQPmzYPwcChdGv6rICYiIiJys8KFC7No0SKaN2/O8uXL6devHwCnT59WgQFJes2bk73dAr6c/Qx1WcW0aW489hi0bWt3YCIiIveQaBs2bFhSxCE2uXwZVq4015s3B3rMMjc6dVIZJxEREYnT0KFDadeuHf369ePRRx+lWrVqgOndVr58eZujk3Rh0iQe/akUg0+8wSiG0q0bVK4MhQvbHZiIiKR3CZ6jTdKWZctMB7bChaFk8FlYv97c0bKlvYGJiIhIivX0009z+PBhfv/9d5YvXx69/rHHHuPdd9+1MTJJN7JkgalTGcpIavELV65A69YQFmZ3YCIikt4lONHm5uaGu7v7bRdJXW6uNupYvsxM1lamDDzwgL2BiYiISIqWI0cOypcvz/Hjxzl69CgAVapUoVixYjZHJunG44+ToUtHZtOOrG7n2boVXnnF7qBERCS9S/DQ0W+iMjP/uXHjBn/88QczZ85kxIgRiRaYJL3wcFi82Fxv3hx47wdz44knbItJREREUr7IyEjeeOMNxo8fz5UrVwDImDEjL730EoMGDcLNTYMmJJm8+y55Vpbis6MdacIPvP8+PPooNG1qd2AiIpJeJTjR1jSOb62nn36akiVLMnfuXJ599tlECUyS3o8/QkgI5MwJVSvcMONIQYk2ERERuaNBgwYxbdo03nrrLWrUqAHA2rVrGT58ONevX+fNN9+0OUJJNwIDYdo0nmjQgH5M4F3606UL/PmnBmiIiIg9Eu3nxoceeojVq1cn1uEkGUR1TmzaFNzWr4VLlyAoCKpUsTcwERERSdFmzpzJp59+So8ePShTpgxlypShZ8+eTJ06lc8++8zu8CS9qV8funfnLV6jkudfXLgA7dpBRITdgYmISHqUKIm20NBQ3n//fXLnzp0Yh5Nk4HTCt9+a682aAT/8N2y0cWPQXHsiIiJyB+fPn49zLrZixYpx/vx5GyKSdG/cODzz52ZO+FNk9Ahl3ToYNszuoEREJD1KcKItc+bMZMmSJXrJnDkzGTNmZPr06YwbNy4pYpQk8NtvcOqU6W1fpw4xiTYNGxUREZG7KFu2LB988EGs9R988AFlypSxISJJ9zJmhOnTKcR+pt7oDMCYMbBkib1hiYhI+pPgOdreffddHA5H9G03NzeCgoKoWrUqmTNnTtTgJOksWmQuH38cPA/uht27IUMG0/VeRERE5A7Gjh3L448/zqpVq6hWrRoAGzZs4MiRIyxRZkPsUqcO9OlD60mTWOP3BFOudqBdO9i8GYoUsTs4ERFJLxKcaOvcuXMShCHJybJi5mdr3pyY3my1a0NAgG1xiYiISOpQu3Ztdu/ezeTJk/n3338BeOqpp+jWrRtvvPEGtWrVsjlCSbfGjIGlS5m49zn+CqrGhjOFadbMjObImNHu4EREJD1wWJZlJWSHGTNm4O/vT8uWLV3Wz58/n2vXrtGpU6dEDdAOISEhBAYGcunSJQLSYOJp2zYoUwa8vODsWfB/8lH46SeYOBFeeMHu8ERERFKltN5+iI+//vqLChUq4HQ67Q7ltvQ+pQPr1kGtWpywgqmYeT8nLvjw1FOwYAHcNDBHREQkQeLbhkjwHG1jxowhW7ZssdZnz56d0aNHJ/RwYoOo3mz164N/xEX49VezQvOziYiIiEhqV6MGvPIKOTnJ1xHN8PCwWLgQdKoiIiLJIcGJtsOHD1OgQIFY6/Ply8fhw4cTJShJWi7DRlesMLXPixWDQoVsjUtEREREJFGMGgVVqlDt8gom5zMF24YMgcWLbY5LRETSvAQn2rJnz87ff/8da/1ff/1F1qxZEyUoSToHDsCff4Kb238d2FRtVERERETSGg8P+OoryJiRrntfpXvF37EsaN8e9uyxOzgREUnLElwMoW3btvTt25eMGTPy8MMPA/Dzzz/zwgsv0KZNm0QPUBJXVLXRWrUgKIszpuZ5kya2xSQiIiKpw1NPPXXH+y9evJg8gYjER8GC8PHH0K4d72+tybZSp1i/PVDFEUREJEklONE2atQoDh48yGOPPUaGDGb3yMhIOnbsqDnaUoGoRFvz5pgWxrlzkCkTVK9uY1QiIiKSGgQGBt71/o4dOyZTNCLx0LYtrFyJ54wZLDhbh0o5fmfHDjc6dTLFEdwSPL5HRETkzhJcdTTKnj17+PPPP/Hx8aF06dLky5cvsWOzTVqtRnXmDOTIAZGRcPAg5JsyEN56yzRAZs+2OzwREZFULa22H9IavU/p0JUrUKkS7NrFb7Ve5uHf3ubGDQdvvAGDBtkdnIiIpBZJVnU0SpEiRWjZsiVPPPFEmkqypWXffWeSbBUqQL58aH42EREREUn7/P3NfG2enjz06zgmP70GUHEEERFJGglOtLVo0YK333471vqxY8fSsmXLRAlKkoZLtdGDB2H7dnB3h4YN7QxLRERERCRplS8PY8cC0HVhI7o/fVbFEUREJEkkONH2yy+/0Lhx41jrGzVqxC+//JIoQUniu3wZVq4015s3J+bnuxo1IEsW2+ISEREREUkWffuakRxhYby/7VGqP+Tk0iVo2hRUx0NERBJLghNtV65cwdPTM9Z6Dw8PQkJCEiUoSXxLl0J4OBQpAiVKoGGjIiIiIpK+OBwwYwbkzInnrm0sKPgquXLBzp3QsiXcuGF3gCIikhYkONFWunRp5s6dG2v9nDlzKFGiRKIEJYlv+XJz2bQpOK5egR9/NCuUaBMRERGR9CJbNpg1CxwOcs4ezw99luPnB6tWQY8ecG9l4kRERGJkSOgOQ4YM4amnnmLfvn08+uijAKxevZrZs2ezYMGCRA9QEsfvv5vLmjUxLYnwcChYEIoVszUuEREREZFkVacOvP46vPkm5ce0Ys7EXTTtnoNp08zoj1dftTtAERFJzRLco61JkyYsWrSIvXv30rNnT1566SWOHTvGjz/+SOHChZMiRrlP167BP/+Y65UqETNstEkT04VeRERERCQ9GT4cqlWDkBCe+LQZE9+JAOC110B9B0RE5H4kONEG8Pjjj7Nu3TquXr3K/v37adWqFQMGDKBs2bKJHZ8kgr/+AqcTgoMhV47ImEIIGjYqIiIiIulRhgwwezZkygQbN9LnQH/69DF3degAv/1ma3QiIpKK3VOiDUz10U6dOpErVy7Gjx/Po48+ym/3+I00efJk8ufPj7e3N1WrVmXTpk233faRRx7B4XDEWh5//PHobSzLYujQoeTMmRMfHx/q1q3LnnRctztq2GilSuD4YyucPAn+/vDww/YGJiIiIiJil/z54YsvzPVJk3i38myeeAKuXzfzGh84YGt0IiKSSiUo0Xby5EneeustihQpQsuWLQkICCAsLIxFixbx1ltvUbly5QQHMHfuXPr378+wYcPYunUrZcuWpUGDBpw+fTrO7RcuXMiJEyeil+3bt+Pu7k7Lli2jtxk7dizvv/8+U6ZMYePGjfj5+dGgQQOuX7+e4PjSgi1bzGWlSsD335sbDRpAHNVjRURERETSjSeegP+3d+/xOdf/H8ef1zbbGOYwdmAOcz4Ow8wxLHP40oqSFEkqX0qpX6VEZ9W3pIMv5Ut8OxF9lRCxInI+H2LOITYhG4uN7fr98W7XLKOxa9fn2va4327v267rc32u63pfPtF7z+v9fr9Gj5YkeT54vz5/doeaNpVOnJB69JDOnLG2ewCAgifXQVvPnj1Vp04dbdu2TRMmTNCxY8f03nvv5bkD48eP15AhQzRo0CDVr19fkydPVokSJTRt2rQczy9XrpyCgoIcbcmSJSpRooQjaLPb7ZowYYJGjx6tW265RY0bN9Z///tfHTt2TF999VWe+1sQZc5oi4hQ9v3ZAAAAgKLu+eelLl2k8+dV8p5b9c0nSapUSdq1S+rTR7p40eoOAgAKklwHbd9++60GDx6sF154QT169JCnp2ee3zwtLU0bN25UdHR0Voc8PBQdHa3Vq1fn6jWmTp2qO++8U35+fpKkgwcPKiEhIdtr+vv7KzIy8qqvmZqaquTk5GytsEhJMYMESYoIOS5t2mQKIHTrZm3HAAAAAHfg6Wn2a6taVdq3T5VGDdD8eRny85Pi4qShQyW73epOAgAKilwHbStXrtTZs2cVERGhyMhIvf/++zp58mSe3vzkyZNKT09XYGBgtuOBgYFKSEj42+evW7dOO3bs0P333+84lvm863nNcePGyd/f39FCQ0Ov96O4rS1bpIwMKSRECtn052y2yEipYkVL+wUAAAC4jfLlTblRb29p3jw1Wfy6Zs2SPDykqVOl11+3uoMAgIIi10Fbq1atNGXKFB0/flwPPvigZs6cqZCQEGVkZGjJkiU6e/ZsfvYzR1OnTlWjRo3UsmXLPL3OqFGjlJSU5GhHjhxxUg+td3khBMeyUaqNAgAAANk1by5NnGhujx6tHt5L9M475u6oUdIXX1jXNQBAwXHdVUf9/Px03333aeXKldq+fbsef/xxvfbaa6pYsaJ69ep1Xa8VEBAgT09PJSYmZjuemJiooKCgaz43JSVFM2fO1ODBg7Mdz3ze9bymj4+PSpcuna0VFo792RpflJYuNXcI2gAAAIAr3X+/NHiwWRLSr5+G9zqsESPMQ/fcIy1ZYm33AADu77qDtsvVqVNHb7zxho4eParPP//8up/v7e2tiIgIxcXFOY5lZGQoLi5OUVFR13zu7NmzlZqaqrvvvjvb8erVqysoKCjbayYnJ2vt2rV/+5qFkWNGm9cW6Y8/pNBQqXFjS/sEAAAAuK3335eaNZNOnZL69NFbr6aqTx8pLU2KjZVyuZU0AKCIylPQlsnT01OxsbGaN2/edT935MiRmjJlimbMmKFdu3Zp6NChSklJ0aBBgyRJAwYM0KhRo6543tSpUxUbG6vy5ctnO26z2fToo4/q5Zdf1rx587R9+3YNGDBAISEhio2NvaHPV1CdPSvFx5vbEYfnmhs9ephiCAAAAACu5OsrffmlVK6ctH69PEeO0CefmMKkf/whde8ubdtmdScBAO7Ky+oO9O3bV7/99pvGjBmjhIQENWnSRIsWLXIUMzh8+LA8PLLngfHx8Vq5cqW+++67HF/zySefVEpKih544AGdOXNGbdu21aJFi+Tr65vvn8edbN5sKiSFhkqB674xB2++2dpOAQAAAO6uWjXp009NqvbBB/KJjNT//jdIXbpIq1aZ0G3lSqlmTas7CgBwNza7nWLVf5WcnCx/f38lJSUV6P3axo+XHn9ciu2eqrkL/wwZT5yQKlSwtmMAABRChWX8UNhxnXBdXnxRGjtW8vGRVq3SmbBmuukmaetWqWpV6aefpEqVrO4kAMAVcjuGcMrSUbgnx/5sZfabG/XrE7IBAAAAuTV6tJnVlpoq3XqryqQmavFiqVYt6ZdfzGKRkyet7iQAwJ0QtBViGzean83/+NHc6NDBus4AAAAABY2Hh/TJJyZZO3xYuvVWBfpf0JIlUuXK0q5dUteuUnKy1R0FALgLgrZCKilJ2rPH3I7Y/4W5QdAGAAAAXJ+yZaX586UyZUzJ0cGDVbWKXUuWSAEB5svtXr2k8+et7igAwB0QtBVSmzaZn1VDMxSwY5m50769Zf0BAAAACqzataU5cyQvL+mzz6SXX1bdutLixVLp0tLy5dIdd0gXL1rdUQCA1QjaCinH/myhiab0aK1aUnCwtZ0CAAAACqrOnaWJE83tMWOkL75Qs2bSN99Ivr5m0tu990oZGZb2EgBgMYK2QsqxP5vXZnODZaMAAABA3jzwgPToo+b2wIHS+vVq31768susyW5DhxK2AUBRRtBWSGXOaIs4scjcYNkoAAAAkHdvvin16CFduGA2ZztyRN27Sx9/bGonfPihNGyYWVQCACh6CNoKod9/l/bvN7cj9nxubjCjDQAAAMg7T08zda1hQykhwYRt587pzjul6dMlm02aPFkaPpywDQCKIoK2QiizEEJY8B8ql3FSqlZNqlLF0j4BAAAAhUbp0mZztooVpS1bpLvvljIydM890kcfmbDt3/+WHnmEsA0AihqCtkLIUQihzJ/T2lg2CgAAADhXtWrSV19JPj7S119Lo0ZJMlu3TZ1qwrb335cee4ywDQCKEoK2QsixP9v5leYGy0YBAAAA54uKkqZNM7ffeMOsHZU0aJA0ZYo5/M470siRhG0AUFQQtBVCjhltR78yN5jRBgAAAOSPu+6SnnvO3H7gAWn5cknS4MGmMIIkTZggPfEEYRsAFAUEbYXMqVPSoUPmdrNLa6WQEKlGDUv7BAAAABRqzz8v3X67dPGiFBsr7dghSRoyxBRGkKTx46UnnyRsA4DCjqCtkNm40fysVe6UyijJLBu12aztFAAAAFCYeXhIM2ZIbdpIZ85IXbtKR45Ikh580BRGkKQ335SefpqwDQAKM4K2QsaxP5vXVnODZaMAAABA/iteXJo3T6pfX/r1VykmRjp9WpI0dKgpjCCZrdyeeYawDQAKK4K2QsaxP9vp78wNCiEAAAAArlGunLRokVSpkrRrl9Srl3T+vCRp2DDp3XfNaa+9Jj3+uJSRYWFfAQD5gqCtkMlcOtr80mqpQgWpbl1rOwQAAAAUJaGh0uLFUpky0k8/Sf36SZcuSZIefthUIZWkt9+WBg4027oBAAoPgrZC5MQJ6fBhc7upNptlo+zPBgAAALhWgwZmGamPj/T112Y6259rRR95xGzn5ukpffKJdMstUkqKxf0FADgNQVshkjmbrY7fEZXWWZaNAgAAAFZp10767DPzxfeHH0ovveR4aMAAk78VLy59+60UHe3Yzg0AUMARtBUijv3ZUn8yNwjaAAAAAOvcdps0caK5PXasNGWK46EePaSlS6WyZaU1a0wud/SoRf0EADgNQVshkrU/2xrzf+yGDa3tEAAAAFDUDR0qjR5tbj/0kFlS+qfWraUVK0zthJ9/Nvd377aonwAApyBoK0QyZ7RFaKP5SsyDywsAANzbxIkTVa1aNfn6+ioyMlLr1q3L1fNmzpwpm82m2NjY/O0g4Awvvijdd58pM9q3r7RqleOhBg1MzYQ6daQjR6S2baVc/jUAALghkphC4vhx6ddfJZsysgohAAAAuLFZs2Zp5MiRGjt2rDZt2qTw8HDFxMToxIkT13zeoUOH9MQTT6hdu3Yu6imQRzab9MEH0j/+IV24YH7u2OF4uGpVaeVKqUUL6dQpqVMn6bvvLOwvAOCGEbQVEpnLRut5xKukUtifDQAAuL3x48dryJAhGjRokOrXr6/JkyerRIkSmjZt2lWfk56erv79++uFF15QWFiYC3sL5JGXlzRrltSqlfT776YCwmXrRAMCpO+/l26+2VQh/cc/pM8/t7C/AIAbQtBWSDj2Z8tYJ5UqJTVpYml/AAAAriUtLU0bN25UdHS045iHh4eio6O1evXqqz7vxRdfVMWKFTV48OBcvU9qaqqSk5OzNcAyJUpICxZI4eFSYqKZurZ3r+PhkiWl+fOlO++ULl6U7rpLev11yW63sM8AgOtC0FZIZNufrU0b840ZAACAmzp58qTS09MVGBiY7XhgYKASEhJyfM7KlSs1depUTbmscuPfGTdunPz9/R0tNDQ0T/0G8qxcOVNutGFDs/9Lp07SwYOOh729pU8/lUaMMPeffloaMkRKS7OovwCA60LQVkhkBm3NtYFlowAAoNA5e/as7rnnHk2ZMkUBAQG5ft6oUaOUlJTkaEeOHMnHXgK5FBBgwra6daWjR6WOHaXDhx0Pe3hIEyZI775rbk+dKnXtalacAgDcG9OeCoFjx6SEBMlD6WqiLVKHt6zuEgAAwDUFBATI09NTiYmJ2Y4nJiYqKCjoivP379+vQ4cOqWfPno5jGRkZkiQvLy/Fx8erRo0aVzzPx8dHPj4+Tu494ASBgWZTtg4dzPLRTp2k5culSpUcpzz8sFSjhilU+sMPUlSUWXmaw3/qAAA3wYy2QiBzNlsD7VSJ4pIiIiztDwAAwN/x9vZWRESE4uLiHMcyMjIUFxenqKioK86vW7eutm/fri1btjhar1691LFjR23ZsoUloSiYgoNN2BYWJu3fb8K2vyyd7t5d+uknKTRUio+XIiNNhVIAgHsiaCsEsu3P1rq12dgBAADAzY0cOVJTpkzRjBkztGvXLg0dOlQpKSkaNGiQJGnAgAEaNWqUJMnX11cNGzbM1sqUKaNSpUqpYcOG8mb8g4KqcmUTtlWpIu3ZI3XuLJ04ke2Uxo2ltWul5s2lU6fMKZ98YlF/AQDXRNBWCLA/GwAAKIj69u2rN998U2PGjFGTJk20ZcsWLVq0yFEg4fDhwzp+/LjFvQRcoGpVsza0UiXp55+l6GiTqF0mONisLL3tNlMY4Z57pLFjqUgKAO7GZrfzT/NfJScny9/fX0lJSSpdurTV3bkmu10KCrLrxAmb1ihSkcveIGwDAMACBWn8UJRxneDW9u41Y/njx6WmTaW4OKls2WynZGRIo0ZJb7xh7vfrJ02bJvn6WtBfAChCcjuGYEZbAXf0qHTihE2euqTGxXabTRsAAAAAFDy1aplwrWJFafNmKSbmilKjHh7S669LU6ZIXl7S55+brd2OHbOozwCAbAjaCrjMZaMNtUPFW4XzVRYAAABQkNWrZ8K28uWl9etNivbbb1ecdv/90qJFUpky0urVUrNmZmkpAMBaBG0FXGbFoUitZckoAAAAUBg0bGj2bAsMlLZskdq3l3799YrTOnc2WVyjRlJiorn/5pvs2wYAViJoK+Ayv7XqoOUEbQAAAEBh0aiR9OOPUmiotHu31K6ddPDgFafVrCmtWWOKI6SnS//3f9Ltt0vJyRb0GQBA0FaQJSdLmzebr6vae66SoqIs7hEAAAAAp6ldW1qxQqpRw4Rs7dqZ0O0vSpSQZsyQ/v1vqVgx6csvpZYtpZ07LegzABRxBG0F2E8/SRkZNoVpvyq3CJb8/KzuEgAAAABnqlrVhG3165vlo+3bm+Wkf2GzSUOHmlMrV5bi402dtFmzXN9lACjKCNoKsGzLRqk2CgAAABROwcFm8N+smSmM0LGjWS+ag8hIadMms19bSop0553So49KFy+6tssAUFQRtBVgP/5ofrbXj1KTJpb2BQAAAEA+CgiQvv9eat1aOnNGio6Wli3L8dQKFaTFi6VnnjH333nHZHPHjrmstwBQZBG0FVApKdL69WZ/tg5aLjVtanGPAAAAAOQrf3/pu++ypqt16yYtXJjjqZ6e0iuvSF9/bZ7200/mu/nvvnNtlwGgqCFoK6BWr5YuXbIpVIdVrdgxqV49q7sEAAAAIL/5+Unz50s9e0oXLkixsdKcOVc9vVcvacMGKTzcrDqNiTEz3S5dcl2XAaAoIWgroC5fNmpr2EDy9ra2QwAAAABcw9fXlBbt29dsvta3ryk5ehU1a5ot3f75T3N/3DjpppukI0dc010AKEoI2gqobIUQWDYKAAAAFC3Fikmffio98ICUkSENGyY9/bS5nQNfX2niRGn2bKl06aylpN9849puA0BhR9BWAF24IK1da24TtAEAAABFlKenNHmy9NJL5v7rr0sDBkhpaVd9Sp8+0ubNUosW0unTZmnpyJHXfAoA4DoQtBVA69ZJqalSoMcJ1dJeKo4CAAAARZXNJo0eLX30keTlZWa5desmJSVd9SlhYdLKlSZgk6S335batJEOHHBRnwGgELM8aJs4caKqVasmX19fRUZGat26ddc8/8yZMxo2bJiCg4Pl4+Oj2rVra+FllXaef/552Wy2bK1u3br5/TFcyrFsNOMH2SSzsykAAACAouvee02RhJIlpe+/l9q1k44everp3t7SW29J8+ZJZcuagglNm5qlpQCAG2dp0DZr1iyNHDlSY8eO1aZNmxQeHq6YmBidOHEix/PT0tJ0880369ChQ5ozZ47i4+M1ZcoUVapUKdt5DRo00PHjxx1t5cqVrvg4LpNtf7aaNaVSpaztEAAAAADrxcSYqmlBQdL27VJUlLRjxzWf0rOntGWL1Lq1lJws3XGHNHjwNSfEAQCuwdKgbfz48RoyZIgGDRqk+vXra/LkySpRooSmTZuW4/nTpk3T6dOn9dVXX6lNmzaqVq2aOnTooPC/zOjy8vJSUFCQowUEBLji47hEWpq0apW53V4/sj8bAAAAgCxNm0qrV0t165oZbW3bSsuWXfMpVaqYU0aNMitRp02TGjWSli51SY8BoFCxLGhLS0vTxo0bFR0dndUZDw9FR0dr9erVOT5n3rx5ioqK0rBhwxQYGKiGDRvq1VdfVXp6erbz9u7dq5CQEIWFhal///46fPjwNfuSmpqq5OTkbM1dbdwonT8vlfc+q/r6maANAAAAQHbVqpmyom3amKlpMTHSzJnXfEqxYtKrr5rALSxMOnJEuvlmaehQ6exZl/QaAAoFy4K2kydPKj09XYGBgdmOBwYGKiEhIcfnHDhwQHPmzFF6eroWLlyo5557Tm+99ZZefvllxzmRkZGaPn26Fi1apEmTJungwYNq166dzl7j/w7jxo2Tv7+/o4WGhjrnQ+aDH380P9v7rJGH7BRCAAAAAHClcuXMlLTevc2ymH79TFVSu/2aT2vfXtq2TRo+3NyfPFlq3Fj64QcX9BkACgHLiyFcj4yMDFWsWFEffvihIiIi1LdvXz377LOaPHmy45xu3brp9ttvV+PGjRUTE6OFCxfqzJkz+uKLL676uqNGjVJSUpKjHTlyxBUf54Zk7s/W/tyfBSCY0QYAAAAgJ76+0qxZ0ogR5v7TT0sDB0oXLlzzaX5+0nvvSXFxUtWq0qFDUqdO0iOPSCkp+d9tACjILAvaAgIC5OnpqcTExGzHExMTFRQUlONzgoODVbt2bXl6ejqO1atXTwkJCUpLS8vxOWXKlFHt2rW1b9++q/bFx8dHpUuXztbc0aVLpgy3JHWwLzObnF7lzwoAAAAA5OkpTZhgkjNPT+njj6WbbpKOH//bp3bqZGoqPPCAuf/ee2ZBTSGrNQcATmVZ0Obt7a2IiAjFxcU5jmVkZCguLk5RUVE5PqdNmzbat2+fMjIyHMf27Nmj4OBgeXt75/icc+fOaf/+/QoODnbuB7DA1q1mfwT/4qlqrG0sGwUAAACQO8OHS4sXS2XLSmvXSs2bSxs2/O3TSpWSPvjAPLVyZWnfPrO89PHHzd7RAIDsLF06OnLkSE2ZMkUzZszQrl27NHToUKWkpGjQoEGSpAEDBmjUqFGO84cOHarTp09rxIgR2rNnjxYsWKBXX31Vw4YNc5zzxBNPaPny5Tp06JBWrVqlW2+9VZ6enurXr5/LP5+zZS4bbVshXp7KYNkoAAAAgNzr3Flav16qV086dkxq1076/PNcPbVLF2nHDum++8w2b+PHS+HhzG4DgL+yNGjr27ev3nzzTY0ZM0ZNmjTRli1btGjRIkeBhMOHD+v4ZVOaQ0NDtXjxYq1fv16NGzfWI488ohEjRujpp592nHP06FH169dPderU0R133KHy5ctrzZo1qlChgss/n7NlBm0dMpaZGwRtAAAAAK5HjRrSmjVSjx5mr7a77pKeeUa6bNXQ1fj7S1OnSvPnSyEh0t69ZnbbiBHs3QYAmWx2+9+UnSmCkpOT5e/vr6SkJLfZry0jQwoIkH7/XVrj3V6RaSukPXukWrWs7hoAAJB7jh9wJa4T8Kf0dOnZZ00lUknq2VP65BMpl38vzpyRnnjCBG+SVL26ud2xY/50FwCsltsxRIGqOlqU7dhhQja/4ulqlrZaKlnSfBsFAAAAANfL01N67TUTrvn4SN98I7VuLR04kKunlykj/ec/Zu+2KlWkgwdN8YShQ82+0gBQVBG0FRCZy0bb1ExUMV0yGyJ4cPkAAAAA5EH//tKKFVJwsLRzp9SihbR0aa6f3qWLqUw6dKi5P3my1LCh9N13+dRfAHBzJDUFxI8/mp/tS281N9ifDQAAAIAztGhhKpC2aCGdPi3FxEivvJKrfdsks9r03/+Wvv/eLCE9fNi8xODBZokpABQlBG0FgN2eFbR1OL/I3CBoAwAAAOAsISHml47Bg03ANnq01KuX2b8mlzp2NLPbHnlEstmkadOkBg2kL74wv9MAQFFA0FYA7N4tnTgh+fra1eLgF+ZgkyaW9gkAAABAIePrazZemzrV3F6wQGrWTNq4Mdcv4ecnvfOOyexq1ZKOHZP69jVLTOPj87HvAOAmCNoKgMzZbK2apMrn9wTJy8t8NQQAAAAAznbffdKqVVJYmHTokCmS8OGH1zUtrW1baetW6fnnTa2FpUulRo2kZ56RUlLyrecAYDmCtgIgsxBCh6qHzI0GDcz/rQAAAAAgPzRtamay9eolpaVJDz4oDRok/fFHrl+ieHFp7FhTY6F7d+niRWncOKl+fWnuXJaTAiicCNrcnN1+WdDmu9bcYNkoAAAAgPxWpoxJxF57TfLwkGbMkKKipL17r+tlatSQ5s+XvvpKqlrVFEu47TapRw9p37586TkAWIagzc0dOGD2NShWTIo8ucAcpBACAAAAAFfw8JCeesqs/axYUdq2TWre3ARw18Fmk265Rfr5Z+nZZyVvb+nbb81inTFjpPPn86n/AOBiBG1uLnM2W8uWUontf85oI2gDAAAA4EodO0qbN0tt2kjJyWZK2iOPSBcuXNfLlCghvfyyqU56881mVepLL0n16kmffmoKngJAQUbQ5uYcy0ZbnjdzrCUpPNy6DgEAAAAomkJCpB9+kEaONPffe8/MCNi587pfqnZtafFiafZsqXJl6ZdfpLvvllq0kL7/3sn9BgAXImhzc5kVR9sH/lkLOyxM8ve3rkMAAAAAiq5ixaS33pIWLJAqVDBT05o3lyZNuu7qBjab1KePFB8vvfKKVKqUtGmT1LmzKZ6wY0c+fQYAyEcEbW7s8GFTTdvTU2qdvsIcpBACAAAAAKt17272a+va1Swf/ec/pdhY6eTJ636pEiWkZ54xhRGGD5e8vMz+beHh0uDB0q+/Or/7AJBfCNrcWOZstogIqdSudeYO+7MBAAAAcAdBQWZm29tvm+oG8+ZJjRtLcXE39HIVK5rVqD//LPXubfZrmzZNqlVLGj3abA0HAO6OoM2NZe7P1r69zMajEkEbAAAAAPfh4SE9+qi0dq2paHD8uKly8NRTptLBDahVS5ozR1q1Smrd2lQkfeUVqUYNE8Slpjr3IwCAMxG0uTFHIYRWqdLu3eYOS0cBAAAAuJsmTaQNG6SHHjJ7tb3xhknJ9uy54ZeMipJWrpTmzjXFE06eNIVO69SRpk+XLl1yWu8BwGkI2txUQoK0d6/ZILRt2Z1SerrZbDQkxOquAQAAAMCVSpQwRRHmzpXKlZM2bpSaNZMmT77uQgmZbDaz9duOHealg4NNhdJBg6RGjczMtxt8aQDIFwRtbmrbNvOzTh2pzL4N5k7Tpub/NAAAAADgrmJjzS80nTpJKSnS0KFSt255qmpQrJiZLLdvn5ksV66cWfRz++1SixbS4sUEbgDcA0Gbm9q71/ysXVvSli3mDstGAQAAABQElSpJS5ZIEyZIvr4mCWvYUPr00zwlYiVKSP/3f9KBA9KYMVLJkmbiXNeuUseOZl83ALASQZubygzaatUShRAAAAAAFDweHtKIEeb3mRYtpDNnpLvvNtPQfvstTy/t7y+98IIJ3B57TPLxMXtct2kj/eMfWb9CAYCrEbS5KUfQViMjax0pQRsAAACAgqZuXTPV7KWXJC8v6csvzey2efPy/NIVKkjjx5vfn4YMkTw9pQULzNZwvXqZ2W4A4EoEbW7KEbQVPyr98YeZI12zprWdAgAAAIAb4eUljR4trV0rNWggnTgh3XKLqWqQlJTnlw8NlT78UNq1S7rrLjOZ7ptvpObNpZ49TUFUAHAFgjY3dPGidPCguV373CZzIzzcfD0DAAAAAAVVs2Ym9fq//zOF3qZPlxo3luLinPLytWqZbeB+/tmsUvXwkObPNytXe/SQ1q1zytsAwFURtLmhQ4ekS5ek4sWlkMNrzEEKIQAAAAAoDHx9TenQ5culsDDp8GEpOtrMbjt1yilvUaeO9PHHZobbgAEmcFu4UIqMNAVQ16xxytsAwBUI2txQ5rLRmjUljy1/zmhjfzYAAAAAhUm7dtLWrdI//5k1u61uXem//81TZdLL1a4tzZghxcdL995rFgktWiRFRUkxMdKyZU57KwCQRNDmlrIqjtqpOAoAAACg8CpZUpo4UfrpJ1Mg4eRJaeBA6eabs34xcoKaNaWPPjKB26BBJnD77jupY0epZUtp1iyzqggA8oqgzQ05gragc+Z/NJ6e5n86AAAAAFAYRUVJmzZJr75qlpbGxUmNGkkvvyylpTntbWrUkKZNk/bskR56yLzVhg3SnXea/d3efVc6d85pbwegCCJoc0OOoM3zgLlRr575PwAAAAAAFFbFikmjRkk7dpgZbamp0nPPmf2qV6506luFhUmTJpnt4caOlcqXN3tljxghValiCqQmJDj1LQEUEQRtbsgRtKVsMTdYNgoAAACgqKhRQ1q8WPrkE6lCBVPRoF076YEHpN9/d+pbVaggPf+8Cdz+/W/z1r//Lr3yilStmjRkiLR7t1PfEkAhR9DmZtLSpF9+MbdrHf/R3KDiKAAAAICixGaT+vc3KdfgwebYlCmmusGHH0rp6U59uxIlpKFDzR5uX34ptWplJtT95z9mgVFsrLRqlVPfEkAhRdDmZg4ckDIyzJ6gQbt+MAeZ0QYAAACgKCpXzqRdy5ebxOvkSenBB6UWLZy+nFQy22PfdpsJ1VaulG65xRz/+mupTRupbVtp3jzzOxsA5ISgzc1kLhutWf2SbIcOmjvh4dZ1CAAAAACs1r69tHWr9Pbbkr+/tHmzWU56113S0aNOfzubzQRrX31lVq4OHix5e5viqLfcIjVoYIoqpKY6/a0BFHAEbW7GsT9bhSRzo3Jl8y0OAAAAABRlxYpJjz5qSoYOGWLSsM8/l+rUMdVJz5/Pl7etW9dMqjt0SHr6aZPzZa5orV5deuMNKSkpX94aQAFE0OZmHEGbf6K5Ub26dZ0BAAAAAHdTsaLZp23DBjPt7I8/THXS+vWl//1Pstvz5W2Dg6Vx40zhhDfflCpVko4fl556SgoNlR5/3OzxBqBoI2hzM46grdifFRFCQ63rDAAAAAC4q2bNpBUrpM8+M6nXoUNS795SdLS0bVu+vW3p0iZUO3BAmj7d5Htnz0rjx5vZbx06mIKp+TTBDoCbI2hzM46gLf3PGtJVqljXGQAAAABwZzab1K+fmUo2erTk4yN9/73UpIl0333Sr7/m21t7e0sDB0rbt0sLFkg9e0oeHtKPP0r33COFhEiPPGIeB1B0ELS5kfPnzTRkSaqdstncIGgDAAAAgGvz85NeeslULrj9drN89KOPpFq1zLLSs2fz7a09PKTu3U010sOHTTeqVpXOnJHee09q3Fhq1UqaOlU6dy7fugHATRC0uZH9+81Pf38pIHGnuUPQBgAAAAC5U7269MUX0urVZv+28+dNoYSaNaXJk6VLl/L17StVMhPrDhyQFi0yK1m9vKS1a6X77zez3B58UFq3Lt+2kgNgMYI2N+JYNlpLsh35c2obe7QBAAAAwPVp1crs3/bll+YXrBMnpKFDpUaNzNSzfE65PDykmBhpzhzp6FHp9ddNN86eNXUcIiPNTLcJE6STJ/O1KwBcjKDNjTiCtuqXsv61ZUYbAAAAAFw/m0267TZp506zhrN8eWn3bumWW6SOHU3VUhcIDJSefNJsI/fDD9Ldd0u+vtKOHdJjj5lZbnfcIS1eLKWnu6RLAPIRQZsbcQRtFc6YG6VKmXWkAAAAAIAbU6yYNHy42avn6adNyrV8udSihUm4du92STdsNummm6SPP5aOH5f+/W8pIkK6eFGaPVvq2tWsfB0zRjp40CVdApAPCNrciCNoK5VgblSpYv41BgAAAADkjb+/NG6cmVo2YID5XWv2bKlBA2nQIOnQIZd1pUwZs5J1wwZpyxbp4YelsmWlI0dMMYWwMKlTJ2nGjHyt4wAgHxC0uRFH0Ob159cX7M8GAAAAAM5VpYpJsLZulWJjpYwMafp0qXZtM/Pt+HGXdic8XHr3XenYMenzz6XoaHP8hx+ke++VgoKke+6Rli5laSlQEBC0uYmUFPMPqyTVuvizucH+bAAAAACQPxo1kubONSVBb77ZrOGcOFGqUUN66inp1CmXdsfXV7rzTmnJEjO57uWXTQGFP/6QPvnEdLFaNWnUKGnXLpd2DcB1IGhzE/v2mZ/lyknlfos3dwjaAAAAACB/tWwpffedmULWurV0/rz0xhtm/eaLL1qydrNqVenZZ80q19WrzTLTsmVNBdPXXpPq1zdbzL33npSY6PLuAbgGgjY34Vg2WktmYb7E0lEAAAAAcJWbbpJWrpTmz5eaNJGSk6WxY02FgnHjLAncbDapVStTOOH4cWnOHKlnT8nLy+zv9sgjpmpp587Shx9KJ0+6vIsA/sLyoG3ixImqVq2afH19FRkZqXXr1l3z/DNnzmjYsGEKDg6Wj4+PateurYULF+bpNd1BtqDt8GFzhxltAAAAAOA6NpvUo4e0caM0a5ZUp45ZQvrMM2bd5iuvSElJlnTNx0fq3VuaN0/69VfpnXfMrLaMDOn776UHHzT7uXXtKn30kXTmjCXdBIo8S4O2WbNmaeTIkRo7dqw2bdqk8PBwxcTE6MSJEzmen5aWpptvvlmHDh3SnDlzFB8frylTpqhSpUo3/JruwhG01bQTtAEAgCLjer4g/d///qfmzZurTJky8vPzU5MmTfTxxx+7sLcAigwPD+mOO6QdO8wGaXXqSKdPS6NHm8DtxRctTbIqVjSz2datk/bvNxPumjQxxRIWL5buu08KDJR69ZI+/ZTKpYAr2ex2u92qN4+MjFSLFi30/vvvS5IyMjIUGhqqhx9+WE8//fQV50+ePFn/+te/tHv3bhUrVswpr5mT5ORk+fv7KykpSaVLl77BT3d92rUzs5Q/+yBZ/R70N9+knD9vvrYAAABuz4rxQ0E3a9YsDRgwQJMnT1ZkZKQmTJig2bNnKz4+XhUrVrzi/GXLlun3339X3bp15e3trfnz5+vxxx/XggULFBMTk6v35DoBuCHp6dIXX0gvvZRVicDfXxoxQnr0UbOBmhvYs8dMxJs1S9q5M+u4j49ZXnrLLWbpaXCwdX0ECqrcjiEsC9rS0tJUokQJzZkzR7GxsY7jAwcO1JkzZ/T1119f8Zzu3burXLlyKlGihL7++mtVqFBBd911l5566il5enre0GtKUmpqqlJTUx33k5OTFRoa6tIBWFCQ2cRywye7FHF3fXPAxWWlAQDAjSPAuX7O+IK0WbNm6tGjh1566aVcnc91ApAn6elmo7SXXspKskqXNtPLHn1UKl/e0u5dbufOrNBtz57sj7VsaUK3Xr2kBg3MPA8A15bbMYRlS0dPnjyp9PR0BQYGZjseGBiohISEHJ9z4MABzZkzR+np6Vq4cKGee+45vfXWW3r55Zdv+DUlady4cfL393e0UBcXIUhOzqoUU8u239xg2SgAACjE0tLStHHjRkVHRzuOeXh4KDo6WqtXr/7b59vtdsXFxSk+Pl7t27e/6nmpqalKTk7O1gDghnl6Sn37Stu2SbNnS40amV/oXn7ZlAp97LGsrYAs1qCBWeG6e7dZAfvKK1JkpHls3TpT1bRRI6lmTdPtZcukS5cs7TJQKFheDOF6ZGRkqGLFivrwww8VERGhvn376tlnn9XkyZPz9LqjRo1SUlKSox3JrPrpIpn7s1WsKJU+ecDcIWgDAACF2I1+QZqUlKSSJUvK29tbPXr00Hvvvaebb775qudb/YUqgELKw0Pq00faskX63//MBmkpKdKECVKNGtI995gwzg3YbCZ0e+YZac0a6dgxU6G0Rw+zpPTAAdPtjh3NwqoHHpDi4szkPQDXz7KgLSAgQJ6enkrMnMr1p8TERAUFBeX4nODgYNWuXVuenp6OY/Xq1VNCQoLS0tJu6DUlycfHR6VLl87WXClbxdHMkI+gDQAA4AqlSpXSli1btH79er3yyisaOXKkli1bdtXzrf5CFUAh5+Eh3XqrtGmTtGiR1KmTmRb2ySdSeLjUrZv0ww+SdVujXyE4WBoyRJo/Xzp50uSE994rBQSYAqtTpkjR0VJIiDRsmPTjj6ayKYDcsSxo8/b2VkREhOLi4hzHMjIyFBcXp6ioqByf06ZNG+3bt08Zl/0t37Nnj4KDg+Xt7X1Dr+kOsgVtmdOM+bYVAAAUYjf6BamHh4dq1qypJk2a6PHHH1efPn00bty4q55v9ReqAIoIm02KiTFTwdavNxVLPTyywreWLc1SUzebJlaypMkJP/rIbBG+dKkJ4cqVk06ckP79b6lDB6lyZVP3YdUqQjfg71i6dHTkyJGaMmWKZsyYoV27dmno0KFKSUnRoEGDJEkDBgzQqFGjHOcPHTpUp0+f1ogRI7Rnzx4tWLBAr776qoYNG5br13RHOQZtzGgDAACFmLO+IM3IyMhW1AoALNe8ualAsHev9M9/Sr6+0oYNJnyrXVuaONEsM3UzXl6mMumHH0oJCdK335qZbv7+JoR7912pTRupWjUTun33ncQ/v8CVvKx88759++q3337TmDFjlJCQoCZNmmjRokWOvToOHz4sD4+sLDA0NFSLFy/WY489psaNG6tSpUoaMWKEnnrqqVy/pjsiaAMAAEXRyJEjNXDgQDVv3lwtW7bUhAkTrvjStVKlSo4Za+PGjVPz5s1Vo0YNpaamauHChfr44481adIkKz8GAOQsLMyEas8/b36+957ZEG34cGn0aLMZ2vDhbrmaqVgxqWtX0yZPNqHaF19IX39tdjt6913T/PzMMtMePaTu3aVKlazuOWA9m93uRovF3YSry75nroXfvO6imkT6mPX7CQmSG4eDAAAgO1ePHwqL999/X//6178cX5C+++67ivyzLN5NN92katWqafr06ZKk0aNHa9asWTp69KiKFy+uunXrasSIEerbt2+u34/rBMAyKSlmjeY770j79pljnp7S7bebsp8tW1rbv1w4f15avNjs77ZwoZnpdrnwcBO69ehhKpxetr06UODldgxB0JYDVw7Afv/drH+XpLM7flHJhtVM6Zc//jBr+gEAQIFAgFMwcJ0AWC49XVqwQHr7benyYi6tW5vALTbWrON0cxkZpujqggWmrVuXveZD+fJmtltmq1bNqp4CzpHbMQRJjsUyl40GB0slT/1i7oSGErIBAAAAQGHk6Sn16mWqkW7eLA0YYNZqrlplZrfVrCm99ZZ05ozVPb0mDw+pWTPpueekNWukxETpv/+V+vaVypQxq7ZmzTLFFapXNx/roYdMTYhTp6zuPZB/SHMsxv5sAAAAAFBENWkizZgh/fKLSawCAsztJ54wG5498ICZNlYAVKgg3XOPNHOm9Ntv0ooV0tixpoCCp6e0f7/0wQemJkSFClJEhPTUU9KSJWZJKlBYELRZLFvQduSIueOGm2ECAAAAAPJJcLD04otm8sWUKVLDhmY7oSlTpKZNTVr16acFpsynl5fUtq2pA7FypXT6tPTNN6ZaaYMGZonppk3SG29IXbqY7ZS6dpXGj5d27sy+BBUoaAjaLMaMNgAAAACAJKl4cen++6Vt26QffzTrML28zLLSu+82kzKeecbMeitASpeW/vEPacIEaccO6dgx6ZNPpHvvlUJCpAsXTJGFxx83GWOVKtLgwabS6enTVvceuD4EbRYjaAMAAAAAZGOzSe3amXWYR45IL70kVa5s1mSOGyeFhZl93hYvNlUJCpjgYKl/f1OE9ehRE7699ZaZ3ebra45Nm2ZyxgoVpFatzMrauDgz0Q9wZ1QdzYGrqlHZ7WaK7Jkz0vbtUsN+jcy/MIsXm39hAABAgUE1y4KB6wSgwLp0yay/nDjRJE6ZqlY1078GDTJhXAF3/rzZ323xYtN27sz+eLFiUosWUvv2UocOZlVtqVLW9BVFS27HEARtOXDVAOy336SKFc3tP/6QigeXkZKSpJ9/lurVy7f3BQAAzkeAUzBwnQAUCrt3S5MnS9Onm98hJVMGtGtXs/T0H/8wiVQhcPSo9N130vffS8uXm/uXy6x+2qGDaW3bSmXLWtNXFG4EbXngqgHYqlUmfQ8NlQ5vTzI1kCXp7FmpZMl8e18AAOB8BDgFA9cJQKFy/rz05ZfSf/5jUqhMFStKAweamW516ljXPyez26WDB832dcuXm3bwYPZzbDazz1v79mb1bbt2Zh84IK8I2vLAVQOwGTPM5o+dOklx7+yQGjUya0lPncq39wQAAPmDAKdg4DoBKLT27pWmTjWz3BITs463a2dmufXuLfn5Wda9/HLkiAneMsO3+PgrzwkLyx681axpAjngeuR2DEExBAtRCAEAAAAA4BS1akmvvWaSp7lzpR49zLrKFSvM7LagIOm++0wiVYjm24SGmsIKH3xgVtQmJEhz5kgjRkhNm5o/ggMHTP44eLBUu7aZ4danj/Tmm9LKlRRYgHN5Wd2Boixb0HbkiLkTGmpZfwAAAAAABVyxYlJsrGlHj5qE6aOPTNr00UemhYWZ8G3AAKlaNWv762SBgWbyXu/e5n5SkrR6tckXV6yQ1q0zYdyXX5omSV5eUni4qW7aqpUUGcmsN9w4lo7mwFVLCpo1kzZvlr7+Wuq19lnp1VelYcOk99/Pt/cEAAD5gyWJBQPXCUCRZLebqVszZkizZknnzmU91rGjCd169y4Se4VfuGDCtjVrTFu92gRvf1W+vAncoqLM3uotWhSJPx5cA3u05YErBmB2u1S6tPn37eefpXqv3iN98on0+uvSk0/my3sCAID8Q4BTMHCdABR5KSlmaen06aaUZ2Yk4Odnwrb+/c1G4l5FYwGc3W4WmGUGb2vWSBs3Smlp2c/z9DSz3lq3Ni2zsCGz3ooOgrY8cMUALCFBCg4268X/+EPy6dLBzGX97DOpX798eU8AAJB/CHAKBq4TAFzm8GHp449N6LZvX9bxihWlvn2lu+4y07qKWJqUmipt3Wpmu61eLa1albXb0+UqVcoK3tq2lZo0KTL5ZJFE0JYHrhiArVhhqp5Uq/ZnOeKwMHNj5UoTjQMAgAKFAKdg4DoBQA7sdpMmffaZ9MUX0smTWY+FhZnJIHfdJdWvb10fLXbkiPkjymybN0vp6dnP8fMzS03btTPBW6tWUokS1vQXzkfQlgeuGIBNm2Yqntx8s/Tdt+lS8eLSxYvmGwUKIgAAUOAQ4BQMXCcA+BsXL0pLl5rQbe5cs9Q0U3i4Cdz69pWqVrWuj24gJUXasEH66aeslpSU/RwvLykiwoRu7dqZOTUBAdb0F3mX2zEEkxotkq3iaGKi+cfM09OsJwUAAAAAwArFikndupn2xx/SN9+Y0O3bb816yq1bpaeeMtO17rhD6tOnSE4W8fOTOnQwTZIyMqQdO8witRUrTPv1V2ntWtPeesucV7WqCd8ub4RvhQsz2nLgim86+/QxpYTfflt6NGqt+UcqNNTMaAMAAAUOM6UKBq4TANyg06fNL7GffSYtX55VREEym5Rlhm6VKlnXRzdit0u//JIVvK1caQoh5qRKFRO4NWuWFb5VrOja/uLvsXQ0D1wxAAsPl7Ztk+bPl3r8Mdv8o9SmjfnbBwAAChwCnIKB6wQATpCQYEK3L74wKdLlsULbtub32969pZAQ6/rohs6cMXu7bdyY1TJXu/1VpUpS06amNWtmflapUuTqUrgVgrY8yO8BWEaGVKqUmYW7Z49Ua95b0hNPmA0mP/vM6e8HAADyHwFOwcB1AgAn+/XXrNDtp5+yjttsZjJJnz7SbbcVyeWluZGUdGX4tmdPzueWK5c9fGvSxGxHRaVT1yBoy4P8HoAdPWr+jfH0lM6fl4o9MUJ6912zzv2115z+fgAAIP8R4BQMXCcAyEdHj0pz5pjQbfXq7I+1bGlmufXuLdWoYU3/CoizZ81WeJs3m7Zpk7Rzp3Tp0pXn+viYYrCNGkmNG5ufjRpJQUHMfnM2iiG4scypodWrm30mdeSIOUDCDwAAAAAoqCpXlh591LTDh03V0jlzzEy3detMe+ops5dSZuhWv77VvXY7pUqZFbht22YdS001YdumTVkB3Pbt0rlzWfcvFxCQFb7Vry/Vq2cahRfyH0GbBbJVHJWyCiBUqWJJfwAAAAAAcKoqVaQRI0xLSDCh25dfSsuWZVUvHTNGqltXuvVW6ZZbpBYtJA8Pq3vulnx8zHLRZs2yjmVkSIcOmf3ft2/P+rl3r3TypPTDD6ZdLiAgK3S7vIWGMgPOWQjaLEDQBgAAAAAoMoKCpKFDTTt5Upo3z4RuS5ZIu3dL48aZFhws9eolxcZKHTuadAlX5eEhhYWZFhubdfz8eVPhNDN427XLtF9+MX/8K1aYdrmSJaWGDc0MuMzWqJFUpowrP1HhwB5tOcjvvTtiY6Wvv5bee08aPvi8VKKEeeD0aalsWae/HwAAyH/s/VUwcJ0AwI0kJUkLFphfkL/91mxOlqlUKalrV/MLdPfuJD5OkJIixcdnBW+7dplAbt++nPd/k6SqVbOHb40bS7VrF82JhxRDyIP8HoA1aGD+Y160SIoJ22v+K/XzM/+oMFcTAIACiQCnYOA6AYCbSk01y0q/+srMeDt2LOsxLy+pQwepZ0/pH/+gmIKTXbxoVt5lLj/NbJmL7/6qVCmzhLVFC6l5c9PCwgp/nEHQlgf5OQDLyDAT2FJTpf37pbCDcVJ0tFkU/fPPTn0vAADgOgQ4BQPXCQAKgIwMacMGM9Pt669NFYDL1a2bFbq1bm2CODjd779fGb5t22aWpv5V2bJZoVvz5iaIq1q1cIVvBG15kJ8DsKQk6Z57pIMHTVUQr48/ku67T4qJMVPcAABAgUSAUzBwnQCgANq3T/rmG2n+fOnHH7OvcyxTRurWzYRuXbtK5cpZ1s2i4NIls+R0wwbT1q83dS3S0q48t1Qps+9bo0amZd4uX971/XYGgrY8cOkA7IUXpOefl+6/X5oyJX/fCwAA5BsCnIKB6wQABdyZM9J335nQbeFC6dSprMc8Pc0Mt5gYE7o1bVo0NxNzsbQ0aceO7OHbzp1mSWpOgoOzwrf69aU6dUwLCHBtv68XQVseuHQAdv/90tSp0osvSs89l7/vBQAA8g0BTsHAdQKAQiQ9XVqzxoRu33xz5RLTChWkLl1M8NalixQYaE0/i6CLF03hhR07zPLTzHbo0NWfU66cCdxq184K3+rUkWrWdI8CtARteeDSAViXLqak8fTp0sCB+fteAAAg3xDgFAxcJwAoxA4eNFsyLV4sxcVJ585lf7xpUxO6xcSYmW/e3tb0swhLTjZ5aGbwtnu3CeSOHLn6czw8zH5vNWtKtWpl/1m9uutCOIK2PHDpAKxuXfNf1fffSx075u97AQCAfEOAUzBwnQCgiEhLk1avNqHbokVmk/TL+flJN91kJr/cfLP53bww7dxfwKSkmMqne/aYiOTydvbs1Z/n4SFVqZIVvsXESLfckj99JGjLA5cNwOx285f7/HnzX1TNmvn3XgAAIF8R4BQMXCcAKKISE83ebosXm5+//Zb98UqVskK36Giz7BSWs9ulhARTD2Pv3it/pqRkP/+xx6Tx4/OnLwRteeCyAdipU1m7/Z0/L/n65t97AQCAfEWAUzBwnQAAysgwpTKXLDGh28qVUmpq9nOaNMkK3tq0kYoXt6SruDq73eSnl4dvHTqYy5YfCNrywGUDsM2bpWbNzIaMCQn59z4AACDfEeAUDFwnAMAVzp+XVqwwwduSJSaEu5yPj9S2rZnpFh1t9nrz9LSmr7BMbscQXi7sE/7q8GHzs0oVa/sBAAAAAEBRVby4mQaVORUqMVFautSEbkuXSr/+aoorxMVJo0aZ8pidOmUFb2Fh7O8GB4I2K2UGbaGh1vYDAAAAAAAYgYFS//6m2e1mR/6lS0374Qfp9GlpzhzTJKlaNalzZ9M6dTLPR5FF0GalzPq1zGgDAAAAAMD92GymImndutLw4dKlS9L69VnB2+rV0qFD0tSppklSw4ZZwVuHDhJbFRQpBG1WYukoAAAAAAAFh5eXFBVl2nPPSefOST/+mLW0dOtWaccO0955x+zl1qKFmenWubPUqpVUooTVnwL5iKDNSiwdBQAAAACg4CpZUure3TRJOnnSLC/NDN727ZPWrDHt1VdNUNesmdSunSmw0KaNVKGCtZ8BTkXQZiWWjgIAAAAAUHgEBEi3326aZCbYZIZuy5aZwgrr1pn21lvmnLp1TejWtq0J4KpXp7hCAWaz2+12qzvhblxS9v3iRcnXV8rIkI4fl4KC8ud9AACAS7hk/IA84zoBACxjt0u//CKtXGnaihXSzz9feV5wsNS+vWnt2kkNGkgeHq7vL7LJ7RiCGW1WOXbMhGze3lLFilb3BgAAAAAA5CebzVQorVZNuvtuc+zUKWnVKhO6rVwpbdhgJuPMmmWaJJUta2a7ZYZvTZtKxYpZ9SnwNwjarJK5P1vlyiTTAAAAAAAUReXLSz17miZJ58+bZaU//mjaqlXS779L33xjmmSKKbRunbXHW6tWZq84uAWCNquwPxsAAAAAALhc8eJShw6mSWbbqc2bs4K3lStN8LZ0qWmSmbwTHm5Ct8xG0UXLuMVUqokTJ6patWry9fVVZGSk1q1bd9Vzp0+fLpvNlq35+vpmO+fee++94pyuXbvm98e4Ppkz2gjaAAAAAABATooVk1q2lJ54Qpo3z1Q13bZNev99qV8/kylkZJgw7vJjVaqY2++/bx67dMnqT1JkWD6jbdasWRo5cqQmT56syMhITZgwQTExMYqPj1fFq+xdVrp0acXHxzvu23KoxtG1a1d99NFHjvs+Pj7O73xeELQBAAAAAIDr4eEhNWpk2rBh5tjRo9JPP2W1rVvNKrqZM02TJD8/KTJSiooyy05btZLKlbPucxRilgdt48eP15AhQzRo0CBJ0uTJk7VgwQJNmzZNTz/9dI7PsdlsCvqbKp0+Pj5/e46lMoM2pnMCAAAAAIAbVbmy1LevaZJ07py0dm1W8LZmjZScLH3/vWmZ6tXLCt5at5bq1GEPeSewNGhLS0vTxo0bNWrUKMcxDw8PRUdHa/Xq1Vd93rlz51S1alVlZGSoWbNmevXVV9WgQYNs5yxbtkwVK1ZU2bJl1alTJ7388ssqX758jq+Xmpqq1NRUx/3k5OQ8frJcYI82AAAAAADgbCVLSp07myaZpaU//2wKK6xebX7u2SPt2mXatGnmPH9/qUULs1Q1MtL8dOcJTG7K0qDt5MmTSk9PV2BgYLbjgYGB2r17d47PqVOnjqZNm6bGjRsrKSlJb775plq3bq2dO3eqcuXKksyy0dtuu03Vq1fX/v379cwzz6hbt25avXq1PD09r3jNcePG6YUXXnD+B7wWlo4CAAAAAID85uEhNWxo2gMPmGMnT5rQLTN4W7dOSkrKXmRBMpnF5cFbRIRZhoqrstntdrtVb37s2DFVqlRJq1atUlRUlOP4k08+qeXLl2vt2rV/+xoXL15UvXr11K9fP7300ks5nnPgwAHVqFFDS5cuVefMRPcyOc1oCw0NVVJSkkqXLn0Dn+xvJCebpDjzdqlSzn8PAADgUsnJyfL398+/8QOcgusEAEAOLl2Sduwwgdvatebnzp3SXyMjDw+pQQOpeXMz+61FC6lxY8nb25p+u1BuxxCWzmgLCAiQp6enEhMTsx1PTEzM9f5qxYoVU9OmTbVv376rnhMWFqaAgADt27cvx6DNx8fHtcUSMpeNlilDyAYAAAAAAKzl5SU1aWJa5qy3s2elDRuyh2+//ipt325aZgFKb28pPNyEbpkBXL16Ug4rCosCS4M2b29vRUREKC4uTrGxsZKkjIwMxcXFafjw4bl6jfT0dG3fvl3du3e/6jlHjx7VqVOnFBwc7Ixu5x37swEAAAAAAHdWqpTUsaNpmY4dk9avz2obNkinT2fdz+TnJzVrZoK3zPCtRo0iUWzB8qqjI0eO1MCBA9W8eXO1bNlSEyZMUEpKiqMK6YABA1SpUiWNGzdOkvTiiy+qVatWqlmzps6cOaN//etf+uWXX3T//fdLMoUSXnjhBfXu3VtBQUHav3+/nnzySdWsWVMxMTGWfc5s2J8NAAAAAAAUNCEh0i23mCaZpaUHD2YP3zZulFJSpBUrTMvk758VvGWGb1WqSDabNZ8ln1getPXt21e//fabxowZo4SEBDVp0kSLFi1yFEg4fPiwPC5LPH///XcNGTJECQkJKlu2rCIiIrRq1SrVr19fkuTp6alt27ZpxowZOnPmjEJCQtSlSxe99NJLrl0eei2ZQVtoqLX9AAAAAAAAuFE2mxQWZlrfvuZYeroUH29mu2XOetu82RRbiIszLVP58ma5atOmWa127QK97NTSYgjuKt83yR0wQPr4Y2ncOOnpp53/+gAAwOXYZL9g4DoBAGCBixdNcYXM4G39erPP26VLV55booQpsHB5+NawoeTr6/p+X6ZAFEMostijDQAAAAAAFBXFimUVWxgyxBy7cMFUOt28Oatt2yb98Ye0Zo1pmTw9pbp1TdGFzNcJD5cqVnT9Z/kbBG1WYI82AAAAAABQlPn6Zu3Xlik9Xdq7N3v4tnmzdOqUmRG3c6f02WdZ5wcHZ4VuTZpILVtK1au7+pNkQ9DmahkZWTPa2KMNAAAAAADAyJy5Vreu1K+fOWa3m2qnW7dKW7aYtnWrCeSOHzft22/NuYMHS//5j1W9l0TQ5nopKdLNN5uwLSTE6t4AAAAAAAC4L5tNqlTJtO7ds46fO2f2ebs8gIuMtKqXDgRtrlaqlLRggdW9AAAAAAAAKLhKlpSiokxzIx5WdwAAAAAAAAAoDAjaAAAAAAAAACcgaAMAAAAAAACcgKANAAAAAAAAcAKCNgAAAAAAAMAJCNoAAAAAAAAAJyBoAwAAAAAAAJyAoA0AAAAAAABwAoI2AAAAAAAAwAkI2gAAAAAAAAAnIGgDAAAAAAAAnICgDQAAAJaZOHGiqlWrJl9fX0VGRmrdunVXPXfKlClq166dypYtq7Jlyyo6Ovqa5wMAALgaQRsAAAAsMWvWLI0cOVJjx47Vpk2bFB4erpiYGJ04cSLH85ctW6Z+/frphx9+0OrVqxUaGqouXbro119/dXHPAQAAcmaz2+12qzvhbpKTk+Xv76+kpCSVLl3a6u4AAIACgPHD9YuMjFSLFi30/vvvS5IyMjIUGhqqhx9+WE8//fTfPj89PV1ly5bV+++/rwEDBuTqPblOAADgRuR2DMGMNgAAALhcWlqaNm7cqOjoaMcxDw8PRUdHa/Xq1bl6jT/++EMXL15UuXLlrnpOamqqkpOTszUAAID8QtAGAAAAlzt58qTS09MVGBiY7XhgYKASEhJy9RpPPfWUQkJCsoV1fzVu3Dj5+/s7WmhoaJ76DQAAcC0EbQAAAChwXnvtNc2cOVNz586Vr6/vVc8bNWqUkpKSHO3IkSMu7CUAAChqvKzuAAAAAIqegIAAeXp6KjExMdvxxMREBQUFXfO5b775pl577TUtXbpUjRs3vua5Pj4+8vHxyXN/AQAAcoOgLQeZ9SHYwwMAAORW5riBOlO54+3trYiICMXFxSk2NlaSKYYQFxen4cOHX/V5b7zxhl555RUtXrxYzZs3v+73ZZwHAABuRG7HegRtOTh79qwksYcHAAC4bmfPnpW/v7/V3SgQRo4cqYEDB6p58+Zq2bKlJkyYoJSUFA0aNEiSNGDAAFWqVEnjxo2TJL3++usaM2aMPvvsM1WrVs2xl1vJkiVVsmTJXL0n4zwAAJAXfzfWI2jLQUhIiI4cOaJSpUrJZrM5/fWTk5MVGhqqI0eOUFbeQlwH98B1cA9cB/fAdXAPN3od7Ha7zp49q5CQkHzsXeHSt29f/fbbbxozZowSEhLUpEkTLVq0yFEg4fDhw/LwyNpSeNKkSUpLS1OfPn2yvc7YsWP1/PPP5+o9GecVDVwH98B1cA9cB/fAdXAPebkOuR3r2eysb3C55ORk+fv7Kykpib9gFuI6uAeug3vgOrgHroN74DogL/jvxz1wHdwD18E9cB3cA9fBPbjiOlB1FAAAAAAAAHACgjYAAAAAAADACQjaLODj46OxY8dSat5iXAf3wHVwD1wH98B1cA9cB+QF//24B66De+A6uAeug3vgOrgHV1wH9mgDAAAAAAAAnIAZbQAAAAAAAIATELQBAAAAAAAATkDQBgAAAAAAADgBQRsAAAAAAADgBARtFpg4caKqVasmX19fRUZGat26dVZ3qVD78ccf1bNnT4WEhMhms+mrr77K9rjdbteYMWMUHBys4sWLKzo6Wnv37rWms4XUuHHj1KJFC5UqVUoVK1ZUbGys4uPjs51z4cIFDRs2TOXLl1fJkiXVu3dvJSYmWtTjwmnSpElq3LixSpcurdKlSysqKkrffvut43GugTVee+012Ww2Pfroo45jXAvXeP7552Wz2bK1unXrOh7nOuBGMM5zLcZ51mOc5z4Y67kfxnnWsXKcR9DmYrNmzdLIkSM1duxYbdq0SeHh4YqJidGJEyes7lqhlZKSovDwcE2cODHHx9944w29++67mjx5stauXSs/Pz/FxMTowoULLu5p4bV8+XINGzZMa9as0ZIlS3Tx4kV16dJFKSkpjnMee+wxffPNN5o9e7aWL1+uY8eO6bbbbrOw14VP5cqV9dprr2njxo3asGGDOnXqpFtuuUU7d+6UxDWwwvr16/XBBx+ocePG2Y5zLVynQYMGOn78uKOtXLnS8RjXAdeLcZ7rMc6zHuM898FYz70wzrOeZeM8O1yqZcuW9mHDhjnup6en20NCQuzjxo2zsFdFhyT73LlzHfczMjLsQUFB9n/961+OY2fOnLH7+PjYP//8cwt6WDScOHHCLsm+fPlyu91u/syLFStmnz17tuOcXbt22SXZV69ebVU3i4SyZcva//Of/3ANLHD27Fl7rVq17EuWLLF36NDBPmLECLvdzt8HVxo7dqw9PDw8x8e4DrgRjPOsxTjPPTDOcy+M9azBOM96Vo7zmNHmQmlpadq4caOio6Mdxzw8PBQdHa3Vq1db2LOi6+DBg0pISMh2Tfz9/RUZGck1yUdJSUmSpHLlykmSNm7cqIsXL2a7DnXr1lWVKlW4DvkkPT1dM2fOVEpKiqKiorgGFhg2bJh69OiR7c9c4u+Dq+3du1chISEKCwtT//79dfjwYUlcB1w/xnnuh3GeNRjnuQfGetZinOcerBrneeX5FZBrJ0+eVHp6ugIDA7MdDwwM1O7duy3qVdGWkJAgSTlek8zH4FwZGRl69NFH1aZNGzVs2FCSuQ7e3t4qU6ZMtnO5Ds63fft2RUVF6cKFCypZsqTmzp2r+vXra8uWLVwDF5o5c6Y2bdqk9evXX/EYfx9cJzIyUtOnT1edOnV0/PhxvfDCC2rXrp127NjBdcB1Y5znfhjnuR7jPOsx1rMe4zz3YOU4j6ANgEsNGzZMO3bsyLY+Hq5Tp04dbdmyRUlJSZozZ44GDhyo5cuXW92tIuXIkSMaMWKElixZIl9fX6u7U6R169bNcbtx48aKjIxU1apV9cUXX6h48eIW9gwACibGedZjrGctxnnuw8pxHktHXSggIECenp5XVLJITExUUFCQRb0q2jL/3LkmrjF8+HDNnz9fP/zwgypXruw4HhQUpLS0NJ05cybb+VwH5/P29lbNmjUVERGhcePGKTw8XO+88w7XwIU2btyoEydOqFmzZvLy8pKXl5eWL1+ud999V15eXgoMDORaWKRMmTKqXbu29u3bx98JXDfGee6HcZ5rMc5zD4z1rMU4z325cpxH0OZC3t7eioiIUFxcnONYRkaG4uLiFBUVZWHPiq7q1asrKCgo2zVJTk7W2rVruSZOZLfbNXz4cM2dO1fff/+9qlevnu3xiIgIFStWLNt1iI+P1+HDh7kO+SwjI0OpqalcAxfq3Lmztm/fri1btjha8+bN1b9/f8dtroU1zp07p/379ys4OJi/E7hujPPcD+M812Cc594Y67kW4zz35cpxHktHXWzkyJEaOHCgmjdvrpYtW2rChAlKSUnRoEGDrO5aoXXu3Dnt27fPcf/gwYPasmWLypUrpypVqujRRx/Vyy+/rFq1aql69ep67rnnFBISotjYWOs6XcgMGzZMn332mb7++muVKlXKse7d399fxYsXl7+/vwYPHqyRI0eqXLlyKl26tB5++GFFRUWpVatWFve+8Bg1apS6deumKlWq6OzZs/rss8+0bNkyLV68mGvgQqVKlXLsW5PJz89P5cuXdxznWrjGE088oZ49e6pq1ao6duyYxo4dK09PT/Xr14+/E7ghjPNcj3Ge9RjnuQ/GetZjnOc+LB3n5bluKa7be++9Z69SpYrd29vb3rJlS/uaNWus7lKh9sMPP9glXdEGDhxot9tN6ffnnnvOHhgYaPfx8bF37tzZHh8fb22nC5mc/vwl2T/66CPHOefPn7f/85//tJctW9ZeokQJ+6233mo/fvy4dZ0uhO677z571apV7d7e3vYKFSrYO3fubP/uu+8cj3MNrHN52Xe7nWvhKn379rUHBwfbvb297ZUqVbL37dvXvm/fPsfjXAfcCMZ5rsU4z3qM89wHYz33xDjPGlaO82x2u92e97gOAAAAAAAAKNrYow0AAAAAAABwAoI2AAAAAAAAwAkI2gAAAAAAAAAnIGgDAAAAAAAAnICgDQAAAAAAAHACgjYAAAAAAADACQjaAAAAAAAAACcgaAMAAAAAAACcgKANAPKJzWbTV199ZXU3AAAA4GSM8wBcDUEbgELp3nvvlc1mu6J17drV6q4BAAAgDxjnAXBnXlZ3AADyS9euXfXRRx9lO+bj42NRbwAAAOAsjPMAuCtmtAEotHx8fBQUFJStlS1bVpKZ7j9p0iR169ZNxYsXV1hYmObMmZPt+du3b1enTp1UvHhxlS9fXg888IDOnTuX7Zxp06apQYMG8vHxUXBwsIYPH57t8ZMnT+rWW29ViRIlVKtWLc2bN8/x2O+//67+/furQoUKKl68uGrVqnXFgBEAAABXYpwHwF0RtAEosp577jn17t1bW7duVf/+/XXnnXdq165dkqSUlBTFxMSobNmyWr9+vWbPnq2lS5dmG2BNmjRJw4YN0wMPPKDt27dr3rx5qlmzZrb3eOGFF3THHXdo27Zt6t69u/r376/Tp0873v/nn3/Wt99+q127dmnSpEkKCAhw3R8AAABAIcU4D4Bl7ABQCA0cONDu6elp9/Pzy9ZeeeUVu91ut0uyP/TQQ9meExkZaR86dKjdbrfbP/zwQ3vZsmXt586dczy+YMECu4eHhz0hIcFut9vtISEh9mefffaqfZBkHz16tOP+uXPn7JLs3377rd1ut9t79uxpHzRokHM+MAAAQBHBOA+AO2OPNgCFVseOHTVp0qRsx8qVK+e4HRUVle2xqKgobdmyRZK0a9cuhYeHy8/Pz/F4mzZtlJGRofj4eNlsNh07dkydO3e+Zh8aN27suO3n56fSpUvrxIkTkqShQ4eqd+/e2rRpk7p06aLY2Fi1bt36hj4rAABAUcI4D4C7ImgDUGj5+fldMcXfWYoXL56r84oVK5btvs1mU0ZGhiSpW7du+uWXX7Rw4UItWbJEnTt31rBhw/Tmm286vb8AAACFCeM8AO6KPdoAFFlr1qy54n69evUkSfXq1dPWrVuVkpLiePynn36Sh4eH6tSpo1KlSqlatWqKi4vLUx8qVKiggQMH6pNPPtGECRP04Ycf5un1AAAAwDgPgHWY0Qag0EpNTVVCQkK2Y15eXo6NaGfPnq3mzZurbdu2+vTTT7Vu3TpNnTpVktS/f3+NHTtWAwcO1PPPP6/ffvtNDz/8sO655x4FBgZKkp5//nk99NBDqlixorp166azZ8/qp59+0sMPP5yr/o0ZM0YRERFq0KCBUlNTNX/+fMcAEAAAAFfHOA+AuyJoA1BoLVq0SMHBwdmO1alTR7t375ZkKkXNnDlT//znPxUcHKzPP/9c9evXlySVKFFCixcv1ogRI9SiRQuVKFFCvXv31vjx4x2vNXDgQF24cEFvv/22nnjiCQUEBKhPnz657p+3t7dGjRqlQ4cOqXjx4mrXrp1mzpzphE8OAABQuDHOA+CubHa73W51JwDA1Ww2m+bOnavY2FiruwIAAAAnYpwHwErs0QYAAAAAAAA4AUEbAAAAAAAA4AQsHQUAAAAAAACcgBltAAAAAAAAgBMQtAEAAAAAAABOQNAGAAAAAAAAOAFBGwAAAAAAAOAEBG0AAAAAAACAExC0AQAAAAAAAE5A0AYAAAAAAAA4AUEbAAAAAAAA4AT/D+deZXMfjLmDAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.figure(figsize=(15, 6))\n", + "plt.subplot(1,2,1)\n", + "plt.plot(result.history['accuracy'], color='r', label=\"Training Data\")\n", + "plt.plot(result.history['val_accuracy'], color='b', label=\"Test Data\")\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel(\"Accuracy\")\n", + "plt.legend()\n", + "plt.title(\"Training and Validation Accuracy Graph\")\n", + "\n", + "plt.subplot(1,2,2)\n", + "plt.plot(result.history['loss'], color='r', label=\"Training Data\")\n", + "plt.plot(result.history['val_loss'], color='b', label=\"Test Data\")\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel(\"Loss\")\n", + "plt.legend()\n", + "plt.title(\"Training and Validation loss Graph\")\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Evaluating the Model" + ], + "metadata": { + "id": "9QYgX2A7sHBV" + } + }, + { + "cell_type": "code", + "source": [ + "train_generator.class_indices" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XSJt4Pe-l2Ew", + "outputId": "e1fae25a-bf54-4ab0-c026-ee9fa7f963a4" + }, + "execution_count": 50, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'cats': 0, 'dogs': 1}" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "def process_img(img_path):\n", + " img = cv2.imread(img_path)\n", + " img_resize = cv2.resize(img, (150, 150))\n", + " img_resize = np.array(img_resize, dtype=np.float32) / 255.0\n", + " return img_resize\n", + "\n", + "test_set = []\n", + "labels = []\n", + "cat_path = \"/content/test_set/test_set/cats\"\n", + "dog_path = \"/content/test_set/test_set/dogs\"\n", + "rand_cat_index = np.random.randint(0, len(os.listdir(cat_path)), 250)\n", + "rand_dog_index = np.random.randint(0, len(os.listdir(dog_path)), 250)\n", + "\n", + "for i in rand_cat_index:\n", + " p = os.path.join(cat_path, test_cat_dir[i])\n", + " res = process_img(p)\n", + " test_set.append(res)\n", + " labels.append(0)\n", + "\n", + "for j in rand_dog_index:\n", + " p = os.path.join(dog_path, test_dog_dir[j])\n", + " res = process_img(p)\n", + " test_set.append(res)\n", + " labels.append(1)\n" + ], + "metadata": { + "id": "y84BHbFzk9IF" + }, + "execution_count": 64, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "test_set = np.array(test_set, dtype=np.float32)" + ], + "metadata": { + "id": "2nCjeEG_rP73" + }, + "execution_count": 66, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(test_set.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ybu_mHmTrJWm", + "outputId": "1db3dca2-1d91-4c45-dada-c2b55848dbed" + }, + "execution_count": 67, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(500, 150, 150, 3)\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "EZAODMPVcxOi", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "66eeabe5-2c7d-4486-977f-95ea8f86ed28" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m16/16\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 476ms/step\n" + ] + } + ], + "source": [ + "predictions = model.predict(test_set)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "id": "s6Ws82tncxJW" + }, + "outputs": [], + "source": [ + "# Extract predicted labels from the prediction\n", + "prediction_list = []\n", + "\n", + "for pred in predictions:\n", + " prediction_list.append(int(np.round(pred[0])))" + ] + }, + { + "cell_type": "code", + "source": [ + "print(len(prediction_list), prediction_list)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AXxlX0ZcO2BN", + "outputId": "87938f79-923d-43e0-f356-d3b51456a303" + }, + "execution_count": 70, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "500 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1]\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "id": "CDtr-dzBdHAd" + }, + "outputs": [], + "source": [ + "# Get true labels\n", + "true_labels = np.array(labels, dtype=np.int32)" + ] + }, + { + "cell_type": "code", + "source": [ + "print(len(true_labels), true_labels)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SMxTfXg5iwtO", + "outputId": "1f769006-f714-4ef5-d77a-ad8f5c17a131" + }, + "execution_count": 72, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "500 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Generate the classification report\n", + "report = classification_report(true_labels, prediction_list, target_names=list(validation_generator.class_indices.keys()))\n", + "print(report)" + ], + "metadata": { + "id": "92ezmbYWr-EV", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "53441448-30e8-4340-85dd-dee47a7f0bf1" + }, + "execution_count": 73, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n", + "\n", + " cats 0.89 0.92 0.91 250\n", + " dogs 0.92 0.89 0.90 250\n", + "\n", + " accuracy 0.91 500\n", + " macro avg 0.91 0.91 0.91 500\n", + "weighted avg 0.91 0.91 0.91 500\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Testing on individual Images" + ], + "metadata": { + "id": "24yG0BX-srbz" + } + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "8D43OgUWdG9z" + }, + "outputs": [], + "source": [ + "def predict_animal(img_path):\n", + " img = cv2.imread(img_path)\n", + " img_resize = cv2.resize(img, (150, 150))\n", + " img_resize = np.array(img_resize, dtype=np.float32)\n", + " img_resize /= 255.0\n", + " img_input = img_resize.reshape(1, 150, 150, 3)\n", + " prediction = model.predict(img_input)\n", + "\n", + " if prediction[0][0] > 0.5:\n", + " title = \"It's a dog.\"\n", + " else:\n", + " title = \"It's a cat.\"\n", + "\n", + " plt.figure(figsize=(3, 2))\n", + " plt.axis(\"off\")\n", + " plt.title(title)\n", + " plt.imshow(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "id": "g2rAl3eXdG4x", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 230 + }, + "outputId": "9f235477-8bbe-4dad-d118-b09e9fc49219" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAADECAYAAABqZUjXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/KUlEQVR4nOz9WbBmWXbXCf72cIZvuqNfnz3mITMiI1NkJil1dRWaACFjeCgG0wsmaGgDkxAGD7yAGYMZPAAGVlVYoYcyK8kKox5o0TQSSA2iRUFKSkkZmcoh5gj38Hm88zecaQ/9sPc597vXr4d/nvKMzEhipXl6+L3fd4Z91ll7Df/1X8J77/lYPpYPSeR3+gI+lv+25GOF+1g+VPlY4T6WD1U+VriP5UOVjxXuY/lQ5WOF+1g+VPlY4T6WD1U+VriP5UOVjxXuY/lQ5WOF+1g+VPlIKNzP//zPI4Tg1Vdf7X72y7/8y/zdv/t3j/28EIKf//mf/3Au7kOSf/7P//n3xD19JBTuOPnlX/5l/t7f+3vf6cv40ORjhftYPpZvQT6SCvfn/tyf43/9X/9XIGyf7Z8HyXg85q/9tb/GU089RZZlnDx5kj/0h/4QX/3qVz/wPFeuXOGnfuqnePHFF+n1eqyvr/On//Sf5vLlywtdp3OO//l//p955ZVXyPOcjY0N/sgf+SOHXIOf+7mf40d+5Ec4efIkWZbx0ksv8bM/+7OHjvPUU0/x+uuv81/+y3/p7vWHfuiHFrqG7zbR3+kL+FbkL/2lv8TNmzf51V/9Vf7Fv/gXD/38X/7Lf5lf+IVf4K/8lb/CSy+9xNbWFr/+67/Om2++yWc/+9kHfu/LX/4yv/mbv8lP/MRPcP78eS5fvszP/uzP8kM/9EO88cYb9Pv9DzzvX/gLf4Gf//mf58d//Mf5i3/xL2KM4Ytf/CK/9Vu/xec//3kAfvZnf5aXX36ZP/En/gRaa37pl36Jn/qpn8I5x0//9E8D8D/9T/8TP/MzP8NwOORv/a2/BcCpU6cWXa7vLvEfAfm5n/s5D/gvf/nL3c9++qd/2i96+cvLy/6nf/qnH/m8s9nsvp996Utf8oD/P/6P/+MDv/trv/ZrHvB/9a/+1ft+55z7wHP82I/9mH/mmWcO/ezll1/2P/iDP7jglX/3ykdyS31UWVlZ4bd/+7e5efPmI32v1+t1/900DVtbWzz33HOsrKw8dDv+1//6XyOE4O/8nb9z3+/mt//5c+zt7bG5uckP/uAPcunSJfb29h7pej8K8t+Ewv2jf/SPeO2117hw4QJf+MIX+Lt/9+9y6dKlh36vKAr+9t/+21y4cIEsyzhx4gQbGxvs7u4+VBkuXrzI2bNnWVtb+8DP/cZv/AZ/8A/+QQaDASsrK2xsbPA3/+bfBPhY4T6q8mf+zJ/h0qVL/LN/9s84e/Ys//gf/2NefvllfuVXfuUDv/czP/Mz/IN/8A/4M3/mz/Cv/tW/4j/+x//Ir/7qr7K+vo5z7vd8XRcvXuRHf/RH2dzc5J/+03/Kv//3/55f/dVf5a//9b8O8FjO8d0mH8mgAfjAqPQ4OXPmDD/1Uz/FT/3UT3H37l0++9nP8g/+wT/gx3/8xx/4nV/4hV/gJ3/yJ/kn/+SfdD8ry5Ld3d2Hnu/ZZ5/lP/yH/8D29vYDrdwv/dIvUVUVv/iLv8gTTzzR/fw//+f/fN9nH/V+v1vlI2vhBoMBwEMfvrX2vq3p5MmTnD17lqqqPvC7Sin8kR6jf/bP/hnW2ode35/8k38S7/2xyen2mEqpQ/+GsI3+3M/93H3fGQwGx95r0zS89dZb3Lp166HX9N0gH1kL97nPfQ6Av/pX/yo/9mM/hlKKn/iJn7jvc+PxmPPnz/On/tSf4jOf+QzD4ZD/9J/+E1/+8pcPWa7j5I/9sT/Gv/gX/4Ll5WVeeuklvvSlL/Gf/tN/Yn19/aHX98M//MP82T/7Z/lf/pf/hXfffZc/8kf+CM45vvjFL/LDP/zD/JW/8lf4w3/4D5OmKX/8j/9x/tJf+ktMJhP+t//tf+PkyZP3KdDnPvc5fvZnf5a///f/Ps899xwnT57kR37kR7hx4waf/OQn+cmf/MmPRiXiOxskLybHpUWMMf5nfuZn/MbGhhdCPDBFUlWV/xt/42/4z3zmM340GvnBYOA/85nP+H/+z//5Q8+7s7Pj//yf//P+xIkTfjgc+h/7sR/zb731ln/yySf9T/7kTz70+8YY/4//8T/2n/jEJ3yapn5jY8P/+I//uP/KV77SfeYXf/EX/ac//Wmf57l/6qmn/D/8h//Q/+//+//uAf/+++93n7t9+7b/o3/0j/rRaOSBLkXy/vvve2Ch6/luEOH9x32pH8uHJx9ZH+5j+WjKxwr3sXyo8rHCfSwfqnyscB/LhyofK9zH8qHKxwr3sXyo8rHCfSwfqixcafiP/+r/dejfQgi89/ehbb33Xalm/uft551z+PADEAIZf94ea/7zQgqElIeO5bzHONeVl5xz4DwKMN5hncOK8DkXz+ecC8cHrPc0eBCCntb0VUIiVFcol1Li8XjvPvA+hRAgJQiB4ODNdQg8IL1HeMA5TLyW+eM13uHm7uvYWqn3KA8i/nebMO3OFe8LET4j5tYSIbACPAeoaCkl/SxjbXWV1dVV0jSlPxjSSMmrX/kKO9vb/OD/8Aeoq5rZfsl4vM+t2zf4yle/zNlzZ1GJDM8kXBHvX77MidMbnDp9mpc++Sm+8P3/t2N1Z14WVrh2QebzxFLK+5RFStk9vKOL2N608x4vwOOx3iMIiiXk/OILhAjns9Z2iuOcwwuBc65bZCkEPi6CkBJvLdu7O0ynU5q6pq5rjDHgPVXTUFpDkqS88MwzbJw5x9ryCkoppJQopTDWUJYFTdN0iu29xxhD0zRIKTHWUlUVVtA9ACklQoKUgkQqJCCVQKOw1mPjyxZVj4eX4wV+7kNubu1FWKhO4RFBqdv/SSEBf8gAWGspneNu0zCbzVhdXQVgMBzRVwpWVkj7ObqXszRc4QynWF1f4sata/yPf/J/xMhQ+22aBmMMu/+ff8Nnvu/TrK2usby8/NC7gW+hltq+Re1/z//76OeO/u6QJRQglTr0s/aNtcZ0FklAZxlbhZVCIHUS/lsKhJAIAY5gwcazGe+98w4CcaAweKQQGGtp8BSTKbPxGLthmEwmB1ZQBHPhveuuP5xHkqYpaZrS6/UQQnDx8mV29vdwgJeSJEvRWpFqhZKSREqUkEiZAMFit4AAPWd9j5P2WlolaxVJRAXzns7ieSHiJ6JFkxIbrT1xzdrjecAYw3g8pqoqyqLgxEqB9JZ+niBkeE7hOh1eCfJBD5lqEpnhPKgkxzlH1htw7uxZTpzYoN8fLqQ/35LCtX8ft9XMf+bo4gGdktQEBfFxe7TO0jQG3yqWUiRKkUh5oGjxj3Bhcbu3vF1oQOBJEs3ZM2fpZ9mha9FKIbWmtIbLV64gnMdZS9M09yk+8eG2FsJae6AEzlFVFa5u6ClNbS2zquLK1SucPnchWGznSbRikPdItEEqGc6vgjK266a17s55aEs8WMyD9Y4K5OKaHphIf+CmcGAJldbd8dpjzlu7uq7Z3t6mqUtWVpdJ8hxXlcgkoYnWsnGGWT3DCYfCxTUHpSCRoJMEKcMus4g80pZ6nw/T3u6cxWvfpvltNfhjsvuss47aW4w1VE1NUzcURcF0OmNvd5fllRU++cKLpEqj2sX0Hu9BzFm+eO/R5wr/EEKgpGI0HJCqsOA2XkuiNUIpUinpZXnYjoRAys6WQtyc3Zyr0L1c0T8jfnJlNEJ4KE1N6RzvX77CJz/xMsvLazRVzWR/n1s3btA0JdevX+FTn3olvFzWdg9o3r86un4uKli35vF3EHaI4KrFFYgX5oOfAR6sc91LKaXEx2O2P2ut+s50TGkbltyIyY5itLQMaR7cCFuTZil4h8QiZftSgHBhJ3L+YF0eJo+kcPOmuVWe+d/PW792AT3QWIszTVQ2i7GW/XLGznTM9t4uu5vb7G5vMy5mFEXNqfUTPH3mCUbLK1jfdNtqu/TteWWrxIAj7DFSCHKlyHUSAgjvscRtR0CqBBIZPCiRYD1xq2oPTtj6UIdwb+2b7YmBh/csryyTEh5A6R0nT51kdWnAylIf73PWVwYUxT77u9v82q/9/8jzjJdffjmso3W46Jt6Fyxo4z1K60Otj0K0L5SPDzsqGgdrDeIgyKG1+B7k3LZLsIjWH9yPlBIDiMZT+hrf7OMqh7CC3pIj6/dQHkb9IVql4CTOejwCYwzGehrrqY0lWxCc/C1vqQ9SNjn3Fjrngs/kbGfx6rrm8pWrvHXpfb751lvkvT7nTp1iY22VcxcuMKtqrl26wt1791hbWj50vqNbznH+Yft3nueMp9Og5PgY5ck5a+nRWuOPvprisMU+ToKfJEB6vAj3pQCUJc00SaIQQmGUwJgKIeDGjRv8wi/8Aqurq5w5cwZJ8JN03Pacc9hWCectqxKHFNA5B/5+/3h+3Q9+HhS23a677bm9j3jeEOh56rphz+5jjWHZNoy8oyoKcB5TV0ghOyvrMTjfoJRDSosQ5sFKMyffcpR6dBttF8MYcziq9A6kRGsd3ihj+Po3vs60AVNLnnjuOV5+/hlS7bDK0jeOe707XL1+neefeYZUyYMFY96hPawph/w578nznGlR4OaizLCFBAUJL8DhB3ecf3r04XnnwHuKoqCpZwzyhCRJcErhlcdhkRKMNeyP93DOkOc5/X6fK1eu8Cu/8iv8xE/8BKPBgPAe+O6etFSIaD3aqLg2ptsS5Zzv1677wb0c86w4fF/ee+RxsXHr5+GxFqazKZbg8ty8dp3rV6/yS//2FxmO+iwvL9HLe+hEMx3vcu/OLVIV0i2LyCMrXPvf81atXZx2oVoF0VojlUJq1S1akiR8+jOfYbeumVaOLMlJtSRRB37W0vIK97a3mMxmrC8PD6VajsvZddvGnPVLkqRLm4gjn2kVTWsVLUM4yiF/be5viCkPAVpKGmu5cvUq165cZnVlhFYKrzU3trf4xje/ycbqWrCw4wlSSVKVMBwOKcuSV1/9Ck899RR/4L//78nS7EDZESG/5j2Z1iFNlOds7e+yN97HOUee56RpipK6CzbmXZ32z7y1u+8Z+mMs+BF/3BrDbDIB73n6ySdRSnLy9GmccdR1zf7+mPH+PrP9gq/89ld4o/8Wr3zq0/yBHzn3UD1afEuNTrmKyU7vQ3TZWrT24bTpg9aiIQTIA3OulOL0mVPcfPtNHBZragTRIRUCJSQry8tcuneJrZ0dlkcDxJHUwKHLahdWHHmTZTD/eI9vE6TdcQ4iuWDx1LG3fOjF8uCdBylx1rI8GnH681/g5IkTmKZhezzmyu17vP3Oe1xNE6aTCRsnTvDUU0+htGJ5eRnvBXt7+/z7X/kVBoMBn//sZ8nStEtoeAfCCxyeVCfkWUZpG9ZOrPPLv/LvOX36DDpJyLMew8GANMtC7lAeXP+hF3I+d9LeOIcDrvkArHU3jHdIF6y4VIpnn36W/mCA1iHQst7S1DV3723yB3/0x8jzXgg0FpCFFU5JFfNCDmsM1hrqJiib1pokCVuLmsuthQjGHziy8SGvr65S7I1xdY2MTrELTxiNYNTvI6Tk1uYWZ8+eI5MC6YMTPG+u5nNL84sNIcfnpQzbO+BESKIK4TFYatugtIgpiuPv+XBkHl4aKQBnWB7krK+dYNAb4J0j7/UYZDknT50lSRMGwwJfVVSTimRJUZkalfWw1nHt9h3+37/4i0gt+X3f9xmyRCGER6CDYgvIRwNu3bnN9vY2WgnwFasby+wXDXuTPXZ2t8j7PYajEb28R6azQ6nkwxbuwHcTcxUU4UNukrhGRFfFAVJInAMxq9BqRqoSSmGphKf0Dc5UFK5kUheINCH3i0UNCyuclRZrHI0xmMbgnENJSa/XI03T4GMo1YXabRLywAOi8/N6vT6fePFFbl7fpq4rnA85uVbSNGU4GLC5uUlV1/T6PbBu7kB0izZv4eZFSkmqdagMtDksHyshzYFfBB55xEIcFywcvESOpmlomoY8y2JprU0aQ5ImJDphZifMJlN2kh2ECv5smqRY5almFTdu3eLf/uK/w1rLFz7/WbSSCKEAiUoTauO5c3eby9euUBb7WOt48613qL0ilQqsZXbjFqurqzz7zDNIF3w8PZd76667uyd/KG/pvOf2rVvs7O5y/tw5lpaWaCs3bdqkaRqmkwmJUqRpxt54nz1TUtQF46bh7t27TCcFSiUL6dHCCjeuJhhjKWYl3glWllcYplnX6taZcClDhjokie4r4Mj4+yfPnWd5aSlsURKcCH5Muy0Ph0O2trcpipKlPEWJg/qo5LCj31lScTgISLWmBFzcWcSc/9Juu+121EWAh5TrSDDBwYNoUyZdsOJjOclDE0tgzju2treRiUdJibEGpROkUlRVw83bd/h3v/z/pWkafv/nP0eehYd2YnmZW3fvQJpw5qmnqIoJN65dZrSyihcpLkaPyliqqqaX90mTBBNfhPlE+aGXJ7o31gZf7NVXv8xvfulLZL0ef/gP/SE+MRzSS9PggoQFwHlLY0I1Zn1VM0g1t+7ustdUWC+YzWaApGmahfRoYYW7t3eXmzdv89477zPsL/PDP/gjjPLeoQfc5sNc/O+DBzV/z8FELQ0GnD19mlt3t4KFEwI9lzkfLS1x98499vf3ObW63NVgW7/kOCs0b52E96RaI9utI0aZrbR103k5mlpp/1sceXHqup77nex8w7C9h6K9UopEJ4z39nB3Goy14CHRCaPRiPH+mKo23Nva5pf+3S9z69YtPvXpVzhz/hxmx3Hp+vsMl5ZI1IBpXaKzHidPn8WT0DiHrWv8hqGvE3pZD61DJcMYQ13XXc2386Xj+ljn2Rvv82//7b/ly7/zO8yKApGl7E8n/D///P+DJ8+cDS9HNBjEgLDEszXZZXVllZVen53dfRI0NmYmjHnMaZH//F/+Kzeu36IsDbbxrKye4H/43OcY9vvA8X7UfU5qyOAiECilefLJC9zZ2sILjyOUbNoEa7/fI0k1m9tbPH3+DIlOgxmMR5wrbkVLeuTcCBKdIGIy2EdFdcbhbMi2a6Vg7jgPVTgfrOxkMmE8GbO1vUme9dBaU5kaL32X3O5lGbassN6xu7fP/njMcDhAao1C0jSGYjpFSoFtGr74G1/iy1/7CqfOnCLJMnb2dnnq6ad55sVPo0SoqQ4GQ5TOsEjqoqApSpZ7fQQSZx1SCNIkRUlFVVUYG5QvSZLO2m1ubvEv/89/yWuvvUZdN3g8xlouvX+Z9957jwtnzsQXKD5TGa22czR1STqbcv70KTY3d1CNw1Q1Rid4sVitYWGFu37pHjrpkWhLVU357Ve/zAvnL5BFigIhJZIQ7+l2yztihNprcoDB88TTZ3nv8ttIBV5IjA+/lUKSpIr+sM+drU1K05CkCUZ4nJAIL7qEbRdDHGP1lFLYWIS3zqGdRHgF1iB8SEMc3XaOVkzmt2AhRJcauHfvLuPxOBTD8ZTWsLu/R377NlooTq2tIwTU3mOcoG5cgPeIEIkO8pRyOsY0dSgbKUXV1Iz3p12gtXlzi3fevMSTTzzBE2fOIoE0U0gnEQX0ejm9LCXmOjq3RklBnqVUtaAxoWyYpinj8Zh/+X/+S77+9W90uVIfF7GuKr7xzW/w3/1330+iNRKF8GDj7z0gracsZyzlOavDIfV4xo0rV9H9nNHa6kJ6tLDCPXnhCYajETt7e1y+djXklL72u6ydWGdpaTkU4Z1DzTmm84+/DSRap1R6Ty/LeeLCBeqmiQ5z+9RDVLy0NOLenW3KsmRpOAB3nw53Zv+osgmCwimlKKqq+6IUsnsZZLyW+e+228+DxONRSnH27Dk++YmX8F4yKQtub22xvfdVNje3Ob2xQZJohAiQKxML5U3TkOc5zoVzDodDptMpEDhLwIdEOSFw8t5z6+ZNNm/f5s7pM2iteOqF51FAOZsx6veRYplelocX0IeKgfdRkZTF2QYnDHe3tvk3/+bf8Ltf/3rwVaVA6STmTgEPm1tbXVAm/Lztj/duoawaJkXBmbOn2VhfY/XUOo0UJMljTvz20pQsSRgNBgx7ffJ+jzfefZennn2WT33yk2Q6CQ9vweOFEN3zxPnzXLp8OXxvLpMOgU/jHltMpzPsygpChhzVcUnNVg6i1nAcJVX0/9yhXF33ah9RuKMltON8Ra011lmU0kihGSjNhlRkac7K+hprKyskSdqliJJEs7GxwdbWVpcQV9Hfmr/mWTHDe0+v10cIESLEoiCRkmtlxd7eLv3fWCbNFFoJemnKmZOnePHFF1lbPYHSScgrerh1+zbXblzFectgMOC1117nq1/7Go3zpFlGv9cLuLaZQ9hYhYnltUR3bunc8xIoJ3HCMSlmnFg7wQvPPc1+XaO0pJf3ji7TsbKwwmmpwDqUECghSLRmv5jxpS//DufOnuX0+omubPKgvNbBxYMWEotnaTAk08ERPlwNgDTLSNOM3d1dzp0+FZz8Lvo9csxjLBxCINWcxZor4RwukB9sofPRanstwerFVz8qaviKw2FiJFfivOH27ZucOnGi/TbOBXRMm6dMkoS6rg9Fkm2EJ4TEOdutX1VVWGNItMYay3Q8YVZVeOFRIqzhnZt3eP21N0myDKEkSUwF7ezssjeeoJTGWst4PMYYD1IgtUZojW0ahFLgDAe27AH1aQ/CSxye2lmmsynnzpymvn2PiWmw9sFGYF4WrzTI4ET6aH9VRLdevX6Nb77xOivf/wMMs17cEo6JII85pBIClGJ1eZnN7W1cGwtGfyxRmn4/ZzKd0FiLFgkyrNkhK3e0zBZ/Gq5TqZCDIyRUnXcxcCECF1vlCSmDtjpxEJ4cZOxFtJBZmtA0FVLFiotvGE/3KOsZSqb0sxzdZfrDF3d2d9jZ3e1KZInWOBdwgGErtcESWxsiUKXJsgwvHIlUeGupy4osAiOdEBg8e9U41KwFFGWB9+GerbWUZVCkFm0ihKTfH5BmKUppBoMhWleM98YxAR+qKZKQEJ+XUHoLwZ330DSGXq+HaSx37t1j9fSZhdRoYYVrvAVsyJhrhbUNG2vLjGczvvqNr/Hc08/w9LkLtBojjlqhuYTjQRIlfGZtZYXd3V2M4wBmTkDILo0GTIoZZVMzlEOEN3BkWz3q9HdWjIiBi6kRR6gytJGy8wLrfeg/iPVH6w6usPU3uyvy4IxlVhQBgGk9dWPZH09paodA009zhlmGawyS8P3G1GztbLO9sw34AMKMltQ5G9JJzgV4ugjOuTcG3e+hZUhci9rhjKOYFihChcAevAUIpQFNUcyAYDHn10hrHdDKeY/l5eUufVKYAm89TklWltfIkhwtFGoO29Sle6QPL5IDa6HxIKXirbffYe38+YX0aGGF2x+P8T6iJJoGrRWTvX1mVcXezj7feO2bnFo/Qb/fo4Nnz33/6JYXDGX4RFuUbsoKH+Ey4RGH303G45B4XFlBdCmRw5atXeDDic6AenWAJdRUtVcxSRwWS4gIWUeEdEk0TG0Gpt1cW4s1Kwvevfw+Ok/JLr5LqlK8VvTynLoqGZ3YINEJjbGIuCvUdegB8EQYknM0DnDtaxEccu8dSkh6eQ5aheuSOuwEwlDbmtpUpEqTpgnWefJ+HvtDBNLa+1wCCMHTaDRiNBqR5j1WV1fZ29tjNptFjjwBAtbW17rEPOKgRHkAb2oXmngfllMb65xaX2d5+MGM7q08Upvgzs4Os9mMsiwZDYc8cf48y6MRDs9Xv/51rt+6RQu1WVTaz4+Gw4AsmTflQpCmKUJK9vf3McZ2jv9RZTt6TESwXk6IrpurRfHig18FMR0T4QNCSFQLz4w5NysEFZ4KT43Ha8WJU6fYn064s3WPm/duceXq+7z++tfZ29lk2O8hleyqGIKwjed5jiAEDG36on0htVKImIju93qkWYZWATGiZIIUGmMtQnqyXDNcGiIiCmcymzGZzaiq+oH9EUqprs6dxejXOUdT1+GF0yFJffbM2WjJjmynx7gszoWa+jDPePL8GdTjrqX+6I/+KF/5ylcwxnDz5k2klCz1+jgP07Jic2uLV3/3q5w/e5ql0Qgb37ZFRAjBcDTizvbOYYXzASSZxRySMSYgTzlsMf3ccXz3g1DxUImmqmsaa8li6WgeMVxZS1015ElKrlSozgkJ3uLjtlVby35TobTCKEmv3+PE8gqfePFFBsM+iFDiuX37JqPhECUlXuuA3o33E9IPjkSlZFlGVc1IE41AhBxjYxBSo7wIKRIlO+i7dSE3KRONTEKJbH8yiaCEeO++6lI+h2rM0EXERVHgEdRNE9IxIkC0rHVkWcYzzzwDgLOuA2vMS4fCice3xqCTjFwrZgsSYC9s4Z48f4FPvPACWmuMcxiC0z0ajVgeLWGd5bXXX+f2zVvBweYAM/8BWYwu/ZBnGWmikCr2oxLzZEqi85RxMaNu6rC9tDnlOYRA6xd6HxSktJ469gT08x55koMLyWWhFHmvh7OGyhi2ZxU7RUlhLchQoIOQizLGsLm3y43NTe5s7zGeFVjjSaXm9o2bXLt2g/29Cc5AnvYZ9QcoISnrhllZYYxha3OTyXiMs6EM5JwlSTUokKnAuAaVKbxtsE1FVZXMihnOGZQMDrxHUFY1xnpqY0I5sIUfxRrxg4CYbbtjiJI1WklOnTrJyY0T9PIM4R0bG+usra/hXWzbjOvZ7SjyYOdqldk6i8dxamODpcFiW+riaREPn3zhRbZ2d7l0/TqFMYy8IFEJq0vL3OttsrOzzatffpWzZ86ytLRMY5pY8D6scUcL7wCJVowGObvTKQ6BFhItJEYKdB5QCkVVcGJlJSY36SLALp0iHLV33JsUlFaQpZJRqunlQ7SW1MLjMugNFIPldYROQgG6NlgkgxwcDaHHU6GAyc4ud+7cwgpFvqzY3tnm3MkN3HDE3niXezduc/3yDdKsx8ryBk1VY03DXlEyriqMM8ymE+rIJ2ya0KOhMkVdG3QiMI1hmORkGoyr0WkIKrQIAU1jDEiFVBmp7jOpZweWvK15HskMzKc02g4t5xxaK0ajQUD5JIq6KjBlwckT6+gkIE1kW78R7d/tMeWBfx232Sbm+dyCbtTiaRERULQvf/Ilvvnaawgbmj+8DInElZUVlJS8c+kSN27fpjcYLLSlzuPNlpaW2J1ODwUbSgiWen3uNYbxZEp1whwka9tu+fhZK6Bwlj1rKCyklabxAtcbAmk4rrbU1mFtiUKgCF1dTdng+mC1xitocCjvKaZT0tpQuQk+c6wNE06tjEjEGvb0SV57+w22dnbRSjAaDrh24zppv8+kKLDWMp1O2d7aig8r5OWstaQk6DQAKBOhMVVD4x3W+pDr9ODKBpGFvgfnXFcTTdOMqqoXfnQQcnr37t1jf7yPUgFWppSiqWuWRiNOnjyJsQbn0vbBHHk+Qe5vpHIorUgfd+LXATjH+uoq3//5z/M7v/M77O3u0jQNRRPenuFoxObWNl/5+tc4c/Ysy4PBQb1uTo6rVSIOprJYYxHeo3VY+L7S5EKyu7fLXjFDqwQtJalUAZgZvw+hjCRVKGYb7zACpk2NEyIoX1WTaUGaagpTkgoNpsQ3Alf28FmvQwMb71lfW+PsiQ1u3b4C2rE8GrIy7DPen+JFgBxUxYytrW2KsuaJp5+kcpbKNGxubfGNr3+dW7duYa05dP91FSxdkqQBX2ea7rwSSIQi7Wc45xHCdxZKCIGxIZKfR1o/TLz33XmECGTbWmu0UgzzHlkWrsNn7lA65KjMV2GsDy6CUkmIrBeQR+5pUELwuVc+zfadu/zuN74RHrBWmKZBpylOSr755pt8/nOfZ+WZZ45fjLa61KE7RBeteu/Z3d1llPcxBehEBYy/sWxvbXF3a4ss79FPU5Z7A9IWpeo9Ao+sDW4yQzlBY2sal6OAxnqaytJUM6zyTJuC6XiH8d4O5f6UtWzE0ideYn3pAtJLpPOU1pH1+6zmPQa9jEuXL5GonElRMK1n1HXBqZMnOHXqJFeuXOf1t97m3ffeZa9qmBY1r37lVe7euUNd150v26VdmgAgKKsZ0G5jooN41cIxbmqoHFqpw7QTQh56aRcVf+DsdmtdVRWpVMxmBS0eMWRJ7j/+fXVmD855kiT0qiwii0PM2xsE8jTlC5/7HNt7O3ghUYlma2eXvf0xK2trTMdj3nj7LZ44e45Rr0dt6m6hO8BkXGAX0xeNMeAtJ9ZPsL25TS/R5DpFJZozJ08yHPa5eusGVy69h0wSTp3YYPTU03hkV0lwwuOt5Y2vvsq0rHDSs35iDevBSo2pLcI5yrpAK1DOcPv6dbSHlZOK7c3bPPnMBbAe7UF7TyLBixBxm9oym5UgJdNixv7+bshNVjVbu9tcvHyR9Y2z3PnaN5hUJbfv3mJSTAIoMua6WviSQHS9Gu0bOJe+DspQN8HaJSmIECi0T3q+k21R6ZwXIUN/hoBEp0iluHPrFrPxmPXRqOMoOap0h+FfBP856vBjVzh5UOgEYGPjBC+99Am++cabNKUhz3sY61nPe+z1+ly+dp2t7W2Wz59Hxq8d0AEIvJBYFwrBRV0zno65d/sm195/n0Ga8vs/+RLOWu5sbmOs4YknzvHsc09y8/Zt9suC69dvcHp9nXR1PaQPrKeyjsZZ1leHFNd2qJuGO7MxFlheXUU6KGcFV+/cBmB9tMRSvsyzTz9FPdtn/eQaQkaYPA5sjc4zdva3mIwnXLl5mdmlgr3JBJ2mVEXJzs4u4+mUO1ubITd3dxeHZGJKZtUEg+t8+0PAAB62FQaF9MCsKA6hbeDRLFsrna44H6oU8TwmMgG0uEFxBEQBB9ZtPhIWUeGccyi9WMJj8S21u9aDCPPFF17g9p277I+nSJWwNFwiSRJW11aZ7O1z9do1zp48idIKZ9tbDFuoFB4jPDs727z77rs4a7h5/Sqp1lQxKbu2tk4+GKGUZDAYIkSoFqwOR+RPPRXSBf4AYdxCjjbW1zmxtMzdO3fxwOVrVzl/YoPl4ZCTJzb4xuuvc+XyZTRw+uQJfv/nPsvG2ghjLXuzEmMaTDNjb2+X6WzK9vYWb739Htdu3GQ8nTItS6x3uAZwgjr6X845JA0Gz8zUVHWFN7ZLW7To26Zp7rMWx4IP2jV/TDO35iH4Hb7PuZDz05qyrgMzVfzs0Yj0AMgwJ7FMKMRjVrjD5wgF4kGvx/e98grvvHcpbpESKSQqSzEnT7E3mbA3mbBxcp2mtBzQEYSLNK5hWk7pZ5oza6f59AvP09Q1r7/2OpcuXeJzn/88q6urTKcTIGTsN+/epZfnjJZXA/eatSipuvJOL8+5cPYcfZ3w0rPPU9SB42O8tU3iPdemE1Z7GekT56mtpdfPyVONsw2TYsb+rOTm7dtcef9dLl18n729fcbjMXvjKZUJXfHGB8owb0C64BtF8gisdMzqgqKs8NYj7YET3vKKPMo6w5Hg6vco88dpFS/JMk6eOU1vMAgvTizkt135rX99FEUDwdez1ixscb8lqocOWaoUp0+domksSI0QIX9kpKRxlru3bnFvZ5vV9dUAVY4Rq8CDdwglWFtfJbOWE8MRKk05++xzzMYTbt26xd1793jhhU8AnjRNmEz3MXXDaGWVteVlplVoViGNxIAiOK+iqujlOcZYelpx8tQphJSkeUZRTLiwcYptJbl25zajpSUSCXVdcfvOLb7y+lt887U3g08zLbHGY23o2HfYjoTQGhvux3m8sSQ6QSvJ1NbBl/QOHCgCpKf13w6tYXxwB7CG43NpR//7cUrYGQTD5WXSPA/lwDaJ3Prbc01D3TULEUpyMQ96tF/4QfJICnfojQv7BFoGpdvZHYdCtBAoAUUx49TJk/QHA8qqpJenVFVD1Ti0TkiVIxGSpf6AUuxgrcNUFdPZlAtPXuC9KxfZ3L7Hmd1TJElCNSsoJwXCS86ceYLesAfTGbvjKUmSIRUIJMIpnNA0xoSKhfcMRwMaa1lZWUV4GBclRgjSXo+6qblx8xZ3tu7w6je+zldee4O9vSmumePdiODN0K8ZyGy8AOFcWEAlmM0mIV2a6qBsllCzRQTYlfcB0i4kDoVQGoEF15L1iO64D9OQ+9O8x36sczMe9smqrplOJjhruqajo8/9qIX1PhD6WATCq642/TBZWOGOM+mtI5vlOTotKauaujHoJOHUqVOMRiPwnqYsWRoklK6kKBqyXoqWAuk8A52RJhlWKrJMM55MkIlCJIKqKdnf22VlZYV+v8/O5hZpktMfLiOUJ89TRpa4pfrgZIeO6pi4DFizLEuY7U3Js4SpTpiVJdOyZlKU7I+n3Lrzm3zttW9ya3OTaV1hKo8pDUhPkiiQPiJODjjakiQJDeEu8Ji4mLqgDg3iRCtg27QP4ZJUlnHu3NMUMflsqzGT7R1YrOmJeHcP1aP27h/4+87ChkHE77//PpPPfpbV4eiA5hWOjYbnt1MpJdbYhf3MR1K4o5FL2y3v8GR5TlE3nDp79hDNg2kMxkmK2iFVjsNRNB6pJbmUKG/p9XoUxRQV2RfXN8Lk5f3xPlXThOK1UuyOx6xvnAi4MQVplqB0xnRWRisRa3zWYp1Eq8D9lsWG5byXk/czjLf0teLti5fY3Nrizr07bO7sUDuL9VCbBrzDW4e1DdZZpFLBAsVzNKoOW0qaMGlqrAAjBXO5iyNg0KAAQsDyuTOcO32aylT0FHzzN3+TvZu3F30SB03j4jDm8D6T4O/fph8km1tbXLt2nTMbJw+s4zGW7eDQB27Cw2D/8/Itkdm04vAUZcWsrFAqRUbsWVnXgXRPBsiPB3YnY9Ispcazs7PDssk5PRqivaDXyymqGUprEOGNC3SgJUVdUlmDFSATzcrKKp5QTcA7jDURf9eWXCKqQYRqgnWOwWAQ2+YaptWEa7du8c67l3jnnYsUdU3VVMFJth7TNEh8sLClxcUuamtMoOaK6+qtRWYZjQ1+pHcOISUucgkfv4aBJHC8t4deW8UoSb835LlP/z5eG3+Rcn//4b5aa5mIqjSH3hBtbbnlUmERdQt5wWI24+aNG1QvvYTNe1hx0GB0XDWjBdhaa/FKPn4LN3+j7d9b29u8/tbb9AdDkjRnbzwh7ffxHPSCDkcjEq2pijFKKWqnsCKjbCp0bTi/uhQw+85iTYDoJEnC0089zTe/+U2Kqg7oFOfoDwZkeUbTVDghMT4ymXsLNvJkuJA97+WhI8l5z3gyZjwe843XvsF//Y1f58rVW4wnBYnugQjgy9lsirehkaR2Bi8BRNyiAyXEoSX3HlPXhx6wxx7mrOjWLcDYFaHCcOfSZYajJVbOnmWyN2OyP2NldY074/FDH0PnlwmB0hqdJKRpSpIkTKdTrLE0TT3nxC3yaMOd7e3vhe4yY1BCIJPDcK4uPd1VIu7n7HuYLL6ldn+3MBiBQFMXFcJ5CsZMJ1O2Nx29Xo/RaMR0NqOe7pNmmrqsGY8n3L57l9o6hFO8eOEC6z/w/SR5GjqOVEir+MbRzwd4J5hM9plNl+nlOYlOSXRKL8+YzCZIrVAItDBYF9ImXoCVgqqxJEphpSVf6nP17h0239zmrXfeZzyZkWQ9GlPjrSWNdUlB7AojWDu6fLtj/ulJcWBV4iM7qCSIw1StQgi882gp0RHf5ooxb3/ldzhx8yw67zEb77O/dbcrPR1nVQ7l7KTkzIVnOf/sJzlz7gxKW2amwdUN5f4eX/3SbzHd2+V+7T9O2lqbZzqZMCtLjHM4KQPDfNwtfOfLeULEFHokDoAqj1nh2hK8j2bbWEu/N+CJcxeY7O+ipEDahsZ5yqpgt5gyHA5RtsHOKnzjOb9xGuqK6zevgVM8ce40OlFYD1mvT1NXgYCmqFgaLjPoD5lM9mmairqqMJGtKU0zdFnhjEMrSaYTiqrpIjyRaIq6QtJwc+sWX3z1y3zlG6+xtzOm2C9AqTDrwVvwDmvBehtTAP7QlnjYrouuaN1y1h0CIrj72TmDWxHSQB6FVpK0n1Ebw/ata12NtO2Mao/1QSKFoD9cYrBykjrp0bgJBsXaiRV2tkIfb1dzetgOHS4W72zHtVybhtRnSOQBYLItlwjR5VFbsL88Bqz5IPmWolQXEahaS06ePEkxHaOVZHlpGaRieWWZS5cugXXc29xESE+iczZWN3j6ySdxrkF4yXDQA+FpXINKFN7E8okPgMyNjQ3u3L4RuC3Kkum0YOPECcbjMUmSUBQFEJqGy6YOPoVzSCWoTcXm7bv86q/9F379t15lZ68MfiUhfyZdOzMh0lN1WXVPKDO22vvgNZkv9xzNsc3/TOrIFyxAKUltLTpJSVLRdcTPl70eBKQE0FqR5xm3rl9m+eQZCr9EtpQxkJJ7V67wxle+jCmLqAwH9dAPfrjBah70poYEtZeqc6WOXsf8z0LQ8PDTwLeQ+O1MvQj1y16vT7/fx9oGLROMdZxYW0dLxc2bN3n66Sd5//1LNJVlOOizcXKd9bVlmrohTQReOIpqhkgSmnFDP0kRIvS99gd96ipYt6mcUtdtbi08mCRJOop7pQXWhB7Rqppx8f2LfPG//l+89to77OxMQkeYCAujZKSkUIrGWmrncO4R8hIcVqyjDJRHPyN1oJww1oaksbUISrTSBz0OPLyEFTL+AbY+G+/yztd+i9Vz53CJptrcZn9zk6qY0u1HC+jaPFx8NpuxubXFmTNngv+rdEcipIS8T+HapO+jpKQfjQGTAy1va6o6sjvevXObJM8QwN7ODmfPnOHWjRv08x4rS0vgFcVkys26wNNw9tQZTNNQ1SUq1RggTbNAeGgt1jmWRksBbFjXpGmY/LJ57x4ry8uAZ3Vtjf29PcBT1xVFXbG5vcWrv/u7fOm3fpvLl68xGVd4L5HKhg2gfaYujEzSSmEV9zOWP0SOFrEfVH7y3pOkGUmeM51MAvNS1IY0STuc2/yxjpN5uHhtaoTzVLtb3NzbwQqFsmHokmrTJoJF3Sqkkt1HW+47a+2x1YOj1Y9HLbk9gsLFjLskGmvXddovLS+zvROgSlqHiC/PM86cPYmUnifOXaAoKvb29nnn7Xc5uXGCM+unUVIzHc9YP3Oa3f39MCnGeaR0uMawtrJMf9CjLCpWljXO1+xN9zl5+iy379xideMEta1pyprbt27y3rVr/Jdf/w3effcim5vb1NYFGlMh57Y8iVASY0I4Hxgy/SNFdItEZe2DMcZQzgqyLAutiDF6lFIc4kWe/86xy3+kBipoZ0mE5HabhO8qFY+gB700J0tSkjSkthpj45yw2E4p2pjUdUX6FscY7zaOWnq4LB40eIGQCutMh1UKO6sgy3KGwxGz2SxOjvEgPEvLI6aTKcN8hBSKRGtObpzgxIkTuDh+x1pHNS3IhKKSITWidEYxm5HlKXmeURRlQAFLKMspSapIU83O7iaNrbizdZffff11fuXX/jPvX7lGUxu8OfDRvLddSO/b3KxSh4auPcrGcLRlriV4Po6UT8R8ljXmgBkxfufQuKUFz9mKJ1Q+pJSxyfvYb33g8doXx1mLFJIsy1EqtCR65w4NYVHyoJHmgHFK4L3EzyFLHiYLK9y0Kun3A4xYRuWeN6nLy8tMJ5PIgOlpIlvQ7t4uS4MVbFV3ftfy8jLjyRiz7wIreFkyGI2o6hrrAh1WqjSzogj5pf0JZVkipaSuC6aTLbJc8t6ld5gWM37jt3+HL/7OV7h26w7GREc5hvKtxAAr+CvW3od++L3Ig8j4WtIarTVlWR463zzb5oOgSsdZvqMKqrXuyL3n+0MWkc5/i0n6paWlrlA/D19vWaiUFl2Pa5qmCCFDhE/ggVlEFla4zZ0dTqcbZEoivQXncdE5FUKELqAsA9uglGIynSKEiG1xrnOOe7Fg3h+NULu7KAS2btAES9C+9VJKdBI6xrfu7SGEoKwqvLC89/5FJkXBq7/7dd54+23evniJwjisA28DSqMtMbWEMQF7r7oezUfpB3iQzJf62u6oeWnP0ULMWyWf/2zLAzJ/rCRJ8N4f2m7bc8z/e57Z8lHvo/1OkiT0ej3yPGdpaSkwNk2nNMNh1zhu42wK5+kU0jlHlmZoHfz2x27hrt26xcrqElmvNzcblEMLvry8xM7WJtJ7Njc3WT+xGhmAbNd15L2nrGpWhkOyPKecTpEeymJGmmWdVZNSkuUZo9GIsiy7iLA0NdfuXOSbb77NN998h83dPeoqlLecjYGAC32chgPAYJs367h545v7KPi04+Ro3u24/+6aTuK5jqZT2n9nWUaWZd0WPZvNutGbeZ6TJAllWXbM8W2NeFG603m/TirZZQN0/NOux2Q6pSgK7GiEcxYlIsnPXC42BDuefi8h7eULOySL+3DKs7m7ExgXRZhX1Z6lfVsGgyHbW5sIpXDOsrezy7kzZ9nZ22VlZZXaNJR1BVKwt7vLcDikKspIGlgzTDMGWY4zBougmJVIkTIpJkzqMbOm5vqt23zzjTd57c032dmfYGIm3FSxhuk9hpY7JAQ6Kk7ys9bh7cGiPQ4r9yA5LtUhxGFuuFax2gdtBdTOolWKlpI8z8AYpAz+b2MMKInG08vS6NAH3pO2afBh9yNjmQ4b2vu0DPRreZYhtcZ4z6Qs2NnbZ2k4IlGSTKsApUIe2uadszRNQdbLyfRiPQ0Ld94vLY3Y2d0JMGRCNDnvewSLIekPBjQ25MtM07CyssLO7i7Ghn5S50PDTDGbsba6CgJsCCWpy5KN9XXwoY+yaQzLq6tsnNngyo0rXLx8hf/6xS/x6qtfZXd3j6auI908cXq0QCcalSq8bIMaumTqcZHl41S2oymDdn7FPK2rjeMyW4V3zoWOdiFompqyKtnZ2WZnZ4eimIXdwQfGJQ9hdlnTUBYBIRMsjSVNk4W3NejKsSSpjlt8ZAUAjHVs7+2xubvDrCpDzVrcv1Yi+slVXS7MJ7O4wg0GaCnDMFvogoPDPoZkeXm5C5Gdc0wmE1ZXV7h58ybWWvLYv1hVFVpr8jzvHN6W8j1NQzOuF57G1Tz7/LN87Zvf5P/64q/z1tvvMpsWNE3we+qqwTQhykrTFB237YOieUtz7w4FEd9uaRWq9WGVUiE1EpnF8zzvZirUdR38qF6PvJeTZhl1U1OWVWAs9y7k8MoS3xi8CPRpRV1TO4uXgiaW/R4mLnreTkLSSxFzzS9h7RN0klAaw+buDjv7gSHLHKkPx5uMg2KOz9kdJwsr3CDLOLG6xt7eHpVpQB8kC1sLIoTofA3nQtNIURScPXuW8XhMWZY0cfz13t4e0+mUfr/fYasAJpNJFy3Vdc297Xt85Wtf5f3LV7h+/SZVZXAOvANvRdwiQyGnqZvgM9qQBtF6fgjcokvy+GR+4nNr2VrfMcuyThkPrld3XMAB4g1pPyft90KVwrm5xm9xULlgsUabdnSUlwF+hQoKCIEnpPUPGxMagXYmU25t3mN7vE9pmkPr11abOqPzuGupWipkKthuGsbTKUmaoOZRBP5gOMdgOGBvu+xGD1nrePrpp7l48SLnz58PY4IGA4qi6N76ROtQ5ioK6rpiMp0wq0tef/9NvvgbX+T6jVvUFbgAJI+F6ZD/0UpjTBMmB4qjIzQPZqH+XjbPB0WLx2Xbj9umsyzrIsKVlRXu3LlzqEJRliUqS2jKyNfmodfvIdOU2WTaXb8EUCo46kIGzhLnOraBD5S5rIlKFE54jDekIqNpGiaTCctlST4YBCvqLFu7AZiRpgm5CvO/WrTM/BToRQsOC1u4SVkwrUqcFGzt7lAZEylLiTSdgS5feckwGyKFxjvZlbTOnz3Hk089xdXr1ztFybKUvJeiE0FdF/SSlLqe0l/JuLd/h2+8/U1+7b/+Ou9cvEZRudgt1aZiQHiPAryxIR0Ss/jehhJWUzcRCcEjZd4/SI6inh8k8wrZ4tVaYsAbN2501q518pumoZqVEaERzlGVNXVkN0eCkwIrBUJ6TFXiTYUSDiUj09RDfDjhBcoLtBdQWURt0TY4u3UESJiqJkEgrEM4j7Wee9t7XL15l93xFOtC4JF4iXYHFQa3YLS/sMKVdc2sLPEENswy/rePizufsZdK0+sPAp5KKYqioN/vs7a+zmQ6ZTabxfGOY5qmIcvTkNbAgxTsjve4t7PNl3/3a1y7cYuiaDrkdkfhpTUQis6maQLNlDg8McYfqmALfm82rj3m/WWtBynhfNK0rmuyLOPGjRv3pTHa7dBZ2/0J5a/QIZ8kCXmvh04TdJp0bJ3GmG7IiTvmuh58EwENkyVZpF87CGTW19dD3jRyHTsX0lg3bt3m6q2bgaTHB2ra+dMt6h8vbuEmk0MLNZlOuvHeFo/1vkPmIgSD4TC0nBGc4ul0wmAQaKKuXLlCURQhCRyTosZZNne3mTU1l65e4xuvvcWVqzepyrpTpHm6qPmeye6mH7GQ/K3Kw6LdeQBmmwIZjUbs7+93/lnraz7omG3i11hDVZY0EbZvrMW6mBhXSWQPDy7NIvffTVaUIvSfHtnW0zSlibm/9uVqLfDVGze4fP06hWlocJi5vFw7X+JhsrDC5XnOYDBgNBqxurrKeDwJ04rlAR7Wi3BD1ntkolFJEhqVlaIqKybjMSdPnmR3b4/98T5ZljEe75MkCY1pGBcz3r74Hv/23/0yv/5br7K5vY+zBPpRBDiBjTMFDsgO49Y196A+LPkgZffek8VyT6/XYzqddgnsNh3yQcc8QAuHBiIZLWXArIE1HoEMfMJ17L14iHS1ZQi5UiGoren6UNtt/tSpU10Q2F0HMClL3r9+jeu3b1M715Fae2I1YgFZOGgYDoddRLW5uclgMGBWFuQrK/HNcwgPYUv3CCnoD4fsbG1F5nPNmZMnyPs9rl+/zvbWNs57NjZOIhRcvHSJb7zxNv/1S1/k8rUbTGcG72XAqfkWDTu3bYn7zfi3I4H7KMee98myLEx7biP1trQGHLIciyBE2i1WaQX+YAsuiyri0cQjeAuB6r8xhsQlZFmKN4dBBWfPnuXu5ubcCy0iPsizP53y9sX3yPOc0+vrJEp2zE+LyMIWLlGSLE3w1rB59w5ZkjAdTwJeXyVIocLcUUmHyMiyPh6JSBRVVWCqAmsK0lxy89Z1tnY2uXT1MpeuXuWNixf5jd/9Ha7dvk3VhFIV3h74CQIQjvn5R16IxxULPFZprVhVVcERj+kPeUzu8kHSIX99CMqcsXjjuoCiVQIpRVDEhS4MII4T8BJtBLIG4cJDC4ajQSeC8+dOU9dlyLN5H+vUIYjY2t7lrXffY2dvH980CNvgFwSwLs6eFH2nfr/Ppz71KaSUjHf3qcpAq9Cio+ZNqxCCfn/AZH8XYy2T8Zi33nmbyXRCUZS8/e673NveIuv1uLe9zd279yiKGtO4bkHhwCdqt5RFAIvfSZmvm2qtqaqqs2aL5Mvuy+i3nRVzddn5z7TkhAtcWPeXNYa6LJFe4CQggoKXZYnWmvPnznLr9m0a02bvJFIGhLSxjhs3b9FLU5Y++TzDRM8FjR8sC1s4LQIFgBIiMBwVBc45ZrNZN7VkvnzULkqv32d/MuPi+1d4+92L1HXgqx2trFEay3hW8rvfeI3fefWrbG3t0tTBqglCGI8/2HZaS/GdlKPlvON+Nt+X0PpFiwI3H3buo/9uqxiPMqqgFWMMVVWGLT9CkuoYnGRZxnPPPkfd1GF8gLXUTRMmgjtL1TRcuX6d965cYVIUGLdYWmRxC0coXUFIddDro6RmPB5z6uRJtNaB93/uOy3+bTBc4uaVK/R6KWcvnGOwto5Hh5Y+scntrR3ube/RNJaQYBd430Emu+N9t1qz42qM879vZR6p8q2c50EkhHVdd7i4DyzetwFJe10iUPJbD8Icnj3mvefEiRNhmPB4FiZ3t/cBeO+YFgVvvPcuut/n/HPPLXQfCyucMbZTJiliZYCA+phMJwzzPnVTd4sz/+fMmbOcP30agaf2hu3xHlu7++zu7XHx8mXubW1TVjXtS+L9wTYyn7E9DqT4nZJ5a9U+5A8CTD6KdTvuOPOKcPSzoXUyfWS4lRCBZEwpRR6DnPY8YS6E5MXnX+B3vvLV0LhE8M8DVN5TW8P+1PDG22/ziZdfWeicC2+pNuCMQ9JVSBIh6CUShGV3uo8epFjsfQlIASQy4K/QgTVoe3ePa3du8ObFd3j9rTe5fPkyVVHFFWy/GQOEbnEWy/B/N8vvZTttfdh50OW8tBMKFz2HBRrvaHCgwvBg70MAIckAifaSU2trPPPUEzS2RnqP4kDxHYLaKLZ2ply9fnOh8y4epYrAKC6sR3gXTuwg1SnT/QnSejJ1YDAPgxAD4sF4R1nXSKmom5prV69y69Yt6qKMeP/WpHNQGJjD3H2YObYHyfy2cx964gGfP/rdRzkHhDze6dOnOXPmTIehO/qZRfojjiYvhJTk/R5OWWpfI5Uj0QJhG4QNypUg+cQzz7E8GBy4THOBi3NQ1Q1ldX8/x3Gy8JaaipbeNODZRBwZnuV9tnd2KKcF/bRHWe93voL3vit/OQGNteyPx+zs7fLu2+9w6eJF6qI4yLF9wLP4blC2ozK/9bWI4sd1PKDrHXjiiSc4d+5cN291a2srTAKMjeBHlXqRtWoj5qqqkH2JFwbnDc41SOkxHrSDREpSnfJ9L3+GL3/tq13yuk0G+5j4bR73rC0TO9WdFFQCrDNUtWVzZ4diMmV/POOJM2dgckDI0kGrRQAOTqZTdsf7vPPuu7z1+huUk9lh+os2t/KABfpula4CcIzv9a2KlLJDlqysrHD69GmGwyGrq6tcv36dGzducO3aNaqqeiCSZRGxxiAKgeon4CWlcdzdGyNTw0p/SF+HqsTK2jrPP/c8r7/x+pxfSpgxi1w4H7q4wskwkGJWloxns8BqZMELyX5VsbU/5okLT4TkJp4w2fjg5p2zFFXBrdu3uXjxIrPprEOZPEJb6HeVHE2LPOrDnpfDLkikNI2IYecco9GI4XDIyvIyK8vLSCHY3d0FCFwiHHSPLarwQghwjqQRZD4Br3EqwyY5Rkr264r9yRQlJTJRLK+scuLESW7euhmuy0dg4iNgDRdWuJtbu5RlhTUerTMyNULrMNG4l/W4u7PDft2QZj2KYhKaZlHgJdIbTF0wnexw+8ZVNu/cw5puctFjwHB8Z6RVkvnJid+qdTvqj7XVimkxY0OCbequlyFdXuHcqdNcv3qVpq7v695fVJyL0zLiiHUpNUmaodOMJM1QUiH7ogNPWONYPXmem1tjpqYhUQnaFoTqxWNO/M5mJd5DnvcY9NuRRuEk/cGAvb199sdjhsNRmOo8t/DOe6qmYmt7i4vvX2I8mRxuGhbicaGHPlRZJGh4FJnHs7XojbIsKIqCyWRykNccDDh9+jQXzp9nOBySZdkjK/z89t/YkMhVSRKYzCNZtjEmgAa0RqcJSmnOnDnLk08+hbEhfyd1ipBqYQu3sMINB0ukaY8kSbG+QaqDns9Bv49zju2dbbwQoaMd4pQZKKqKvf0xV69f4/bduwFL910YBHynZR5F0rb/lWXJZDLhzp07HQ2XTjQry8s8++xzPPPss1y4cIGlpaWuI+xhQMxDay8CsaFKE5I8Q6dpnNUqO7RLGMZrOzjY+fPnOXnqFMY6vExxJCAe8zRB4RXCW8KsT4Xz4hCERSnF7t4+Umt0mgaWSuexImDdtnZ3uHj5Mju7exHWMp/c/VhamS+NeR+Qvvv7+9y8cYOTJ06wurKCVgGqfuHCBdJ+jzNnz/LmG29w+/btbueo67pjK2jxbMeLRydJZ93SPEdHBqt5X9JGOghjDEmS8MLzL1CWFcV0hvQSv6DtWpwfTgQaujDlOFxoGBwLSoYpyePJmBu3bmFcRV1XIXXSOO7tbHP56lVu3bodGj/C0i566u9aOa6mOv/vb1Xmv2+MZWdnB9cYrl+/ztraGifWPKOlEUtLI6RWjEZDqrIk0Zq79+7SNKHn1VgbWiljl9jRiDZcdHi2Ok05d/4c/UEf5x1CJUdoyMCL2K7oHCsry7zw/Au8+fa7YWDegve2sMLZNNRQG2twTXC4lAw0p41pSPspILh+bzP0OkqwtmIyHXP1xg3eevcyOztTvPHILir96CsdHPhyv9cu/mPFeZrasLs/5urNW3ipuHD2DM8/9xyj0YhemmBrzekT6+ztbLM/3qM2DQbXoXbnJxEevW6EQCjFxsZJnnjiKbI076BKem57VkqCi1zFsXHp9MkN9mcTbty4BtljHu6WJglFPcUbi1AK4aEyJihbmjJop9AJhSGABotixs7eHu9ffj/kjMqqYzHqICHfI9Imfr9dvmkLfJ1MJty+eYPpZMK58+fZ2NigLMsA459MmM5mlFWF9YHLxMZUSesbHk3fpGnKcHmFZ194kbX1EwHT6EVX4H9QpUQphTCGC+fPMZuOO8TQw2RhhSvKgjTP8dbiIwGzkppsMOoy4HXThEFnkfusdJbtvT1u3LxJURQHfsFHMuv2YGmtyLf7HEURItbZZMxkOuX87ds89fRT5FnOvXv32N7ZZjqdMpnOGCwF9ngTm2PaY7R/t8qT93o89dwLXHjqGXr9Ida4AASYa7X03nfdWYegVs7Rz3s8/eSTDB73ROhGSaRWJFlKqnRwHiPFvScAL62wiDQNnBMC9mZT3njnba5du0Y5mwWrNo/g/YjL/Nt/tNrwuKVtqoHYtLx5j1lVcvPuHdZW18LYqMk01DtFsIhJmjKbzQ4p2Pz1ZVnGyZOneP6ll1k5cRKhEhKpSXWK1AAHFk5IQZxS0AE+tVIIKTl14gQnT5xY6D4WDxqyFJ8mWARGqxA6C4VDYJwN3B5aIQh8uZPJmPcvXeK9d99lvLsXD7Lo2T468kHQpG/nOZ2DoqyYzmbs7u3RS9JA7ljXqCQJsyNi2mref2s5kKSUDIYjnn7mWTZOneq4S1SkVfPeHgqG2oG+EDq0tFaR7NGRJhlLw+FC1754WkQpvJR4KXFa4a0jEyr0gzofhnMATVMxHe+xd+8um1evMr13D4zr4M1A10D9vSJHkSzfdqXzEQfXBAT0tJ5SyMBigBe4xmK9wLj6PtCmEgIpFf2lZU6dPc9Tz71IL01JlAAcQpqYnT1sDV0cFYAIjKLWu0DkbT3WNAixmDVZWOEGaYYnUj4IiRWeylmwge/CVzXFdErlanxd4YuKvbv38HV9SNm+V+VBKN/HpXxHUy9wuKRmrWU2m3W/O9pG2R1DCJI8Y3ltjZc//WnWT53sCICUUofqwi18/VA1ZQ4uFsaOm0jw+JjRIsqDtYamrknTNIwIsgZbVZiiRFsXxzl6qrLk9vUb7N7dhCYghb/3Ve4A8vN7KeI/ihznm83XY9t/z/9OZSm9pSWefPZZNs6eJenlpFka2hCjckkpOhsxf4758lmbBlJKBY7hx92XWk2nWOdCdcA66qqiMSXEDDRKgBQ0lWF/POHOvbvsjvdDN8/3cFWhfQjzvtJx1uhxn2/++A+CpB+VJE3pjUasnz7FxtkzNN6xO5lwQmnSJOkUybmDLrnjzt/+rmUR0PLh5bRWFq6lVlUV5i55jy0rXF1D3SA9Eb6i8VrjJEzLghs3b1I1TaAVWPQkHzE52qk1r3wfljwoMg4/C1kBKSRpkpEkKSvrJ3jpU6+weuIEaZ6jtKa2lsoYjDuYyugJvl5oYwoWz0egrFQ69LiIkHtsBxgvIovPaZASpXVoxPUB7+ZFQpLorojvjKFxhs3Nu2zdvYe3C0w4/oiLlIEIsS28t4TV3ylpZ9XWdd119nokSM1oaY1PvvwZzp57kuHyEjrLQEp0JLWpqgrnDVma4pBYRDcGSkgVZroJhRQK4y3eOxIVRo4uCo5aWOFyD9I6hJLU1lBZS5qojp281fSqLLlx7TplER3Y71XzFqWFacMxDczf5mj16Nbd5upaarBAcws60fSWlnj+pZe48OSTZP0eOk0D67yUCBVwcGmaYuL4Sq2DdQtxRiCVbt2GFlLvfaCfEPP51YfI4lFqlgfcVFXTuABVURGJ0DqQ1ljGe7vcuHoVbx2SgxFJ36Mu3IefEnmICCG6GqqIgItk0OcTn3mFlz/3+1haXg47lQ59wTrRIDVOCBKl0EIwm0xpEW5HqfnbtsT5QEKKw/jHD5LFG6ETjSRQ0quY7G2hL+2CV2XJxXffY3szUOfHSe/f89tqK0d9ue+0SCXpjZZ44VOv8IlPv0I6HKIjE6dMdKDq0hoXn5ETB/1Mba7Pe9+5TAcTF0X8dyRB9A7/uJtoGgFeKRIhwFhSoanlAWCw9RuuXHk/jC8CAvQ4htjfHc/gscp8mqB9+RaemfAY5Giw0ELB20AhyXucf+ppXv7MZ1jfOEmSZQFaJjxSSayLRJJSIiKPnbMGqTSNDeTV3ntSlXR4C7yI81EDYWHTGKRY/CV7pK4tKQUIGWdrhuG2QoTmjaZpuHv3DvvjXTr8kfued+GAg/zbd+K8B5FyeKeVUCRJSpblnH7uGT71+z/H6qnTYXy70ggR0D54H+jVfIg6bexv0EmK8TXOGIwPz1VoEfpTnEDpNNBxxBNKEZDdi26pC8fvKk0DVX50IEV8o1saqqqqGI/HTPb2wiCw+L3vdYWbR+d+u4v3Rzu72u1O6zBDNZAMgu7lrJ46yae/7/t4+tnn6I+GAUArBVJrhFAY6/FConSCTnQHY2r9MxWHzwEdHavzgRzR+jAVO0TAHmfdwuxJiwMwfVxMH9kOXRibOD976cb167i6CYTE0ch9D4FD7pPjWvs+LGm38ZY5qaorvBCoJCVfXuKpT7zIqXNnUVqhIlO8kgGt6wg7llIBfCH9AfO7koFIyM9VTKqqAg9ae7L0oMDvrIk4OLvwi/YI4ytjxUCF8ZReeLw13eS5pmm4c/s20h2whneDYr9H5WGZ/ccjxz/Idvxl+7IHpIdisLLM8y+/xKc+91lGoxG618NFylYhwg5VzkqsF+hc47zoEMFKCJROAkv6XEnLWktV19RN6E1OszTM+SL4goF59TH7cF0YTGx79YEN0dkQJm9tbWKdDWgFH+m9Fj34R0g+VBjSvLLJUNFRSocGcikD43kk8c56OcOVFZ564Xk+8crLLG2skwgJUpKkKd6H8UbChSSuIihSmmWYyPObpSlKSZyxaJ3gY/RprUdI8K6hLA06DTk+GXmXtdILD+hdvAZjXTcLQUYfTsmEJM26cshoaQmZ9UKYDdAlRj6Wb00OW9C83yeJVY2qqjplE0Iw7A95/rnn+b7f931snD5J1k9JswThHCkS5UIjsxACrSRKCdJMo5Mwq0xrHY1I5JhDhJ1KAMIjsCTKoaSlKiYQ52/hJN4t/pQfycLNj1/0hO1VokFIsn6PwSiMpKz2x3En8B2Nw3dLbupblUV8lAdxfHzQvR+X2jj8gTC4I9EZwuvYedV+WJL3eqRpyur6Oi+/9DJPnr9AkveQzmONA+cwdYPSKVmSgHcorSH6aPN09y3SRUXeOCkliUpCAw0ZWM+sqDE29LL0exk+QG4ff6WhHXJ7qBkjpkdEolBJwomTJ7mWXWT80datxy6PI6BwzlOWRWzXC0NRpNak+YDVtVVe+f2f58kXn2d5eQXZzvKynqKsqIzFNiZQOsigUC3q1zRN3J5DUGidDxZNaIRsC/gxHnWOLEupahPGH0mJi+CNx1+8h27IRbeAMvwRUpJkGcOlpTiKOqJH20X+FlMFx2G7vlPyqOd+LBClFvEBOFeh04SmNiiVIpUmTVPSLOf5F17kqZc+iVoaoQY9VMS2pYkmTVLGs4LprELpBKkVxrQjoVyotyK6MqQScXsUsawlQv7VzxmxNh3WNGEUgPTfJgt3uDHWg5dIGbbUNMvQOqFuwmQZR8wV/R6U5MN00B+3zOfNjl6/9x5iDbL7jJRda94h2JP0kXYhRysNSLxMSKRCKxgtDzn55BOopEfdeCoDSkicFCQ+5NOWl5fo9WqK2YxZOQt+nxR4Z5BSUEY6XeU9UkX0D8HBbwNDIUIjDdbhvaWYhYFzSZaS6iQYnwVk8TyctV2SsYXh+DikVwmFVjr80Ul0NEXn0H6Yc0q/U3LUkn3Qy9KiL+I/ui3QNs19c+7brnm8xDtIdI7TCYl05Ink1NlTuDTB1g7RQDmtw9ToNCVNJEoKMi3RqWI5XyKvDbOyDKMqIx2Hi5OehZQ44bBYpPQHxVUfXwwJSoluunZdzPAYEtnrxmA+TBbPwz1gNoKIb4uUkjzP42KFaScHjvP3aDH1GPmg4R/zSiiEIElTpBBkeU6/32c7MlvOS5qmYZrNrAzbmg8cy0jB6bNneelTn2Jp4yQrSyMGgz5IifUO29RUPjyHQoBWCq0kjXCk/QFJlmOqwA1iyjjRRinIJF5IjD0AZwh58II450kSjcBRVhWuDpawiBx1D5NH8uHgYD67iHu9cw5nXcc96+ZmRTr/4Q/F/U7Lw3y2JEkC0WCakvd6wbLF6P++eqwIpDStc2+NAxRCKvKlFZ56/jk2Tp9i/eRpUp2E3gQh8KKdfyYRUrGzs8tuFXw4nSm0NmRKkeiM0ShlNHTUdcN4OsHWdYAbxT5boNtiRQQFhMDZo5WmaRoKaxZuIXiktMjRf4uY7FNaYZuAc+/3+txvzb73rdsi4EshRLdFrq2v0+v3kVIGYu26pjli3VqOtsl40uGGpJRoqXjqqad44ZOfZHVtjUwnZGkSuEASHYbuOYsUFikcJ9eXKaqGaVFSVTWuMvgsxegQ6UopcammJ4a4pqEpS6xWKKVJEh1HWXkkB8Q2wcAEUmlTVyHpv4A8wpwG09F/QpsWCSG08+CcQCcZKs8QWuGdPRydfgQd/2+HtAxGk8mE0WiEMYbZdBoaUo6zjnNGT0pBkih0pljbWGe4soLKMrwGoTVCaZwDrRO0SBG+xhqDM4ZcSfJhjnE5jbPMqrqjTG2cJ9UpWgZsnHAwacpImxuuSetITJgonLExiezRIjABmLpa6P4XVzjvkC1FlyN0aDmLMYbamDBNUGnywQCVZWEacyiy/TfRl7qIdEDVqmJvd5ckuiFVWXb0p/e/mAfwh2AdU4YrKzzxzPNkvRE6zZFpivOSqmoQUqCUDqkMIUh0Qqp8VJIwukhJwTDVNMZTFwVWhBqpkDLAz7Sir3PKqsTErIMgpRaCNObclApk0rIReClZdPDS4gBMa3HRn9Bagwr5nMoGhWtMQ9k0LC0t0evl2OnsIDpdMOv+34K0Ocymadje3gboyklw3Poc/Dv4zpILTz7D6uoGeEUxrZGlJYUwxVkQivVCBKZSEXJsiZRoIRhojXOe2liEEyRK08TvVVWJNwadBG64fr8PwDRaYKEUztqAo4tXpoXEJ/rxsydJH3jdpPc0ZRlw8d4jnUcDSic0acr6+jorK6tMt3b+mwsYHlWKoli4CuF9GPib93LOnT2LlgpbVkilUYlHaRH6EDwkQuIJ2DW8J1EK6YNCBtIdz7CX0NhAh+tshXWeRIHxUDdlAARE7uA8zymrKsx0ILAvENHF3jm8sfgF2aMWT4vMSpwIXTymMWH/jxGrc5a6bmiKAlqgnpQB1Bdnp38sB9I2osz/+2FK1+LfRsMRS4McYQpykZJIifIG4QRapwGV7UxwabRCK4X3IeWRtEQ1OKqmRsiEXr+Hdjp24oWR5yrRmMZw584dkiRheXmZLE0p4zCSMK5UoAg8gHVRhsh2AVk8Sm2q2AoYSiLWWgweF5O/zhqks2RpGhzYLIUmNEp/u9K+R6Hd3+3b9bEVh2N+3v2eg98rrRFKsnFqg40TayyNBqSJopenCBFcntZx10lCP89QWRpyacTOqtjap5MEoTx1Y0K6JZyFRCX0emGUUTbMA+eIcwEGZS25DhHwtCgYJilNWWGaphtDv4gsnoezJvoIIkCTRWB3MG3AIAOEOVGKjVOnmE6m7BQlwoZo9duhDB8Gf8fjlPZ6k0ge0zbcfKCFE4AUDIYDBoMBTz/zNMurK6RZitSKaVlQVRVKKQaDARDoUZ13uLpGx7yfUKHY7gljzVSiyZQIO1MTeheQKvhlUlKXZcDfxWutnUe5sD1b55jsj1HWYgkBhH3ciN82A94BMaUE50i1JolFfeE9o/6As2fOsLO1xe7du1hrusjrKJdat6bfgjJ+1JRtXtqhvbDAvfuDsGE4HDIajVCxIbkoii4xPBwOMcZ0DEhtv6i3Fus9pq5BCKyQwbcjXIPUioHSaCUpqhprQ8ddrjRlVYEOqJE0S8G6YECsoawqjA8k03mWL/w8Fla4+QGwxpiDjvsm1P4SpUjykH9bX13lxMYG451dtm/fwc21zn27FOW7fTuFwwiSDyqBHf5SIKHRWnP27FmGwyHOOcbjMNOs1wtUp3VddzMa2j6HNEmCL+dc2FK9p7EG4QMTltYJXjqE9yR4dC/FOE1Z15SzmkwpiqpCpkmAqAPCeWRjkRC5SRRplj5+iHkr7QI1EUflCY6jjUVnLSR5mnLq5ElMWVFOJkz3x7g5ZqGWi+z30uX0UVCwB0nrey7SsS+EIE1DD8GpU6c6CgetNVlsjpn/0zRN+EzTUM2KuaZlGQ1DgsSihQwP34HzFmdNO0GURIBIUoqq6lDAItJyVbMZom5QIkyT1iKhKhdL+sIjKNy0LIJi2UCvauIIS60UiFCGaZrwNmmhOLV2AlfW2Krmxs3rbN65GzBYkTc2y7Kun/WjIGJua2slAim+9WMe417c9xkCte3SaJk0zUJLnnHkqY4pColzPiRiPTR1w8xYtNYdOXRjDeBJkzR8J1rAlitESh1yqxHhY62l0Y5eP4P9MfvTKU1ZMZ1OsVVFphU6UeSZRMnYTL1gEmxx2vwsBYLpbn2QxjQ0pgmMPSJ24hIQpanSnD97jtWVFdY21vnqV15lf2cnMCp5fx8q4qMgD6oB/J6O+QGWuoV5Syk5e/YsaZKiIpcb3pNnedhphMBE16Yb2Bb/eB8mzXgp0VlKphS48DkTKVsPaBxin2tM4lZ1zXIvRyOYlRVjaymqEiEzkuj32WhR2zFJD5PFGTBFKM5rKSHCkGZFEVmzI/5da2TsyxkMBhhj6A/6JL2QH3r7jTe5e+t2R2T3QSDF7zbxghCJHXOdjyMIepBkWcbGxgbnzp3rBrm155hnbfLed7O2gG7CYJZlOO9QaRrSWgiauu7cmpZurG0h6Jiw6hrlPGmSk6qUPM2oncWbsJ2msS+i9ekXpbhYvJZa1dRzUGKPx9UNxK5r413HI9aG/VprdKLRmUYrxWgw4OrlK7zz1lvMJrNuseYX7btVWoBimqboJAkMoE1zyOo9rnvookwZhvQ+88wzLC8vs7y8TJ7nnVK0s7TSNCWZY7Ds9XrdDFVPGGngYz+KlxLcQdc+0IE+2yhXSolOEoy1GGuxnuA+idBCmKR5wOT5yBPYoUceLovzw0XcVpsh997jVUgKSikRLuC52uZcKSXT6ZS6qUGFaOr8ufOcXD/BaDDk6uUr7OzsMJvNDmqJrQVpH9qRdMp3QjoLrBRZv8fSaITWmt29PYw1oXXyvi8dc6Bj9mM/x/zdktDMkzYrpVhdW+PUqVMMBgPSNLg1XStfLDu1lYs0SVBad9Mas9hzquMsDR0n02h5QBTd7lTGGHp53gWCxntq56ibBuNCc421FkHoe6iKIiisVN1LsIgsHqUq2SHHvYsTn5VEpwl1XWOjpksRh1LEee3GGmazKYWfBV9BCF565RVe+ORL1E3N9tY2t27d4vq1q+zc2wyZ6zlL8d1g84QIc8VSBYmCQT9DyyXu1hVVGXzRjuvjGCjicVl4ASBFULoDzOqhc2ZZxsaJE+RZFmhthQi093FSdOuzAfSznCRJqZoa6xxJkmKcwzloiirA2JMU4z0Wj1aKsq6omwYfdyUrROQh8kyLME6pLmsiew1lUyATBTIgVwQCkQRukkXrSYsHDfHtgrC4TdNQ1zW+rkMvatxiWt+hqqrO9Cupws9t4LNI0tDtJbXm1NkznH/yCT71yqe4fuUKW5tb7OzssLu7y3i8j2tM9yZ+p6xclmUgHLPZDGMappMJg0GflZUVtja3D1mcR3lDpJKQClxtEc3hryZJQr/f5+TGBllkjZfRj24/1yF3AGssQpjQ/qcC4WCo8EhsXeOdoyzK0ALoQ2RZlmUAVqaKOnbxyzQgWarZDCkViVZYG7hllJLBgJQl+fIyg/4AtCaJWLlF5JESv+0+b6091KPq3BzE3FYd10hXpBa+i4astZRlSdPm7WL4niQJp86dY/3UKYbDIbu7u3z9a1/jyrvvHYLvtHKcr/Q4KhZHj9Hmr1pmnqY2VGXNdDpjNFyi3+93SVgInMYRnHtIgw5hUTnwW5MspXYVrjlcE259s9Fo1PlnXbVHSrI8J0mSg7ZNpTA+tLIIJRFKYuqGJObrWnfIC4+O26YHVJLgogEROvhts9kMXxtkrmi8o/aOsqnDiMyYAM56PfLBgMaGaZJ+wfzQwgpXliVN7CqaXxSt9RyxiiNNQ7tg2/dgrcVzMMi3aRqKogjcFs7RlBXFJLScCRWaN5QQnDxxgh/4whdYHQx5/fXXKYriA6/v22X9DlI4hxXTWcvu7i4tzUVAYYRkndKyc0WtdcfuNp4Dei8p1aEO+DbZm+c5q6ur9Hq9sK1HdE6LPWufAYAlWDOpJDJJMPFlTpLk4LmJcCmVaciUROd5N+1ZCIFpGopo6XQvD8BKKQIipKxQHipjkRHKrrIU4RTeGZIsX2g9F0/8RhBeq3BtpUAIQZIkc9gu2WH3w6CJ0FjTOsG9Xi/kj6qqS/y2ithUFTjP9p277Ny9R57nPPHEE9y7d48rV64c2VYPm5BH2XLnP3vcdx4UaYqOM8XPfc4ePoaAfNDrkuPUDa52kVGqzR6HlL6zIReW6AQrmiOI/ANqjTYpW9c1/X4fOdfgkmVZUJpohBvnUNbSWEtrS9sOrMAJE7ZH0VYj6grvQPhAw1bUDaPRiEpGGFVjqGYzlCecN8twAhpjKKuaJOmT5X38gmQ2j9SXqpQiSYI18y44yHhoqjo0wxK6epyzlFWF8DIMnJAHs0SVkmQ6oY5vXqu0LUEL0aK0oxrLsmQwGjEYjShms1Ai6x7M782qCSFYXl5GSklRFF1eq73Ww2mOQwmQ+PeRzwgQDpoiROZeOJKeohECbwKfGs5338UDlScdpNSy6hDSbQBSVRVb29tsnDyFcQ6vJTZGmGmekeZZOLcIquXiWNFoWqkBlSYY4zHWYCqDzrOAzq7rENxpjSakfKZlGdAhiUY42zXx4ByjwYDeoMesrqk9NF4wLit6JljGtnT5MFlY4YYRpdAqSdM0YIPZts4F3JQL9E5CCJK4zXrvw3zV1vz7gwjsKA17r9ejqip6/T79wYCqqpjNZmR5ztLSErdu3eLunTuUEegZlOKQCi16O10eSinFiRMnOrTFtWvX2N3dfWBS+khv1jG/96FgrkSgKo2VlSTLUCKjqSqcsbjIRKWlJond7ofa8iKr6K1bt3nyqafJej1kkuAFpHmGkJKyqjq3xvvg2+m2Vi1l7FH1CCVxJqDrXGxu0jrkRl30x1t/bjAagZIkSmJ8Q1UUOB9AtbNihtAJiVJMygozKyF3iH4vTBtcQB5hInSYyaQbg4ipj7II9dU0zgWo6xrhD3hAyrY5JD6QNkfX+iNtoNH+PljQpNumsyxjMBiwtLTE2toaZ86cYXtri0uX3uXWrdsH2W3fOuWLVy3aCHpra4v9/X1WVlZ47rnn+IEf+AGuX7/O1atXGY/Hj0wS7WMuTQqBlAlaJqgU6qoiGwzJkgRnDEVRHcLDPUhu3brFeDwm7/fx3qF0hiCsbbuOWZaFgXvRTWmts1KKNE27jAGEipFQCslBNcIaw2A4QiUJSZaGrbmuQ2I5VpeapkGiSJOUTCeko5xpUXbP7bGT2TghqY3DCxkQvy5EKojYdSQEo+UlRIxCvfcMBoMusmotShctzWXTuw5vIbqosM0xtaiI1gKdOLHOuXOnePvtt7h69Rrb27vB13mEdMTRNEvTNGGi8vY2q6urnD59mgsXLnDp0iWm02l3/fPJ0vY47fW3ZSGlgnvgbGCHTFQPdEhoB3SsJE1SQDCdzrpof/4lad0LrTX7433u3LnD8uoqg6UlBFBWZZj2bEznwwklO7/aOUeSpmGbnE7xMQUihMAZGX0+33VkpVmPNM9J8xzjLHXTdOcnyyim0zD2SugIYfckWrC+tMSkqimL8vEPdxNKUVZV6HnUCb3BACXBmqYLGoqipJeG/NF8La+l9ITg5NaxlteWiIBDWK724tuobB5eI4RneSVQVL3w4gtcvnyFy5evsL25SxXzTZ52RsSDYdzHWUHnHJubm2xtbR2bHsmyjKWlpc56nz9/nk996lOkaco777xDlmXcvXubi5cuYmuLMx68xNoaa4K/JJWirMpAexoVrbVA7XULcTDcwxrb7RTWGqyTSBxNXXdNLnVdgzzYOSBY1DrWOLMso9frYZoGE9dbShkaa5KMpdUVdJoGeBIhQJSRHakqipDwb8tdxpIqFbrAlCbPQ7CgjxkEd5wsrHC9XgBg6iQnSRO8IjCaK4lGszTKcaahLMY0xndm1time8Dtw0+zrPMLVJrEacMBot5Gnx5QETbjfZjNGXJ6oNOUJB3QHy6ztHKCJ596litXrvDWm2+xs7MTvt+u3oIyv621FnZeWUNCVfH5L3yB1dVVJpMJZ8+e5dSpU1RlyXBpKcC3vOfi+1fAG5ytMU1JkqdIFfN5SlJbh2mdbOGxrkFqiagPzt/WSpum4d133sZax9PPPs/q2hoyi6yVMVoUQiCILOTeURuDlJLl/hDvHLOypIr5UeE8SZqSZBmj1T46TdBJTl2Fl2I63sfNKpQEiSORChefR1HWaK1IsxydJ2itGMoMF4OPReQREr+SLEvJ8n7AV8U6l4gll1QpSBKyPKGqSorZjMYYINB7tovYDn1tcXFSSoQS3axO7z1GHMzmtHXTWbcOsyUFQoZ80Np6SpbnpGnK2toa77z9DpevXKauHm0w8HEWb/5n3nuKsuTWrVssLy+zsbHB+vo6TdOwPx6TJAmVc6yurpJEy+2dwzQ1SRrgRHh/0D8QX6xglSRSHT6/cy7kHr3n3Xfe4cbN2+zujfns5z/PcHVEkmissSAcTVXRlmVHK8v0h8OwMxB6DbRSCB12DulAZQnZcIjq5Vg8s/0x5XSGqWsUglxrhHAY68nzjMY5ZkURCW2CAXBzde8sDUP+FtKjRR9IgJSHt14rTePqkENSKkY7DilA6xQhJEmSURRFAO2ZuovCWn9FSHHIkhxFALfRV+MOD38VQoTOsehTaa0Dn8mKI0kSVldXOX/hPO9fep87t24/NGF8nByHxBWEZO+bb77JcDjkB37gB0iShDt37nT31uv1OHPmDM888wxvvP46NuYZk6YhzdKu/He04N+NEIp16vlrELG6M5vNuHHjBk8/8wxpL0HLHmFwAVTReV9aWkLGwCvPczKpqcoS0TRMywIpA/Ayy/vorEeDYH88xk8nuLpBS4nwHm9dByyo64ayriAmo1vW9Pa6tU5xzj5+bpHAiCiwxkZs2MGkZ9OYbnyORyBUglIJPZWQZj2qyV7HqSFE4ENzHHbC53FcXa22qlHioBWwqsKNO0Kuri2zWWuw0dHN85xnn32Ws2fOcOX9K7z22mvs7e0B3OecL3Tb7eeFCGmhuubixYu88sorbGxssLGxwd27dxkOhwwGA3q9Hq+88gq3b93i3r17Yd6B9wjrMGUV/K0YyoZGYk9Z1vQHvZhYnvM5/QH7lLOWyWTCzs4uJ09vkMcWvqYI3fK9wSDyyIU2zsY5nAvbZB2neGdZjlR5CGAqy3Q2pS5mKFeHEQgu5FQTpVhaWQ3BRlMjEx3pVX1XWWoZoDwh77ooi/ninfciOPRFWQfrJEJRPqxOGxoHPosuVSoVOhVky8vMplMmk0lUMmIq48BStY0fLS6/VVATIzaPj1tIGCxnjY3+C+A9aczrNY2JOHzHxsYGX/jCF7h69Sr37t1jd3c3ltp8e9kBEdRdsDh2G87znFc+/WnOnj/HG6+/QVVVTCYTdnd32dnZCemg+GLUdc36+jqnT5/m3r170LoNgI2dbfPiCeWv2az4wPRI8NMIkK7plJXlEXVRUpdlgCjFY3nv2d/fD4BYoWJhwwfqB2spbUlTNdSzGYmQpKahtAVChOeVpQn9Xp8sC8N7lxJN2dRMY4dYL5JYZ2kawAEyvIiLDiVeWOG8k8Fvkh4VwXktHgsRWtKcd7g4uDVww3nwDq00/eEQnWYRGOgDPD32M8w76G03WBuheu/JB32qWPDP0oymMZ2Fa61kkmdhUZsG2xics90Wtry6yv7+Pvc273LlymX29nYxTQAVCHdQTI9PNvwVI+bz58/zhe//fi489SRIybknnsBUNctLSyilOHPmDFJKJpMJ+/v7WGtZWlrixMZGGB9kD3aC8FQPK3VQCIFtjgcxiQh4ynRKIiTF/h79PKcsS4qyINGaBh9KVOWMAR4BJEoF1nIh8HEbF8qTC49zNWkiwFkcJsx+wINU9Ecj1tbWkUkegAjOo5DkPtRoA+AyuDmJUmgJ1gP2MSN+hQg8EjrRKBWc936cSNJWH2gz/xEXJ0TsJnIeoZPu31UV+MSSSJrSWjM4yLK3gIBWodI0pSgKXAQCKhWAfy3suvGOpqrxxiAIubWmCWHf8vIyk8mEjZMbPP30U4Ggb3eHrc0tJpMp5aygbppAbRWxX6OlJT772c/yzDPP0I9weR0T0SaiNFqrnGUZKysrjMdjZrMZ0+mUtbU10iShnGutnC+ZzSvV/N/zvwpWK/y/0hIvHP1Br/vKcDQ6oL8VhHtoDKPBICaDFXXTRFakULh3zpDlGUpJtE4QUnQv/mg0Ctcgg3K1vqmIDfB1EbCKSZqSZxmJDiQ2SorHnxZpo8iWLl0BzlgKM40BWHQkVSjvqHixWqlu2Nt8hSGzKdPpFGMMeR6aQdoUyKFS0VyVQghBVRZdcNDv9+M2X1LPSuqqCk52XVPGjvTRaESv1yNJEtbEWlCopw+agYqyoKprJuMJk8mYoijYG485d+4cTz75JFmeI0RYcGMMaa8XO9OD9SzLkp2dHXq9XiBk7PdpmoYzZ86wvLxMVdch9/aIxDUHCxCtbZaQ9jKeffE5+sMBWUR6VFWFTlOsCB1byMB6pFUodyGDj+WFRMwhVLQITTBJmnbX3p07vuRa6wCujXAz5xxJhJO1AaCcS9gvIotvqb7NlhswPmLdD04YokwbXiMBUutAwT6Xoe8IDTsIj+i6x9tseHvjB8c8wNzleU6e5QwGQ/I8x1rL3bt32R+PQQXyHOmCv5JFuEwR4dPBGmmkVFjbYvnCW67TlN5gwIY/GZKxMjyI4WCAjsjltkqCczHdQ1ea6vV6FEXoAe1HVsskSTh95gzbOzsYY7rqS3tvD5OuGqIkWS9Hp5rnX3yek6dPobMUkWhMWSGTsNu0IMuV0SpZlqETTdMEVLYnpDGUVDR1g5Qx8DIGlSRkcbdom2FCUEdnPQMkKkS/WoXASaYpSbzOb4vCtQX72azCRqiNjzkkEEgpMKZBKkEvz0MyMxaQSaJTGfN2Smi8c6RZiFiT6IS3fpmUsd81RmltDq7X68Wic9I57e3vamsYDgYM+30SFd7Mqiqp64bpbEpVlngvSLRidXUdGTP0ZVNinAmDZttG4mhB57ukgrGQOGOwEb0c3vyauq67l6mMkfJoacT5C+d59913KWazg0CqPVj3j+O0LfxJkoTl9VWee+E5PvnJl3j66adIkhSV5RgTXlzvQSuNNQV5lrKyshIqEAT+EGtAEWq7VVNjrCVVSehAswZlmhDxeh8o2GI0auyBsiVJEga5uSaUNWOEDeKgI3/B6P+ROu8r0+CkJ1HBiRXt4vjY0ZTlAT2KJ4vIBbynMSagFrRCaI1HBVSJVSipyKRCCMVkss90MgmRZpKQ5TkyTbqgIuTUgpWdzWYHg0qcY30ldDSFmVGQKRnnu5YMpCTLe4E+zHvqqgh8GWnGcGkV6y11Y2mMZTydkWU5aZajlA45xTQNQYlUgYfXudC1JELXOj4wSe7t7rG9s8PuOESJKk0RWmHmclTt0Ls2qmylRQm3ip1mGaurq/zff+iHOHPmLGfOnI7sox7toJdnmGJGYx34hlGes7KywvJohJirWeMDpNw7h68bEhmQwKiQxrLRcNSxBKa1pqobpASl0wBVl4LCmtC1L2Qgy0FhvCCJ7tOCYxoeLfErpSRJA0WAJLyB81j2Fm+vpAwcFNBl2L33YB1ShvKOk4EYT0hJkqRoqUjSgFDd392lKMpQ/ql0bNIg+hMBtNi2wrWOewsSaP9traOINUipFN6YwFGrJFnk6nDOYZ1jMBqRWUdtHEJnpFnKYDgIqQ4CobITAktoh9RKQWwYljJFIhjmfVaWVjixcZKbtwOMqt/r8eSTT/L2W28FMpm5atv9fTMRvIrnzNmzfP7zn2dldZXnXniR4dISS1GRiqKgn+cMBwMSnXD79m0gEN0MB4OwzjGAa6m2fKzu6Eh0o9MUL0ToMY7Pps2tee/j9hoMhRNQxqqJboeGRLBF20IgpXj8Fi6NzuW0LLu8Tsvd30ZqQohgRYRAJmELlYBwHtM0IbBwNnR2RWdYCoH0IayVqUbFrXN3ewdrDBbfIY3bSLn1/YwxDAaDrk7ZfsZay3Q6QydpgK0bS5KlJFqT5xm9PO8mWoPHOEdv0EfWFktQ2P5oSB79wKoqmRVFsAbGdqxRWgSLo+LDE0Avyzl35gzLwxHT6ZRBv4/znovvvUdTVp2jHfw5DyJ2wynFoN/n3Plz/MiP/Aif+cxnIkLGgQyRYeMd2mddqW91dbXb8o+OhzLGhPlaEFyMqgrXLiCPtVQTI3IffbU2MHTO4ExINldVFRDDEaTZgjCCX3tQ2nzsid+ArcoQWpMpjSa++fFGW5bzLMvwQmC960aWe0ClGmcs3oQCtye0vAkhEM7jcXgJOsu6WQZtFNv2FdR1jdACrZNDPbB5FqxSi6cDKKsadAhAhv0+vX6fXp6TaNXl+trFq+oG6wOw0XhF3k9DmUhKxpMJs7JEeEi8ZzabBQClkrgwrA+8RyFQUiBFuJdBvw/OceHsOf7En/gT/O7XvsY3vvZ1Nu/exTUNKjr7SZqysrzMF77/+zl1coPz586xvLzcWepeltNYS2UNXimkDuyUZUz4tqDVpmlCW+Zcz0ma6NjS6TocXNbrMRot4QWUTRP6VePu1UbRSVxf4cFnGYlzVC07U3LQT9GKj0CMx6pwuFBDlUlCIgQaEXtRD2p/NjIl6iQhSVNUlmIiekH4MHFQ2vBmt0yaEhHa1pzDi4PR5XnE7k8nE5p4s4nWJDoJJbRInqOUYjgahcgrKn+SJCytLBPeS8/S0jK9PMdZg1YHjT8QmCNVkjOezbA2bPf94RCkoqxrZkUZtkJrqWYzsJZ+miCRzEyN94I8y/AmIGeFM0jhmE2naK0Z9vsM0mX+4B/+Qzz99NP8+he/yPVr1+j3+zz9zDOcP3+e9fX1oGRCMBgMGQ6H9Ht9lNIoIZGJQqYpe7Np2MqTJPKCeJIkJU0z0jT0kZqoRGmaRpfAdj7waDhkaXk5QM3qKljmNImBmEbJSKFrHakMSeO6Ml2tt+28a/tVPI6mqZEhXn28CpeIBIUJjmTc+6UJBHYdDisqjrEWU1UkeNK8h4t1SB1B/8KHbQx50K2P8mgRuSp8pB9Qmv5gwNT5AJ2WiiRNcVIynU2DJRkOmM1mVHWIDpPYZZ4lGVYmyDRB5z3qpqGfZuAtZVmhtSFNs/BQU0Vfeu5ubSF0aPSta8NsXGCrMPlYSkU+DDm2SZtqQZIlKUU5DZg16xj28sCVlySkSYIXgr3pFJWlnDt/nv/+D/yBAKgcjViLuUQIOME8yejlfRKdolSCFKrb+vNE47xnPJtRWGhqh0riGCIPeZYHchnnqKuoeEKGNFB0PUbDEUmqo//oSLOEJMuQXqNlGoEZ4WV2hNSWdAmVaTB4lOAQ21Wv36NpAkxt0SF+izfROIeIUwOtMVSzAmsqkkR3b1PnB8jA9W+sZTadkqQhnSFt2GYhoCBa5EHoJhI4F26mNfF4hzABiTLZ2wsheVnScEBXOplMKMsypEyiU1yVJXk+YGkwpMaFfkoPMgvbuwCqMqQ2kjRFS0kvzVhdWgpWbTJmuj8J80F1yLgrISjrhvH+fmdZs0QzHY9DBOhcqC9Gn1A4RyoDM6WVgq3dXcbjMVmacuH8ebIk6VyHlrVSqpC/S7M87BAytP0ppbARR6+FwHhPludhJpbzpIlG6xDI2KpEKEW/PyDJA8tRUzdoIQLrkhA4Z9FJikwSdJKAlbi5NW1LldLH3hTvsDLw0nnvEM4iCVUMGeev8tgVTgi8ClDq2XiMq2rSXHf+UNs40+bbZKJJZXDYcQ6MjTXY2EjtXUCMKBWaPJw9BC8Pf0TwGXs5QsBkf5+6bpgVsy5ZDJEzozHUZdk9xKooAmolz6mLAqRiv64RIihZohTCeVxjQi1QClxV0xSh8uC9p6lqKjMOdWIb6rN1XQdl8DAZj7HGBkRtlpIkKdYaZJqisxR0UJSlpSVGoxG7u7tUkX7eGBtzmAFSnuc5vf6A/nBIfziMtWmPifBHFcmArAl0p1KL0EwuBLWzDHQPnfeC66NTpE5orMVjSdIE4XzwqQnpIiXD7FSEDElza3ERgCAgoH/izpSRhryjczgJlsAkpYA8zToWpceqcI0PSU1fVSQelkdLkBzg2o5Cf4QQMZGosJXFNk2gNohvs5ehRNYprJVg60OYOIcPOCspyXo9lA74rsFoSFmWXdklRIkh7BcesA4lFPs7u8g8o6oqEgSDPCPLdMjKx3MbYygmk9CGByRCYKXAWkc/T0l1H2dMUJS6JotVh7Idlpb3GAz65HEioPQBsNCW8Pr9Pjri0JYGQ/b396mqiqIqqSIMXynF8vIyw6Vl+oMBWa8XAqKqwsXsbni4KUv9AY0LJDJCKWrT4PBoYxFa42IzdONDS2YI4Dwy1lKJ0bQUgWrDxk4762zMOSaxJCa6UUxaSlKtmTY1jbEkUoZ8amym0l3E/xgVrqwaPJJ+v0dCGBDiCAhWF6Hf/TwPIxABvEBJhVKSVIZcTtOEGQBSqRBmI7p8WNvr6twBMhgESmqI9ARZmqOiae/1A37MxHKT8nRbW1hAECphdzIOEVaeU1aeogz8tCrm0qQUuNhN7iFMSFYyVE20pjINtm4wxmJM00VyKysrJP0+Ou8FBItpqD30kgSNCLm+JHRNZUnYHnt5jtSarc1NcilJ87Zyouj3euT9fhhpGV9GaSOwMWbYPYJe3iNvLONZiZKCxnuEc1gRSANDsjqCW4Xv/GcpgpIi1aGqj/XgXBMqkhF8CR6BRNLOuo0kOjJSTKSBHkIqhdIS2yze2bawwhWlZbQ0JE0zEJbGNkgbOpBU5nG2CdNRpER6j7cgvKbx4LGgFcr4MD0l0gS0plh6aJrQG+m8wDkBqBDFqqC0rZ+jc2jKSUD5AEmq8dajfIDbKBmw/uHNlvQHKZvbO9SmCRGZSsmJfpGWeClQ3oeeeuvAp3gvsFlOWZRMJtPYPaZIdUqaZWS9XmgiyvLQp5kk2Mkk5AuFJEkzpNQRvhNSE16E+Qij5RVmdY1uwlA1pRW5SuhpTaqTOCZcY6zFq1CRaZwDHMKG9EZoSK6YlQVCZ3gRgoVMSBJisloIrAOZJNEIiC5NFdSXsP1GRY6l8lDNaBWvDfZkWPs0JoZt3QRL733XZ/zYFS7JFMNRnyTVlFWBNf//9s6tt20khsIf56aL7bot2v//97otgm3WiS/SzHAfOFJcLFAUi8BP4nuASKY4nMPDc6yJda2xdc4kHUp5m7TVqriGBYGV8ZpNpyK1I0dUmabbSkS8dytc4Atrnu0WjBPEw+l0ao22LRM7F23pwzvEPPFwVfExIN7z148fTDmTxh04G06b62Fj5KKIeKL37esN7PcHur7ndDq1bbVA7BLdONANAxI6pOFlISVuDahWZ60DbZa8rj2qLbAcDgd+Pr+QgiNrhTbyE+8bXa61FNrmmTkTup5SCz5Ehr7n69cvfH/6m9fbTHAGBqcYzYilVcYFTZjnjDQyxf2k4Jf2pb4ZKi8VFuyy6BpzpK+FXDLRebxC59vaAb/frf1fCXf8tMNHULWjJc/FhvdiTtXL2KbJRrdFYGd2SctDlmLUFlWupxerMrW2F1tWNuyC9UgDK31btAaQEnDVs1PH8/Mz3TAwDjuit2+VmtGSzRmnAQBdmzN++/HEdSowpJWO7XK2JRYMa6tV7fNvL/34+ROxSzw9/SRT6Q4DPo242BlnLNg8OOSMu91aL2iXIZVW2ZrhRm3POgwDl/PErEouWD8U3iCQe0DddNhYKUOCTW5SCHzY76lcyKomDNn1SLv5L0k+52wLTgtr5+43vWdcL7jkAuJWpInnCrec6RsHbp4sUReXGmlace9ufXQ4jg1OmJkmE16RNiCv2NFAFaQungBvWb8+WHuJKQTqbUL1jeZTVdfmcynRIUZCioaVeb/6e2p19OOOorZsPY57SlHKPAEeikNmEG0UdOf4+PEj1+tMqULfG6jqSsFFT8WYMOU2N5aFJzpBglWv3YcjRQLfvj8xVGWICdpgW7wdVTFF0/G4TlSxzTL1bp2ZCtZg12kmpkjfdUznMy54isCEkjBjNnGmLIXe4ZRL5WmQhSDshgFc5OVyQduMd/nIa8m/VLDlA14TV+Q/l7x1a64WSrVl6aLGHr413zT1HnVCAYK3/1XbiOxdEy4Fx/l85fXlFWohxY4QfWN8YkvRqmY2JuapqjVDbY5z7bxfHrjrIqXa8aMIKqwVbinnYCRrH7yJ5JTaNDns5Y/DiHd+dcVRMfYpspJYqGqYGKXy+Xjk9TyRnF0QnJpHWNa6rhV6Z56hIUbr11Ky+e7uwHj4wKXtVyB2C1x/RO9IMZju8d1/n3OhlMneWbIdzqqVfug4Xc7WqKspVYJfuWVOpJ0W4Fqjv6qNrxVQiN6xG3pjrYjtzibvmK+1tQnSyLAFH7yt6WgjLS5nkup6c1UxV8LaqmZVU1UyevzyF2JQSrVWxDTj3nvSoJHOVcLe4YNJt68zOOyGiCqhLmMqEB+QEAC/QieL4E2tc5N8j5RsL0ExEHj5gqL3DDGRUlpHZ3mYqWVah8ZzzoTo0dShJeGk4l07HospANEYEwL8czqjoTN4ptxAK7e5kBu1aVGIGnf9yr/z3jPlzOf6iev1wjTNNhlII1U81UOpM8eh4zJc6PuRoevMPGOemfON5IXjuAPnuMwT427PMPamMeccfdcxjiN9iDgRrjlbxWx6cMF5s5lqcmhzycy1kqrhmarm2rz8Jrvc2/BenLk5t+oX1p7Scq7kQi38QqIs1caR9zowTsRgLWW95doxDUGE4U4h9Xch+qfd3hZbvEP8Gadkiy3eKbaE2+KhsSXcFg+NLeG2eGhsCbfFQ2NLuC0eGlvCbfHQ2BJui4fGlnBbPDT+BTdl/OCCrP8wAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "predict_animal(\"/content/test_set/test_set/cats/cat.4989.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "IG7XSEJHdG17", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 230 + }, + "outputId": "b954cc9d-bc95-4106-8db6-bbf4803fb690" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJUAAADECAYAAACWcGMdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbP0lEQVR4nOz9aaxlWXrXDf7WtIcz3jluDBmRYw2ZVZU1GENVUVAN9muXG8vuFlj+0HYV4gMeMELiReITKiOZD7aQWirAQqJlgz/Q4vUL7tbbBdhlg18MtrvsmofMyikiI2O487ln2tMa+sPa59xzIyIro/QGuBpyKU/euPvuc87eez3rWc/wf/6PCCEE3h5vj0c45J/0Bbw9/vsbbwvV2+ORj7eF6u3xyMfbQvX2eOTjbaF6ezzy8bZQvT0e+XhbqN4ej3y8LVRvj0c+3haqt8cjH28L1X+lcf36dYQQ/Oqv/uqf9KX8Nx/fVUL1q7/6qwgh+KM/+qPlsc9+9rN8+tOffuD5/6NO2nf7+K4SqgeNz372s/z8z//8n/RlvD2+g/FdL1Rvj///G9/VQvWpT32Kf/yP/zEQt7rF683GZDLhb/2tv8Xjjz9Omqbs7Ozw/d///XzhC1/4tt9z48YNfuZnfoZ3vvOd5HnO5uYmf+Wv/BWuX7/+UNc5Go341Kc+xXA4ZG1tjU9+8pOMRqMHnvs7v/M7fOxjH6Pb7bK2tsaP/MiP8M1vfvO+8/7jf/yPfM/3fA9ZlvHUU0/xT//pP+XTn/70t73/75ah/6Qv4NuNv/7X/zq3b9/mt37rt/i1X/u1tzz/p37qp/j1X/91/sbf+Bs8++yzHB0d8Xu/93t885vf5IMf/OCbvu/zn/88/+W//Bd+/Md/nCtXrnD9+nV++Zd/mY9//ON84xvfoNPpvOl7Qwj8yI/8CL/3e7/HT/3UT/Hud7+bf/Nv/g2f/OQn7zv3c5/7HJ/4xCd48skn+fSnP01RFHzmM5/hox/9KF/4whd4/PHHAfjiF7/ID/7gD3Lx4kV+/ud/Huccf//v/322t7ff+qF9N4zwXTR+5Vd+JQDh85///PLYz/7sz4aHvczhcBh+9md/9jv+3vl8ft+x3//93w9A+Bf/4l982/f+xm/8RgDCL/7iLy6PWWvDxz72sQCEX/mVX1kef//73x92dnbC0dHR8tiXv/zlIKUMP/mTP7k89sM//MOh0+mEW7duLY+99NJLQWv90M/iT3J8V29/3+lYW1vjD//wD7l9+/Z39L48z5f/bpqGo6Mjnn76adbW1t5y6/zsZz+L1pqf/umfXh5TSvFzP/dz5867c+cOX/rSl/jUpz7FxsbG8vj73vc+vv/7v5/PfvazADjn+NznPseP/uiPcunSpeV5Tz/9NJ/4xCe+o/v6kxr/XQnVL/7iL/K1r32Nxx57jO/93u/l05/+NK+++upbvq8oCv7e3/t7PPbYY6RpytbWFtvb24xGI05PT7/te2/cuMHFixfp9Xrnjr/zne+877wHHQd497vfzeHhIbPZjP39fYqi4Omnn77vvAcd+24c/10J1Y/92I/x6quv8pnPfIZLly7xS7/0Szz33HP823/7b7/t+37u536OX/iFX+DHfuzH+Ff/6l/xm7/5m/zWb/0Wm5ubeO//G139fz/ju9pQB75jb+fixYv8zM/8DD/zMz/D/v4+H/zgB/mFX/iFb7t1/Pqv/zqf/OQn+Yf/8B8uj5Vl+aYe3Oq4du0av/3bv810Oj2nrV588cX7znvQcYAXXniBra0tut0uWZaRZRkvv/zyfec96Nh34/iu11TdbhfgLSfYOXffVrWzs8OlS5eoqurbvlcpRbin/uMzn/kMzrm3vL4f+qEfwlrLL//yL5+7ls985jPnzrt48SLvf//7+ef//J+fu5evfe1r/OZv/iY/9EM/tLyW7/u+7+M3fuM3ztmGL7/88gM17uuvv84LL7zwltf533J812uqD33oQwD8zb/5N/mBH/gBlFL8+I//+H3nTSYTrly5wl/+y3+Z559/nl6vx+c+9zk+//nPn9NADxp/6S/9JX7t136N4XDIs88+y+///u/zuc99js3Nzbe8vh/+4R/mox/9KH/37/5drl+/zrPPPsu//tf/+oG22C/90i/xiU98gg9/+MP8tb/215YhheFweC4V9elPf5rf/M3f5KMf/Sg//dM/jXOOf/SP/hHvec97+NKXvnTuM3/yJ3+S3/3d371vUfyJjj9p93N1PCikYK0NP/dzPxe2t7eDEOJNXeqqqsLf+Tt/Jzz//POh3++Hbrcbnn/++fBP/sk/ecvvPTk5CX/1r/7VsLW1FXq9XviBH/iB8MILL4Rr166FT37yk2/5/qOjo/ATP/ETYTAYhOFwGH7iJ34ifPGLX7wvpBBCCJ/73OfCRz/60ZDneRgMBuGHf/iHwze+8Y37PvO3f/u3wwc+8IGQJEl46qmnwj/7Z/8s/O2//bdDlmXnzvvzf/7Pf9eFGUQI300i/vb4duNHf/RH+frXv85LL730J30p33Z819tU/6OOoijO/f7SSy/x2c9+lo9//ON/Mhf0HYy3NdV36bh48SKf+tSnePLJJ7lx4wa//Mu/TFVVfPGLX+SZZ575k768bzu+6w31/1HHD/7gD/Iv/+W/5O7du6Rpyoc//GH+wT/4B9/1AgVva6q3x3+F8bZN9fZ45ONtoXp7PPLxtlC9PR75eGhD/ft+7FN8/fN/zHwy5tLTTzK4tIs9OkVJTZAJQWiUVLhiwt3DVxm/8TLaQa1TEgneOZQQ4Dw+BDxhmawVQuA9NE6AdCQaTBBImWBlCjrHGI3yNbWdU9oaGotwDh3gwoVdsrUBozJjY/ODvPf57+Vw7yVufe1zPLGjcEoiVSBTFnQH7xyXdwb0t55gHjSj0QlPPvkkTz/9NFpryrrCeb/MO96LOBVCIKW8728CSIOiIeCUQAKGQJAegcA5h0AggsQF0b4DAiFGxEWcjhDi70pApgRCKMra4oLACwjqLMm9ODeEs+cZQsAHcIHl8RACEo8iQGtGr5rTi3Occ9RNTVkWJElCnucYYwjOU1cVf+N//p8fnVDtbvV5xUAD1JOCoe5xKj1SKLTJSNKcPO+SdlLoaE5uvoYWHi0FEM4mQyuCtRBASrm8aSklOlgCDrzGywyl19jZfYrB5iVU0mE2nXD9lT+iKq+jQsAgCCFwenzM4fERVm1yeUeigiVNNGmaEkKDlBIhFhMhCMHjvccHj1IKpRTz+RzfCpKUCn+P//KgxPa9EGfR/k8GQRBRaBwB324IUggWZ0oRn4pozwshLB4TgYAPURClUmitqZ3D+/gZQSyEsR0h4ENAcCZkrLxk+5liZR4WArUQpsW9L+7FGIPWGqXUcp4WC+mtxkMLVehsIQaX6Ca7DDYvsXPxOS49YRiurdHrdenkHYRQCB84+ne3CUIhRUAoQVhFj4T4uneSBKClx7mADxqht7n27Ed57MnnMb0tCqsYjU65vX9IOb2J0Yq1TpdiMkF4gSEgNORGYYRDBIsxBu9rJDFRmxiBEwrvBFLI+CB1fJDz+Xz5wBeXFkJYXqdSCmvt8gGfnXuPUBGQAhAKi6BG4jwIPIlQCDxKgBd+eb5AEAKIVrACASFAiEAIDo9CKpaCePZN8eWX1yrxwUEA5z1ShDPhwSPCmUB575cCdZ8WFgLX3rOUEinlOc39VuOhhWrryrv5wb/8FJnJEU7gnKcKM6b1lOnhCElABqCy3H7jVSRR1XvaSVrczFKgVrSXlAQCCEkQYEWXp577OFee/ShZfx0rM2zR4FNP2htCECipsc4T2gcolCCIgA01RTWlKKPmcd6hpURrhZQOD0iplitaSonWmvl8vrId3F9gsXj4i5/3vpbnCYdARu0gNZUXFJXFKIlONVo4JD4KTCseQkrwAenjc/Fe4nDtc/OE4ECAiCoHydn3eUAKCbRaVkiCDBA8Dg/Cx0WMX3zbuW1vVagW97dYOPcK3CPXVAdvXCd4D8GDtXhrcbYmOIutS5wtacqK6azk+M4NhLcInYCQSDwrtwFCLPd1aLWA94Qg8Xi6wwtcuPo8LtukMpqAABOQxpLmBik1ed5BI6lFhdKKRgSGG1sIIxnPR8yKKUma4v2YJNFxlYeAlAKtFCDwzmKIW0pT13jnEO3vQNQg7ZUHf/aA5UKYWNFWLOZMxMUlJEIIbPA01iGCxCcQhMCFgFYS2msSQGg100JTLh5P/M4ohJL4HsLKRAOh1SZtZhkffHxPq8ui8N5vR73ZWCz0VSESCJRSDyUrDy1UR2/cwBYF1XzKtJhFYxnOrXYhBNY7hAchNE5phBRI53HBRW3VPo/FJMebACU83mosFgRoukhtMcK0W4AjkQqpuiASuv0OSWeD06Lh4qXL6M4mWW+DJNOEZkaqPC7V+FoifYXWOc4ptPRAoPGCTqjJNTRpSjmfg4tabVZV1HVNlmXt4xQoIc5QoDIKjmitJdkKkBCCIJK4CIBMeJIk4IcGIUDKVjsKRcAhAiipWkfFx+eDiIt3OZ8CgiBRrYgEqBc2EFG+vAchNQFHCOC9Q0gQQbKwIaHdDUJgdfteCM6qAGkd580Yc3ZcRPvukQpV2ksoZydcf+kbSBFIOznZ2hYmSTGJIU0SnA9M5zMWDkYQAhGi57d68c45gj9/c2KxPAXUVU3wASXF8nyIGs2YJD44IRF5j8HuFd753u/l5q1TCJpQN9h6gm3mjCandHzFei+hqSuEEDS1JUkSvI/fbbQiTRLSJGknXNDtdJAPAO4tJ2KhneT5VS2EWBrl0SaSKAJSRgFQrSdnncMHuXzv4v594wit8yBbE2GhIbXWhBCw3iP8ihCEaMN5KRDBI5XEB3Gfo/Fm49zWvdzuwtIT1DqKiJaeRD/i7e/q01cZ5Yo7r7yAdg2zyYju2haJUihiqEC2K26JmGyFZKGWV20SiA9mufqFQMioFZafIaL3ZIPHBo+XAqU1UigQGhc0l6++gyQbkugGHxzlfIoLU46mJ6SdDD+d4hwILEJGjbOYSN16VkrFayrLkkAU3lUPaXUCzl5nE7JqV0kZlveBiDpLtxspOIQQGAXWy7j6W+FQUqKUR0pFjLwEgo826WLbeVD4QMQLiQKKJAS3cu1n1/dmWPvVeVke4+zeFgtNiEC3mz6UrDy0UHkEnf4AtEZqRTOb462DENDtJLgQWjXfrlwpz1yUlYe/eoNnNxS9ICFal9p7GmtxosFaG20uIZDaABKcwHiNqgSph24mcSHQNA5jNIaUICEIhfcCpRxSqOVWba1FtNuWMYYkSbDWQgiIVujuHQsDNl7zim21Kly61WRyGTxAhjPHQMhoZivpl/e++EypBEbHhRZ8wAWP9+eNaQDn7FLTxgUgl4t3cfwes/XcuE+I7tkSV7fIGD8ThCAYrm888PPue04PdRYgQ4xHpZ0ehQ3MbcAYQ2oM+KilpBBtfCWcM2ZXb2Z5oZx/WPHiAyIICJ7G19SNp6kbmibGmowxpJ0coRTKCwZJhzxoulqw3hU4OwMDaxc2MZkhyTKkMfH6FxPoA0ppnGudDuLEpGlC0zTtNUFRzFpbJI6zOA607tR9AiWVREmFVAqlNFpplNYIkyJ0CjolqARUgtIxDrSIBWkdr0FK2Vpx8Zk4H6jrOpoMIV671gYhRBtjO78AFo7Fg91/sTxr+U9BtHtbjflmW75HoJI3r9Q+JysPdRaQCIfKDYPhkFA3DNfX6fd65GkGUuKFwAkIeEzrAgcZUD4axg/aTlbVOYCSARU0PjSM7BHjcaCY1TS1IwgJWmE6HYQ2pCaNcSgDh+NDttb72FCz+8w1ZnZK0n6VTAX4GoVECIWUBu8VtnYI16CEJ0k0WiuqqkBKkCrQ6WUItfrwQzSE8ThvWZg0ckWridaoFkEh0RidkegUoxVJokkTQ2JaQVAapIpbsvRoFY1uGwK1C9Q2bpEOcELQeE/tPTY4EItgXyvcMoB0gEdKgRCSEM4LVdw9BFKK9p7i+0PwOGdx3rafd7ZgFnPko7rE2uahZOWhtz9pHSiBUIokywjGMBlPaHKLMhoP2PYC49bSuuThfLpj4S2uphTaP7ZR4QCuppqeIPQEEXLSTgYYgoCst0lnbZcgHc411FXJ9eldjo4S1jY2ECpwOp0ipcJah0LSWE++Ygf5EJBS4awleIdMBFpLprMJEJBKkCQG7wPBtROwonPvtaXOG9xyuf2fCdzZ2o2aMMTYGqKNV8Ut0XmPtQ3OLmwmcZZ1CAHZalrhA0oIFALZhj3sMpTwZlpqcfGshOLPa9tz832PCSBFwFWzhxGVh9dUKfHmumuDNoAo0UajpERrs/RYQgjR21NqOQ8hnG11q97OvZFcJEgJwZU0k2N8MUV4MEKjgkR6gVAd8o3HqGygqmbMyzHTasrJdMTtO69RVTPy3gClDU3jKBtBE3SMG8HSCVBKUlU1zjYE1yAJ2KpEy2g0L6+vDUCtCs+qIX9fdH31ftrntDh/cXw1BLP6ilphoSnkcotbjLh9R/9SS4mSMciKD6waGotI+er1Pcx40HtW0z6H+wcP9TkPLVTNbIZCsL61BUYvPRypYphXiJgwtdYuA3rLdEJ4sOcBZ65xEAGPj0lPX1OdHiDrGX4+xfgGEyza1gQSeluPU9SW2XyM1IHOsEs+yNEmUJYTuoMh03mB0gYvU4JMUTIugMXQWlPXNd5Zgm3AO0RwGCUwqxPO2YSvXu/q9vCgiVscj7bQ/ZO8EBghRLyue4RuNW60SJcsrkMLQaI0WshWWy0f9ZtqnocZq+9dpHGcc+09SMr64QT0oYWqKkuUlKR5jjIGbx2BNkXQqmNnHa5p2i0Plvv+t7uAlQe42GSUCExH+2hqFJZMeHLlSKRFS8VgfReT9en0U3qDlE63g9Iak2iq+RwlDSZNGa4NMUlK2dhl3EYrgQoeowzeWvA2TppS0eZJE7q97nKRxESsBxHwgGu9Ie6ZuKXzsXJsMSELI3vhCp8J6CJhbKJmkmq5fSLPhFZrTWIMRiuMVmilMFq29pNgdWtebJnnXaSza/x2C+DstbCl4owIBC5I6reurY339XCnwcl0igrQ7XTQaYIUAmsbgneodr+HgG/iqpcCvLcE/H0q/pz7urwzgQwaQYw+F/N95vU+MokBVKMsUnuMDORJh876FdKuIk0smVKk2pCaDroG7SVWSNLMMMhTbIgZfhdAUZP6ik6SI7zHhBolEwQpri7Jux12L1/CpAZlNAiPUoGAp/GWW3fvUFmL86E1iM+gJQuDdvVY/LeLzyL4VpBAqtZTC0SjOkiE0AhlEEoRREAlCpNqtI4R9VxJ+mlCksloU+KpvaMJHu8CBBGDyv4s1rb6zN9sS3zg39rPapNRIHxEkDxKoRqPx4QQSIxhOBxGe885ZIg2SCAa6k1Ts0AheP/me/p92wESvCIEifMW58eMT24gXIF3MSWkpUJ4jxKKXn8tbpbekwhBV2sGWYpu84BOhGiIK0lDoPauTbwKaucJ2oDSSCnIs4ROloJ3aC3pD4dkaRphO0Iwrz1NDcVpwb//3/4dL3zjhYhXWhGct3zQKxpZcD4xvYiaG61ItEIrSZYY8iShpw251ORKk5sk7gjeY73HekfjXZs3vfc63noLXLUTzzkXnG3DZ9v8w30mfAfeX9PUOGdBKbI8RwpBqjRKxCCnFwK/YpzGQJ8guLh6H6Sl7g24CRG1iZABEQrGh68QqufBrxNCGg3UNgdkkh469MhUQZZoEhk9lG6ni02i/TSdTJhOJwTvqJyji4EgqKSkloqmndwsNQQHRaqxdQUB8k6OOj4mIDmaVJyeThl2c1wDdVFT1g2dVK9sFW0wk7MFs2p3rd6v954gWrRBCIgQCM6hlUArgWhTI/iACQovW/tmRZBciNtxDNjcv7WFlY34QeGce8e5AKtoQw/nThD3hSnebDy0UNV1TdM0GK0ZDAYcSIlRGhY4GxnBFc759oLaBOADtr7F7865s79hCdQ4pwgi4qOa6RHz8R3c+mPYJkcbHS/YBYRMSXSfVHrSTkqWaIy17Fy5zO3asTkYMBufUkc0IJVt8D6NiAipEJ0O9Wl8+L08w6iEatpB4FAq2jB1U+J8wmhmefHghMseKi/Z2d6lLko6SW+5eBdAw9X0yepELoVuJfDrCYgAwXuC93jhl+GDECIqwYaAdTFNFSNRodVSHkcMj/jWK1wd34mpfp8XG/+x/D2eA9/G3zo3HlqobG0JtYWOZLA2RGuFEJ7a1qSqg5Yypg9sdYZwbGOHqzbVwqtYeD9LwZKA9AQpEF4ggsDaOXu3XmNr+zlMv4PRChVASIUPogWdSZyU1CFQFjO26pr1bh9/YYt9V7N3fIgPHocE7wlSEoKnqUqStMvcQuUsu7s75KZkPB6RZRFukyUdrAcb4MQGODmlsJas08MkHayNSdYQfBuPPEOxLibr3ok7u9+zc4zWWO+wLtpd0R6LTlDTaqjGe2yIXrLz8eXD4nPvB9u9lVh9O80V4gkPsMkeTlYeWqhE4wmzCrEuUJ2MLEswWlAGhxKejtakWqJCjZMgPCRSYIV/IFpy9ca890gUISik9ISgYrpHNpwc3mI2PaW7PUCFDOUlLt41fj6nTho8ZYShhBg89LYhKI/GsdPrczypECJCapASYSvK47so3ed/+Xe/T/rbf8Bf/Mif5uN/7sPcuX2b8cltqqoBUrQoEcYjgmY+LajKgtPJhCff+V4O776OlmBkjB0pH225+2JXKxOzhCxzZpM11uKdReBiKLO9P+sdwrVbXWjRBx5C0BBc3CVChAv7M1joeQF5C5vvgU5Te3w1vhbPeThZefiIutbMZzM6PpDncSsSBJSSONcgWk1hG9tqqQfnkO4NeN6bYF4cl1KCh6oYcbj/ChsXN3G6i0CSCgE64X1Pv5dET3np+g1cq/kOD4/wtaUSjvFkQlGUSKlpbI3DY73l1uEJ8/qY4fAC+7dnvP+972NeJPzuf/oSa5tdXn3lOvMipj6CaFA63o+tG+qyZDaZ0ul0uHrtCfbvXm/hwlFQvAiwAtU9b+yeoQtW4bwLbaNlTKsjznD0wvlWqAJC6vsCm0uTgvMytSimuHcBr457BepMAM8b6Q9jk62Oh0cpCBFjVSGgpSLtdlDlnCRLkd4jJTRViXMWDUglCSKmQ1rVsrzJxWpdjHjR9wudRCD9nKP9b1KNn8GmawipMFLQqASTaDaHipev+xgdF45p46mcxwwHywqUIBS19fhgsV6yfzplWkITJggMH3j+z/ADP/QXmBcnfPmLf8hrr9yhu77Z5sTqaK/4gKtrbNNEYB4wWNvg5HiPxs4QoS14aLck12LIVo30eydmFSMeAjS+RWn4NlbkAqlS2Lomgg/ezNs8SxSvRsC/U2FY/bTVzMdijh42qPrwXApaxYBnY/EGuv0eearxRjM+OEZ5H/NoK54foo3huTM4ySo73fmVchZ0izcWb8CohtnkJqcHdxmuX0V1JGiJ1wnjsuTCjiFJNOOiwLoSSU1hHcNBn8YFqsrSYMlC3B5VEISgqZ1ndDpFactpcYDqJmxvPsZH+n2+9pUvUNSGXk9BkNSVJ1jPfDqFttRMi1gM0On1OT6aIRbxyhA11eL+vt3ELgRg1TxAyDauFfN8SKIx3ibmHxSZJ5z5evfGyB425LE6VoXnrbTdg8ZDx6nyJCXPcoTzJFIxXN9gOBzS7/aQxpD1uigBSgAirlTvfAwpcD79sEAxwtmKiALlWUSeAwGhQGnw9Yy7t1+mLEZAaCPgKTPrIvLUGBrbYGvLvKyp6xopJM47qrpgPp/TWE/Ak0pFL+sSAjjXkOaSw5M7eOHxQtIbbvDMO9/L6GhMXTpqq5hMG7yH8uiETGm2Ll9CSIWrLRsbWwShcH6hefxy6/I+tElit4zZeb943bv9xZdtYkLe+VhZ1FgXY/rtFsniXL8S/V4RgKWd+gCBejMBaxXb8rXw2Fc91Tczaf4PCdXFrQ16/RxXlqRB0hsMmc9LXOOoAxxP59iyQfgYZQ9tLjbYs62uaZrla7GinHPLyYAQoSdSxMSydDQ+gIXjoxcYn74O1pIpSaIyTqua0gYyk+Osw9aOed1QFQW+ckgtQNSIAI5AaS0KwWa/Gz+bmtJWfOObL1JOKlwTKJ2jv3WBZ597jumsZFQojiY1TXD4ySl4y/XxCVNrOTkZgTCkeR/vPDgLLiIfCDHn59uKn4UCWwhVcG5xAG8twTmausGvLMYQApX1WL+IRUVDnnabXUS9vXvAtvgQxvnZgfgKPrQeu7jvXCEiOPBhxkNvf/11xeb6Om/cPsAM+0hpOBifkmcZWmms9bSxvHa1nsFl783Gr6rThYt9r5oNYVEFEg3guhhz99YrbF14CpFliFQyKeB3/+DLNNND6roitCs8BE9VVkiVIJRpY2CCyjp8CHTzlERLnI0TfnR8zOnpKb3hGkJJglCs71zitKp541s3KIoaOz+ltAWBwP/2//p/U59W9JIeV649RrejqecFJk8RSrVVUQElHHHLkji3EoyENiEfh3MuBpC9X5LaLlM+KxN7lmR+8+d3hnZ4sDf47cZqFP1eI94Hwbx6xEI1nozodrqUVRknXAgmTU1Z1WgZ1T8LAZIyGooyFkEubn7VMH2QgC1+nkV2iVl4ASFUHO29Sj0d0803UAn4eY9b+wXGTinnc04nY+q6Zn04pCwrTJaBUAgtQLi44gOkWmC0oK4hCEkxK7h9+za7ly5HOIkBtObSY0/w2p0RqbiFGR2TWgchoT6ec/ObL/HYU+/itRtvEEJNJh3l+hDd7dDr90iNxCgg+HNB3kXUHXe+dJ2V+Na9kfjFvx9k9K8a0qufF2sJHyJXd065nYV47p2XJgiOpsV9b3/QeGihmp06blUHlHUTobgSGimYn54yzHqUjaVumrPSIeI2pqRaCtTqxS8uehGFfqB30eabIgeAo5gcMj7YY7hxmU5iaNQaU9FnNn2NppwTAJOmSARlUWLyPAYIUVgPVRORFUq41n0/cx4ODw+xziKCRtGgpKTb6fDB97+Pw/0D7n7186xfuEQ37TKdzsl6G3Q7KZvbG6xv75CnOcE6TuZTGp0xXOtTF6e4qkB4hxDny8ZX0yiyhb5IWEE0nD2r1RiXlGK5s60uUu89WmuklNEm+zZ03fc6Dw9yJha/LWakcYFJ8YiRn/OZYzYdo5TE1iU2M+SdLrPb+5RCM61KfFNFXBIxyexaOwHOG4mrK3L12AO9JQG+raG0dsrdWy9y8eo7SXrrZHmPxKwx8R6lNHmeEbxDeE9VThkMOlHbCYcQksa7ZU1exFZZGh/wApq6BheQQUY0RpYRtGFne5MLO1v0tnf53g//Geqy5vb1mxxNJ/zR5/+QNEt5zwe+hz/7F76Pa08+ReMdVVOyNuwSmoKjO7c4eO1FgqsRPsR0VpDLSYtCIrDWoRMd0ZshoiLAI4NoISitvSk8Qeiz9MzKxK96fvcG1O8V1Hv+2D7rs7rM1biXIDCvaor64ba/hzbUy6ZhWldUZUE9n+Ml9PMBoXbMyoKqqQjlHIOIqZTW8Fu1qRZkGMsvv0fd33/DMSbhlMAKiRSevYMXODndI8iapKvJuhsEpVvEQQTXgqMsxgQaqmqGnY+YzeaUraZyrQYUIQYbnffs3b2DkRqjMlLdw1nQOl5vt7/GpceeZm24SaeTkHcUF3odhp0e5WTK6f4ee3duULoZsgODC0Mq5cmHA5586hl6w22cBxkcsgUDtrw30ZgPC9vLtTAqjwguRsu9R4YYNTdSkCiFXi0/ly0TDGGpnZbFE28SH1s+3cWWHB98K1RRsBbJak+EKc/mBbV9uOTfQwtVXVfUzlLWNWVRIJyn2+/jA1RVtfRmYrXKefjsqvo+t5p4EMRiVS2vpjokQkDVnLJ/8Cq+KsgSyPMuSdZHaY1CILzHWstsOuXg9m1cmwivm4bGWhbrbxG+kCIK+Y2b13HCUdSWsokemLMWLeHa5UtsbQyZTUbMxiOack6eGJqqJFUK6S2ZEFBVUJWIuqKXJFRlTeEFZTrkpTsjpo3HOY9wFhnii9BAsEjhEC7E6m6vCN7gg6YWsaAEwDuNc6aNuLf3sXxm8VjTxJI2H86HLBbj22qsdrQRsWXKaN4ETsZzrH/EwU/vA1aBtw1VUdJFkOQZQUShaoIF65bCsdBIC5tpNdC3sGMWcauFvbX6t7Mbvic3JS3j40PcrCFdt8zLgqIK+NksEl+EKDi1dbijYxSgkwRCwLlm6VUqpRHCYpRBIHjt9VfYOzrg4pV3MJ1XEVVpGowR9POE9V4XgUMHT240riyQwZEnmv2br/NffvtzeFvz9OWLjKxFra1T5V2mITDcvsTazhWOpgf0O7HGULb7lmjDDVIIFJF7wgpBAxRVRfAlXe3JlaBpYwtStvbSyhyvblf32kuLYw8WqPuj/L71uBUOFySns4Z5DTHr/9bj4amEQsySi+CZTiZcEJI0z0jznNlsTGNrZIiYqIVbHEJoK2vEUniW5eEraIVVnio4s6+Wwbj24TjnSE1OJnvkvocKHp0Y8v4ah8evkIRAogUqNYjGIn2Ike/gEe1nNtaiTdJ+ngclSJOUaTHhlddfY/fas1hbMjo5ZUiHIkx55cVvYqsCowW+qciMwjkY9DrMxmPqqmJ2fMx//Hf/lt/2NTgwaYepl8xcYPfiY/xff/SHuPr4Rzidz5hWDcpFuMvi+QTv8dYzLSru3jnkxht7MY85PoT5Xf5PH/kA3cGQ4GXMXoSVaqR7Qg/ng6MPCnauunz3HBexNF+IgMJjHUwKSxPUW0LDv2OhEkrgG4t3cDqZQeNQQNLNkCOJLypE8CAVTYhbBz4Whwbh8At4Rhto00ZRNw1aqugJPWD7CwvvrzVefRCkpsf21i5Z0oNE0ttYp1M8ibj5DbQf4/QaUhtUmEGrLXWLZqyrQF03mCSJGkrI1tgNzOZzfu8//ycee+J9rA822d87pDtWlNMxf/QHf8i1x5/C2Zphv0+tFIWcI9MtJI5qFlDCc3B4wNevv8aw0+Pq5gWaacV4MmfvpZcY773OD//YX+GZ93+AC7tD8ja94q2lqiqK+ZzZZMadg7t85Suv8LVvfI1MC0bXX0KHMe9711Xyfo8Q7HKlLZ/Vg4SKs3+/WapoESkXgjaoCpGjJ86RQ1B7waSyNAGCeDiCjoevUFYC6QMBxay22LIiVYrusE/V1HF7CTGZ24RAkKH1tCLnVBCAjEagI9AIB5rIpSRjLdybJSxFcCgBEkVZOOb1GJWC0AbT7SM7T5IOruIlTIKiDhJBBLbpxCCFpJjNqcsQI/TCgxcxzyZa0FvT8Hv/6Xf52le/SEgTrjzzbgqr+M9/8Md86+VXKasSbTRV3WBDQKWGTq+PyTLWtjaQWjOdFFzauEwiu6i0x6SxyNTgi4K9m7d4/dUbVJM5aQgkKpAb6Geatdyw1U3ZSjQ96yhvvkF2tIfZv870jVcwwWKSloGmFaBFIYfgbBd80PN7y6Ry8Ejhka1gCYj1BgGaoJnVMCtLfPAk5hGzvixCBAhF0zRUdU3Wy1lb36SsG2RoCymFRy2wPiKiOIM0CMLK1ucgEYSmwVmHESJqNXGeGCNupXJZtIA01NZyd+86jTslFZeQQJJ3ydavsXfwIkY3ZInANR5lPb1ORmnndLOMVBsq79qiV4cUAp0YtDHYWlLNZnzxj/6AD37vRxjsXqLb7/CFL3+JTCvGs4I075B1+kwnpzRNA7Ulz7poLdi/cZPdrQuItMc3vvkCh8en9Nc3uXL5MutrWww213nn0++gnyco35CiMEJFDWEULhh0rlnL4bGNjGw64I3rexitkEpim7PQzHmhCA8+/p2MsPzf+SFaB61pMFrR75iH+riHFiqtdYwMK4X3nul0SrqxTn9tHZ3kODtDSkVHS4z3+MbhALtEFnuMNAjASYH1C/9ioQFXIC9LAQ543+AFWBfQWYaShll5wPHodS6vP4ZBkCcJw/VrHKSbUB1QyZJqVrA2yBn0eiRJQiAWuRbuhMparHetGx3Y2trm2DXMixl/8J8/x/buDhtbOxzcucMbN18lTxPu3n6MrfUBiZYMel1uHh8wO53x1DNP8tQ7nuDJp5/h+iuvM6s8z73jGfJul92Lu2xubfOu557j4uWLdAYdsl6GUpAIgXB2WTwyn8+Z2Yp0vcP7P/J+Xl9PCVQclQVGGzY2NiLyI5xP9K7+vEceHhzUvOf3uJ59iyJtsW1SRnMFxXQ2I3iPCoHN7sOJy0MLVZIkQDS8jQzM5wVrAdI0p9vtMykrUmPY7iiGIiDqDqUXVAgS1Wbv23DDbF4wreqIvwYsC843zhn1EUliAU+SdcnX1gEFouL23svs7H4vrpLkeELSIxFdmtl1ku4mIdMIraicJWjFeDbFW0s31LjQacMyEQx3Mjoh+EBmDE054V//P/8faJ1gtKGcF9DrY0TNbHTA5sYaQtQk0jJxc5573zv40If/FEYa7rx2i/07x4xOxyAFRVOzvXuBd3/gSQaD/kKGIYAPFudjnWQxmzEdj6lnNW4+J0kUw40NemsbDIdrXLi8Sb/fx72FIN07VmkWHzQeZGzE5x6dAOddG533dPsdtvr9h5KVhxaqQZahlaCsa7RQlOMZMnhkohkMBzTTCc42SJmSmUCaKGRtSaQiFa7VSQGjFeupoSods7pm3FTMnaVyDo+nFsTIdwgoBN5LfJAok9M4T20t0lTc3XuN8eERk1oyLvbx82m0vXRCtzugozTeW1wI5HnGeDLGSBBWQtDRbpASIQ117dgYbjDs54wnx+wfHuIDzIoCGQKJAFdM6JiAEQ2zak5VTHnq6cd54slrHB0fkqU53fUuV7OEtUmX6XyOShOefOZpNi8MY5wtCLz1EEQk4rCLekCL0SCUQ7kKO50xPhlxcjyi1+/yzDuehhYlEIJErLj2qznB1d8Xi3ThAOGXR84LEVH7nZGkBby3aC0pa8Gk9OhMMxiYR096ZggYBcE3BCGYjScI14CRbGxtMN3bpyBwVDskgZ1uitEa1ziUVG36xkHwpInCCEmWagbkVK6hbizTomTiHNPG4YhEFAuhEjJBSEmWpQThGR0cUU8nKN0FLNaVdPo5on+RbNinrmrmkzlpltFNc7o6QdIgfYqzEQslpEaqjLXhFlmqcMGhpCFVWSwyaGkNO0lOM58xHR0jg6Osa65evcYn/i8/yjuee5Y3bt7k4PCQqq5iNkFLLlzd5dKVy+TdLlJG/JgnEEQMbygHEoeWHi0dNTVBO1CeopxxsL9PbWsQnm43j5F3f96ZWc0Lrh6LP6NDtPKHGBdb3RJbHNuCHXRV1IL3OKuY1QGZeIZ9yUPK1HcQUgA6ScpoOscHT+UsTVGC7tBbX6P2liAE+8Wc8bgkSS+Qtqy5PsRgIx6CiBqCxKE8aB/IpUSohCu9LqVUnFQVB+MJ42nERa31+5hORmljIQDOouRG3JKVZLuzzVxJymKNopjGPKSN2q6YzzldYK6DIkjF/uiU2sVAYifLyfoDDu7eQvgaW81JdIJraqQQ5CbFKMXo8IiXm5onnn6aZ9/7Hp7/0Id4+j3PotKUy1cfQyvF3du30cawvrnJ9oULZJ1O1BRhab4hiJXd1lYYExGkvpGMqpLTo1PuvnGbl198kcODPcpihhOenZ2dleTxg7e+N9viwr2/iG9/PpwlqOflHNdUXNjoMUgytH/ETHpCCFJtENbhhGZaFpSTCaaf0x0O8UJgnaO2DlsHvvX6Pk9fuUA/7yBbEBpCYRel8FKQpcmycwPBkwhJv9NjZ2eXp9OM/ZMRL71ynby/xq2DY+aNx6iELBny1FMf5GR8RDAq4pz8nLo8xTYVyqTLKuCmaTg6PkJLRZYanIfJdEZlPXmWsb2xzc7WNrYsObh7kyzJ8NZSlCVaKhKtESEwm824+sQ1vvcjH+Zj3/cXGO7sEIzGixix397dZfvCBbzzJHmK1JogBGVVIX10dLz3lGVJ09RI5agbS7Ce4/1jbl2/xeuvvs5rr7zGnVu3SXXCO9/xNDIxdHs9bKjuw53di/xYzNMiTrUIjIoFchQimPAtRqyYhrIukcFyoZ+TYqjmj1iolNJ0sgyFoPEOj2R6MmLj8gWyXheTppHRF4UXKfOy5s7hCevPXCVpHHVV4O2iIsRhlMH5BXeQhwRkktLr9On115G9Hr3hBlmScmv/iNDUGGkwWYen3vVh8s5VTosxfj7G1jPGk7vgR6TSo8IKVbOIJBje+RiXkopp3aBUQsdkscZQSJ579jnGF3d45aUXmBTHSGA4XGN7fZ1cKrZ3t/iLn/hBPvIX/wLDi7s4IdDQBndBd3JgEeOJsS8XPFXToK1HeE/TNMxnM2bTKVU9p5gXzMczTg5HTEcTjg9HJNrwpz70IR67fJnpdEbTZhI8Z6Vbq/cGD07BhAfYTxDOCd99f11kNVrYblWV9Dspw0QjveZk/Ii9PwdoY2JOzEfD+3Q6ZdtLpDAknZzp6TGaQGkblFKcTGtu3j3lqYubmBCWdW5CRy50pRWJNjR1jZSR1JU2yo2LcJZup0eixyT9Pp3ugDRbA23YP7iF8wWIEfPpAUpakiS2ABHOoRJDqSTWB7yzSCGpXeTQtC6QpCnrm9s8dvUqw36P0cEdhoMez77vOX7/D34faSN/gfKe/sYaW7s7PP7MUwy3NxBKIgn3ZS0CwIIMtyypqwrhA8W8YmanFEXByeiEGzdeZzw6Ictyep0eed5lY32T7Z1N8jyj3+0Sgufg4IDD8RgbbGv3nLUCWU3MnwPAxND6OU0ViHKy8HhXhehcFL7VgiJIag+V9VwYDjBCM5/njEePWKheef0m09mMoq7wAkySMC0KQuXQQtHpdjlemIYy3pQVmrvHUzaHXQZGorSKOa7WaPUhktAmeY73HqMlSkDwMYygtCHLcjKTMdjeRuRdpJfsHX8LWwZsU5B2GmTSIJzCOYmUBiE8tLzt1tuIglSK2oVo1wVBkqQ88eRTXHnsMZpqxpXLF/n6N77M3eM96hDawoaaLF1DSNjYWGc4GEQEBtEzPfPJW46oxYQT0FLShEA5mzGblozHY+bzgv39PbxzXLp4kfX1dQaDPqbNReIdtmkYTybs7x9yMjmlaVNci+9ZQFweJAyr437NdX/C+UEGfoTMSOaFw3nY6CcENNNJxnz8iFEKL776CkVdsbm9TVEWeCmZnE44uH2Lu0cHHO8fEFyE/mqtSbMcpRKMkpzOKwaba2AbgreRo7K9BaUUTVUtUQ2LBxYpcTxZmtHtdhkkCSdFjWtqameRKJTxMWPvPN6fhyYLKdFKt6x5qk0oC5RJSDsdtDGkaYrEY4xCm5TNrW10mnByNOK0PmFr9wJXH79G01QYpVewYOJ88ebK5HgC+LOIvZACpQWdTkaaJayt95FCkiYKpdWSAN97z3hUcmfvLvt7+xFzD2ca5wHjQd7fPSe85bzeK5ChxU+NJjOMMiQJWKsZHynwj1hT1VVFCJ5iNsOkKd55ynnFV7/wx7jQQFPHfJoM9Ad9vFBUNoK7yumY7bV1stYDFELERLKPtNbGmLZS4zxfOC2wT0jBZDJl3lgMCnwEoSmhkY0B4QnC3ofX1kbT2CZ+n1J4ZVBa0en3UGjyLGPY6+BlyvXrr3FwdEw5m7GzscX0dMzNu3fZ2t4gE2LJHOycWxrh907OImywSElleR5/phlV20XCuhjJly2aw/tAUcw5OTnh5hu3mU6nkXp7MdowwIOM8uUpb2IfPWjcq+Hu/bf3nto3HJ6cMuh3kUJRTLoc3dEMNx+xplrr9lDGILViXpWxbUWAppmjTSARgnkQeOsoy4raB+oAQig6WZfD0YQr6xk4ifcR1ySlWlJjRyiMiInoEFMHWki89CipInmFDzjfIBZ0okLQNILEGKQ8Q5WuxmIWLcZMktAIRe2aSHvkA8Zoup2M09kpo8kph8cnUNYMh12yLOVkfMLLr7zCUxcv8tSTT2ESE+2ktnaRlr/83kmTUiCNQYSwXDCRGitWchPANYGqKKnrmoODA+7u7TGvivu2plhDEu4TgsV4c9Ts/eOhoDDA6eyUyWzGzsYFsIbT/ZRqmpM/Xr+VmADfSZrGJBFhEGIOzgUoC4cOARUgKAmJoioajAepNL0k2gpNUXDrzoyN7AqZjnm46IwFGufQ2uB8QBOJ04RtSK1DOhej3qlGtiVLjtC2y1AxeIfHtaVQjfOoEBOwQkTHQrVc5QFaZCogIquLdw1lVdE0lpP9Iy5d2OHC+jqhaXj9xnUIMJnPGGxssLY9pLZzJuMTGmdJ0gxjTOtYQNO66lKJloBf4APULuB9tLqEUDhXU1c1rnHYxnJ6esqt27ep66ol0j2r4g4h4Fq0ZWy/FudChMVWHxb/8cCE8MpYEuhKuTx1uYVH7Dc+CGyQ3Dkusd7RyQTzMmd8rEiNI+89HJz44b0/mUTMspQEE9W2FQXSn6UDdKKh1gglMUZDCHjbIIKlaRrGs5J8vUPwNhZASoF1HmMSXGIRbbTZekcaonsehEAlpjXgHT6ADFC1vfdiyKC1ckJY4WsKSBVbsi2N2UDUfsrg6pr5fBbd/trSlDU7l3ZJpAQJ73/+eZov/THT6YhXX7/O1775dfqbQ7YvShoXSHJLmiRIpWOFcmhZh0VEaDYhFoz6tvijrhuqsqaqKrz3HB7sc3h4SFmWLQpWRHIPwkpmZbUCWeAJK40oz7w58SZ4tNURzzujyD4Tq0XONQr/eF5zcFTS6UiSRDDe36KYZKwNa/L8EWuqkGRtwaOjaiwBkEaD1CCicS2ARIIKHl+XaG0wWuBcoBaBg/EpF3c38K6kdcOw1lI3NcZovLOxoHKlWFJKGQ1qpZDCRSiNd+d4oBrnzlafD+hUkqc5SmmsdThnI4VksMvPdNBylgbGkzHWWQb9SJR2OjrBNg1PP/4Eb9y6wfHJiG9+/Vtcu/Ykw7UtOt0hqTERtekDQseKmNo5yibaTArQAby1+JZMdrHNv/LKKxwdHi6x5kvPS95vHy08t/vmY2UrfBAM7V6EgpQydtP1Z3WXEM2MiNESWA93D0/BSYY9A77LwWtDXCUZbpUk5uF41B9eqIyiqusWVB/Y2t5hPp/RnM6pnYuejFJY7wjOkiQGGRzCenA1KjHMrWNeNWQqaWvhYusRJRXBt1TZ4gxzJWLlQ+QcJ67cZbFqO2KRhcK1CIgsy0iSrM23RWY/JSLrr8AjWr6susXIN02DbSyPXXmMwWCAkYLBcMDo5ATnajbW1tg7PODg7hHf+vpLbG/vkuU9AgFlkog4cBWuxXwVriI4S1cbcqVhhZ3YWsvh4SH7+/uxw1hbBROlIGrg5WYWznr13CtI983NSkDz3kaP52yulr1m9X0iAF5gLUxmJUcnU5SSDNINiqMN5pOMvFOR9Eq8nD6UrDy899fMWw8wkslOx0fMrMcIYmcFrUiMwbbtbW1ZYp1r22YEVJ7Syft4qSKRBxYtJb7VVN08oywaWOB7Fvh1JSPdc5LAvGyDi6vEHi0Ja5JgEkOeR/prhMQ1PnaiEqBE7BvjAmgdeUpnszlFUdDtdtnd2kTJyPeAknS7XYyIbdt0Yjg9mXDnjTt89ctfpQmep9/1jth8KQRq2+BcwPpAIywyBOqmQVmP8rH1h7WW8XjMrVu3oien2l58wLmQ1wPGufAFrSAuD54XtNVmAKuFvaE1CyLa4ay4N+Dw1lFbz9HolMm8otdN6YQdRm/0KdyMLB8j05omVA8lKw9fTeM8eZbSLk18U6CDw3hLImLXB2k0qV/j9OQEaWLDoW7eQaUp5B3SNGNSe3p5jgjRhsqzBCkVjQfrIxpCeR9hKjg0kGpFlhiUippL+NhwMUJXJEJJsk4Wq1SkwAcXGychzjzMtpuVCgInYl+8/b1bbG8OaTxUZUEvS+iv9TjaP6Df6/HEk09wubnM4OZNOsbQ63W5ffsO3fU11ra22dgUqCQhIAktNDlBx6oe77EidrtyAeZlxc3bt5jOZ23fZok2ZkU2AqrV1EFAs2jHsgh8htBG8c9E7FyVM7Ak7IiAFoR3LQ1RNA+iompzos61bVs8jfOczgNv7E8oXcOG6RGKXU5GKcZIuh2DVRNs84htqjQxBNcQmhrpLTK4CF/RGiMkMs2xqSHrDVFZF28dWZKQpykyMcxsw3Q+ZzqZsX75ElqnNPWMTppGFhTaXn4+3r1tYuGq0gYpFFmatqC9uC0EQCqFSVOyLCdNM7z32CUziWibDpmz7aHNCSqj0IlmMjlFBIezjtPxGLOzydb6OmJjnelk2qaV4LHLVyjnEw6ODnjvBz7A1tY2o5NT0jRhuL4Ry+V1EjuUtthn0YLHvYgEHfN5wWweSeLS1JCoBN120gohxFSVs7EPtA8oK5g29TltsxSke7ZBSbTf2lgM4HFEvJa1TfsdtNRGMblc2Yi1D87RWMEbBxOOZxVOCgRdRiODExlGe0o74ZXbN7HiURvqTdGShlkS4VEikocl2sQOEElKPujTNNAZKHCubdvmmM1OGbfd1PENNw8OeOrSDrYZI6ZzulmOkpEye8HB5JzD1g34gDaSbpZFKHL0z1HakGYZWaeDbgVntUiVlgMdKZaZeaEV+FhQHgTMq5IF/GU8njE5PcWt9zBGkyQJ/X6fbrfLq6++St7tUtuG8XjM7Zs3qazF6OejxsnyGKpo2Zppg58q8pRQ1nXrjMTcaaeTonzsHt8s7K2mRoVorzbO0XiLkqKdIrFoAMGi2bhvMw6ivc8yRLi0a4s4msbS1GehiUjh5HAh2n5VU6MTgwgSawXTqiHrdQhCsrX+DorXEyQK9BSfHUOaIGX30QqVsW37WaHaRjsCHzQkKSExNM4jqoipkiK687PphKqc09giqm8p8QpOqoJbJxMudDs4O49EHiL2Bl6EJ6JtEBv6JErT63TRCNAKqTVZp0OSpqi225Wtm6UnpZRC6pboHwhtHaIUsazbBoc0hnlZMptO2dm9xPhkhJ1rjnopT1y9Rr834M6dO9y9e5fhcMiNN65T1RXi9m2KsmR7Z4fT42OyLGNgUmpboUyIDaBW6h4XryRJGQ6H3L59i7JFbIS2uVFsGukxxLRO1TQtyiEmiqVUNLahLGOw1HsfKcjrmLgPSlIJsO6MmMNVDYkXJCZpMVgssxRSKVKVxG6vIWo1qR1polEhJZNbnFY1ipI0nZP1x4SEc+3VH4lQ6SrQhNi6wskQY1FpSidJl9RBidIE4SKsoyhwdRMbCgXXCmIAo2iawN2TMYNsSMckNHWNkjJ2By1i3EYttjkXcdydLCNLU6xUJJ0OJk0JUsRS9vZeF0b7svM5Z8cXzCqEWCypktiuYzwZo3XKpd1dbD1nfHLCC7M5QUg6eU5VVdy8eZPhxjqj0Ql3795dbqlplpBmObX1pL0+srFked6yCXKf9V1VNUVRMJ6cUgdBXdft1tdAAGlbrVPXsYJMCIyS5FlKlmUYk6BU0vY2TmmSWI2EgFzrNuPg8d4hE6AVsmhcxG3PBYfzdplTDN7jifatDpJQaI5vjxgMdjCJgbTA+SOYV3j7iA31SV1Fw1grVJKQdXKM1EghY2Pu1FDXJePREXVZnuWSFpUa3i8ashDt7YbJfE6vl6OcJw0BaTS2jDbCYoU7ILiGVAvybo8SSZKmIFq8t48xoUXFrhAKoxOQOkayV/KBQnqMlEgHSiX4bpfaw42bN3nqiccZz2o6w3WefOop9g8PuH3rNv1BH5UYmrJhe2OHuqg5PjjGVpbN9S2ODo6pHGykOVma4UM0hmODbB/b2GlNkuUkWZfRpGTvYEzIY4NxEUK0/qRAJxG42AlxmzRK0886bG73ePqZJxkdT7n5+h6n81PqWpBIiW2712sVBce6QPAiFlXIGOH3PqaOlDIUsznCO0yaEABbBa4fHnJ35KG2pGzQSxXaaELlOB19hdneH0AlCfJRe38qTqZJU0yaILWmMxiwNuwzn44Zn55QzGc0ZQmEc6mGVbKvaGgHHI7KO05nc2zLgpLhW3RBTDbbxmKdIzWaTpayvrbGaRNXYuwY71uC/khkL6WM7HlCx7iUugchKQUyCPACowy10uwdHqCR9Ac9+nmKrYqIaACsdxF7XlW4umF7a4u1wRonJyd453nl5VcpreUJkzLYimgIrUzrcUWDWQqJNhJtY5vaC9s7SGL2QRIXW6ZjfrBqythKREaO+kRremnKpZ0BgxwO5if4YoSsZxjvEM7ibdOGKFRsrRs8ZV1FRmPnKKuKoigiDyowm86o62oZcmiqwNdvvs6dk0AqAo9fej+XLvfwTYJtTpnMXsfpU7TNCfIR81N1+32U0Shj6PR6bGxt4Yzk4GCPejbFFnNCU+PbSpglbeASsbgioELELg1NQ9EErKsp6zndqqCbd8gHg7jttRn9qN1iHz5bzIFw1ldQiNgKV0ik0iht2vLss0DgQqhlSwfggmjb8ApOTkY8+4530u/3SaVk/+4tjo4OUUpx4cIFRqNRTHY3Dd1ud0mh2DQNw14PECswFZbxo8iP0DLauYBvLLPRMeVkRC+RaENMhIfYl9RZifIQfIOtKqq6xNmGW9Wcr321oG5KqtLRlA5n2yC0O9/pwbWhgyWMuLXVlpUyAfAO056jCDSVJzRzjFdoFInuQchiDlLepHF7COGxoeQhm2h9BzZVmtDpdtnc3qY3HLJ3sMfJ7UNcU4OtwTeEcPatZyRmMdu0DMa1xrKUklRpekoSGo+Q0e6ZzWdoIRj2+20JNigi0YYMAddEt3sxhFgwy0WuTi8UiDMIzTkOrBA1Wmj/3cl7UDWRtaZuuHhpl421PtP5jNt377KxsUGn02E6nTIZjSiKgul0uvzcwWDA1atX2b1yhU4nRyvVxoPa+ki10AYN3lrmpyMmh3uxR/TsNNpUzuGbJpLIVnVsaWdrRIidaGzLdhz7/QgkEhVETLB7d27BqrDi/cYH0Ob1iPEr79syrzZVGKCxjrp24CSdbp8rjz2LZoCtxoyrryHVGOFTgqgRPOKy98tXrtAb9HEhcPONm8ymE1RZgGtw3uJ9g1sRqvO2jDy3oqQU4AOZkHSVwgUNCpIkJbQFjPP5nF5v0PY5TqKA0eb9xPn0Q0ztKITUUaBaLiu5OK9Nwiql8Aisd0zGExI862vr2MZy+85tMqPYWh+ytr5OkmeMTkY45zg4OKApCo6OTzg9OSHvdnju2ee4eu0aV65cZm1jE5Vm8Xva1JMU4KyNvY5lTGEZJblz8zpHB3eRRKINI2Uk9hcCL2QsExNnkBcl2vYqqHbRenxQxB6BasmtAICPz2ehNV1YKPq2g0SQ2HDeM50UNXUDiIT+4AKd/mW07WH0hJPqLolucFWGVfV9TZX+DwtVLSre2DtmejqO3Udt7OzgnFumVZxvl8DitUAMtF3FUQIpWlYRIIjYzCfPMhASpRO8rSPJavCIENnmGjw1DvT5RPMyMSpAKBEprhfIDrlIgchl/qyhDUyWNbmAK5cu0c9yRodHZElKt9flaHRMeero6ZT56IS0m/Cep3cp9/b4Qt3AZEK2m3PpqatsXrxAd92QMsCFeYsvExjhkd63GlqilceogLdzhuWMMRYtYoijBVe0DMVRCoIUEVtGzGSIttRtsb+uNuAOhGW/QETbFMG3aI1YLsEC4eAJIKJj4z3UPjCuJ7gmQYWEYe9p1PwCOptjUoURlynDLZwcL+mwH6lQHb5+IzbmWeFFsu3evOj6tIh0L7LvixuPc3tGyE+IlDWbm5vkdYH0nrzTiyhQbTBGkLSsxtZahGtwIYnIBCXjDcJ5oZIgtWwf4NnfVjWaD9G2kc5zefcSjz/+GK4oEc6TZRnT2ZTT0Uls1K0SXDkn+An5/JTm9g3K1w/pWbhzd8SNV17i2uXLbF/qUOmKUBdktqG0NU5JjIr9jY2WlL7i9Ze+ysn/93Os6wl7mcJWsTgU0Xb/XMljhkC78Nqkc/A492AEQ/u4OTfjMfWwemaMcIiWPyyKO01jmU493hQIoRn2ruGmkqqeI7s12zuP89rtP6ahRHuDcOe//83Gw9tUZR1vjoAT8TJ9OC+6EVJy74RHl3aBLBAAPpAqyfpwnZ7vUc7nSKUZdrucnhyijUaK0GpAh3MeZx11XcfMfZuIXwqOlLHraAAho92xKlRLeLGH2sV0jQ+CxgWmkxlXrlxhbdBlc6PPE9euUE9nlEWJTwW6PoWvHyCmYwbVIR945jn+15uvc+NbL/DlLCHJPbtXGrq+QVU1jXWofECDQUtJjefOpObFb77O5u27ZOsaTY+5K1rmv8htdSYNrRjcuyhXYDJvRrm0et59Wej200UINNbjgmJSNJSFBGm4vPEhtrKnmTSfpykPUeOKQV6QhRJNgvdySTL7lrLycKdFRObiQhdtn5ePQqzydp5BN+JPANXyQcVbkwQ0knJW0ssM3f4wtssIDmNMdOFFoKsTaO2BBSA/Jow59x0itLAYQsy/tchLtUJQEVoj31UNg3zA2toGk9mcmzdvcrR3h4sXNtn80x8i73QQSpD0e8xxTKee/NrT9EyPcHKMl3A0afDVIV/+6pe5/tKLfPxPX+S59S1OT+6SrxkGF55gPA/c2tvD4Nh4159jvbMJw4t0wjFP7FzlpYMD6noGrobQnIPOrQrIvdp2cXwxzuGx3uS8e7FXUirKGk6mJSZN6Ikneefm/8To8DpF/u9R5g6i6VCMFalqUFZTe4mVj5icv5CRo0r6yJQrACfk0p6SC47PlRs5wwSddTEIQKINvTTD1pa98QgfAiY1NPMJCk+qFCpRy4WrlKIJxObTiOV3LIoClIrRctXWDgptEAFsm5BdfLerLTJIdnYukGUdMIHt7R0Obt/E+3Xu7u1xfHxAr5/RCRqlUqzLOEo3mfU16ePv5OXDI6YhJbeemwd7EDRb72xQRze4sC7Ycg1u7y6Jzbj1lS/x7HufwjQbhKe/j/31j9D52u9QGsmtakB5WLRGvWzL0ladj/MCsToeVFq1+nt8nfu4c5/pfOB0WtC4wM7WNo93/xyJtJyI/0jXz5A+p/KaECSEikY7hDcxxvcQ4+ErlEW7xcizShfnAyEIhNJRcAgrW2JrRMLSzQ6hpZHWku4gJTMS5SV1Y1EiIBOJFCpGvbXG+UCiNUEqZmVNzEi0DRTbJyYQUWWKgBQGlXZp0OBKgogpCmcjK7DzNY2tOZlOGA7W2Op2ufhMh2uXdtDSM5vOuXt6wsVLuxw2DXmnR20tVV2TZDnv/9P/E2vdlMsHRxgZuLN3l5MXv0JItqmlxa+tsx+mdPMZ5WlFp9NjfdAwP/oy680uk/U+PSsYGsv65hqT0z2omtbd10jVPqyVscqLuio4qz8fNGTr/oYQcDYa2S4kCDXG1Zb9SUlvrcdj6++ln+4yG3+dQecY5yXWqwilUQEwkd1n8awfYjy8TdUmSRee3eJ+hFyJlt9nE7R9UtpMvG6LENIkYdDJCdUMIaLgSKWYl5HkValYDyfa8iznHHXZRDd6JakmW5SoaAOdgugtudDgmgrpLWdgx5hHrMs5+3u32Or3GA4SqvkMbxsG6wNOT47Z3d0lyzsczY+YHh0uCW8lkqqUCLXBxZ1tLly4wEf+1McxP/SjrPckGxc3UN0Ooaow4RB9dIre/Qr19D/R7N9k78V/h3jnu9D1KSEkyCQlzzKqpmgJ3qLpcC8M+F6BOlfb+ADbapn7FCwDz6LNeRrhmTu4PS0Z5IL17BIZ7+O0eo0q+SOMb2L4RkqkjAW9Z8ZOeEiR+g4JOu4tE1rlSYrTdn7Ec8/c/yRJyLKMfppinI8do4BetwsCbJOQJAmKCCGWRsfbcoFiMo0CsjDIVw1xGb0ZZ2uwJd6H2H1CxOoZZ9u9IETWvuloj/HpGpeubPLU00/hqpLRySHBRzRBMS8QQlAUBaPRCCEE08mENE156ZWXuXb1Kt3uGknHcvHpd9DpdSgzQ0gNeQg0zePQ0wwH7+D1/3DEf/7C5yiOX6F7Z5+PXV0jD4f0k8cYJRmFMG0w98xYf5Adde88vNn2eF7YFimyuPhVcEwnnsMq8O7NIRvdZyhDzdx9A+ljs030HOoewsTtePl5i4DpQ4zvgKBDnet3IoRAtUbxch9n4c2eGcdCiFgAYeKr0+nQTRLcfMx0NsbgMNJEuIqUOBsRDUJE79J6j69mFNMpmB42eBT3GrGijR4HXFOg2m0aFhXCRIHKOqTdhvHpIa+88CVOju5w+q73cPXyZfr9PkpAmqaUVUlZlgyHQyaTCePxmMOTI7rdHocHR0wmBXf3j/nI93+EJ979JEknJ0k0JlGkIsRm3qbDxF9l+8/+DOH2Rb717/817xrDN26dEgY12VobgpGGoGMniOWW/iZCdRY8luee74OEbGH2L3Du3gcqB+NRzXa/R5o/Rt67wGjyeSSnUA5w2QlCeZAR+bHqOkSv+hFvf3mex6TkAhsOIFQLqYieoeAMX77ANWmlUUqT5TmdPEcKQaIVmVJYpUmURkjB6PgIlCdNE/KkE5PDSYITgmI2x1sLSQsLFisVIa1QBYj8mSIgNa1gRtWtlYAgqQHqOVI4fFVyeKviK/OKjcGA3Z1NXBO7QyitSNMINcmyjLIsGQwGbG3vUFeOunEcHBwz3R8RioDvGZqg8EJSq4TcOIyeYYzHJZf4gb/8l3iiP6N+9SX2ihInOlzdvsQbB1Osi6BE1TYzXwjGgzy6hykEveevIEAKhReBvdMpRibs9nqY/jPsjU9Qfg9pU/xwD7xElhugZqyglpcf9eC6nvvHwwtVmjMRU5CKRSs56c7yUaG1yBUWIQJKaYyJXUNlkmDyLghJ4htSX1PaEiFiOXldl/hgSVBkLcRWKoWUCSGI2PhbxuSyFgItQagYmXcioFCxYkYpTJYitCJNOnSSlE6qMElKYRXH4xkvvnYD6WJJfH99jU6acOO1l7i4s0FiEqxtMEJimsjj0Mm7TEcTeklO1yQ89cQ18k6Xnd0LPPve50nyHCkcRmh00NTWUyrAKYRLQTiyrV0+/CM/zkt/+J/Z1B2yy0/y0ht7nFYOKSwRSiiW5sTDVM0sfr6pbUVAC4v3AmtTJnXDuJlyaX2TdfEshc/wfIW+h0YXCKdjbs84/H0SFdfuI9dUWZohpVpWyob2Z7Sb21puARIdq3RRmCSjk3cQiabysQVJz4BragJR8KSMHRmyLEPLM9XufCzt8s5SzKd4r8iSDJF2MWms3EmMIc8yuiann3SizZakZFmKSSVKx7L3ceH446+9xM2XX6UYj+n4QLfbJ0lSut0uTV3z0ksvsbGxwfb2NtZ7iqIA76nLmq2trciDmSQMsowLly6SZBmDjTVkolFGxS0mtn3HLnDqQcbmRolmOtxg68//RQ6PC+7sz9g/naOzDkobfFW1CePFBL65PfXtxvlkssI7Hb0U55mPx7EVSnKNUj6BnX2Vjj6gUQ3CK2SIdNaeliVntaMEcRuVD2lUfUc2ldaayjZRoAT4tlxKtJxMARAydlJITEaed1FGU7ka6zzKu/YmG4qiINOapgkEa2NitF151sZKEmMbmrqMyFDd4bmnnyIZbpIlGqMUqYzcoVJ5hPIYEZEPKliCgkYIRuM5X/7yt3j1tTdIpcLXJUJLkAotDHgwmVnSeDdNQ284pGm7uieJQQnJaDzjwvo6WzvbbO3s0Ol16Q2H6CTBEbfbQMC2VcnCB1Tr0aXeM5eaY6+5vjfipa+8zKye4YjVzEboluvqLGH7MAL07ba+FjYGBGb2AKklA/EehHye4/R1tso9RJVxmpUk/gzVsfr9q55o3JMesVBBpL0u7aJpUPs1cpkzQSqFUCnaJHQ6PZTUNNaBSki0IMHiihPm81OKokBlOb5ukD5WEIu2dLyu65anQHA6nTMvG3TuSO2UC8ka2vsIiZFtPEUEnFjwBKgWh56wP6r44tdf4ZUbt3nPc8+BbRjfuc58dszRiaeX9enkOd1u94xySAjm8zlZllGXJVVVkacZUisaZymbhiAF65ubZJ0OQYhIbRR0JFyTMefXNCWLQK1SiswLhqQ8s3uRoUj442+9xPHsCG1SZO3aUqxF1uGtbanVyX/Q71J6HDCbN4yqAp0+jXDvJZOSKnydIBy4FGNV22Pw7LsW/awXn3dm/D/cePjCB5OQZhmqLPGLDlgqWbKqJElClnfY3LlIU1tSk2JUEvN4Jm5D1fiIW9/YJzQNnTxizpuiaWvzYqqlbpqlx1hby7RoKCrLIHWMbl9na5Bh8j4egWtblGhn0FbjpMKbGIrYP53z+a+/zLdevc3lK5e5fOUSd159hUQJihAoihh66PcGFOV8WSrlvcfXsRRJa81wbZ3ZZEKaZfQGAwZra2xsbrK2sYFJEoSOzghC4NqePEuISGsanAaBDoKO1viOImQWkxmuPvU0B6Hi5OZrsSK7tSKiM9vGhRZO0VlMeSE9S7zU+T+GZdC5KQQnh4EwuILnWaokQYT/wnahmKlAGNwlqwwl+h4w5aqgtl6l94++8CFNeuSZ49LFIUmeYZKUNO20NXdpDAkoBYlCBkhCrEWTgAuRT+BgPENXAaNTsjyNMXetkG3LtFrErqBGxjJ22zR4V5JlBiUF80nBa6++zuPvfBeqRQFExIeNMSkCBIFtHLfu7nP77hEdk/PM1ScpJnOKsuHCziUS4SlnY+bFlNpWGGOYz+ecnp5y5cqVFq4SA7Wz2YxOr4/Ukl63Tzfvsrm+Ra/TAyEwbbGqdy6SghCFw6uWSRhIgsYJSy0lhQuMR2N2+pBuXCFzMHnjLnPjUT60rdpWbaNF2ULrHImzrGtQcZdo62FQTQKixCrHzFqOTwuC2EBl70fZq+TyOlqMaJIGEWq8TWlalGxoS99CiKaM4KwK3DZNi0J5xEJ19eIlruxeRChFaJnfTAgseoEG71oiihh5dyG0Pk1sZiQD1GXZQjDa+FZT45uGqiqQKto5yhgInqau8cHhvSMxZnk7h/sH5IMhu7u7SN1+txJ44SPRvRNMiorbd/cpi5Knrr2DVGkm42M2N7foaEU5OSRVkaCjrms21jeYzWbUdc14PGZtfYgPDVs72/SrbguNjte8u7tLp5NjjMGKs1pDrTVeRAhQ8Gd0iN45gmvjdgKElDzzzDPs791h6iXvfu9zHL7xAq/degFfhqXdskjOL+57+fMBrr1AokNGsOCVoGgCeweWce3Z3HyCcvIOtjoTNLcRwhOUR3iQzsTtWbi2HAy8PIPfaC1xziJliPbfQ8rKwxc+lFXbAUuAih5bkAuDLgqKlILcxaJQJwRNiIWbWsQH3dRNS0UYQEmaaU1TljS2QQZJpEXXSOEjW0oMjrQrJn4H3nL7+g36eYfB+lrslbNwxfFY77l1eMrdgxOaquLC1haJ1ly+dIlet8OrL5b0+30S1efO3T3G4zEXdi6QJAlN07C3dxelYbg2oKrnVHVNt9tFa8PuxUtcurJLp5uTZobFbqWUOmO/kwrnLdZGsWrqGtlmAJxzpGkKpGzvPgaHh0zqGbvvfJrbR7doyskDQwTn41ZwL4NttG5rgg5UVOyNCo5P+gy2vpfTyTvoJ4G09yVSN6JyttVC6oz0qg33CSnAiejNC9kiRwQIjW4VyCMVqrAMeLZqWCqaZQCydTnDglB1cauL9bqwl2qccyRa4bynLktoDWRaxl+8I3gXK5adP7cqvfcYpaiLkhuvvso7nns2ktAKj1YxKFo1Da/dOmA0KUiVopjN2BwOefzqVSAw3dnm6O4as/EJW9vbNK0Nl+c5k8mE+bxESo1RKcdHY4r5nLApeOzaFbr9nCxL0CZGKrWKZG2r0ezgJc4JrA3UdY1zljwxGK3PzgGkSXBFzVEx4/aoJtGbODlfuvKrz/C8kD04LmUJzF3F/nTO0bjHcP1DNMUTSJGztvkVEn2TINO4VYeIUyfoWE6mYxhIGx2D1SaNPRPbHKzWGuWgmhUPJSvfAeV1VN++DVBJKTE+Viqzklao27DwUrharJNzlrqu8CHQ6XSYFBNsXRHbKIELDin1EhOVJAnFdIprobG46JHECLmiLAru3r3LpWuPI5XA+shAMy1KjiczytqSJJLRyTFr/S55muHxrK2v8/Qzz/D6a68QfGB//4DRaBQfnFIxc1Babt/aYzgc4izMpgVlWWKMiSEGrUG0ncXaymhjYpynsg7nHWVVUhQl/V6PNE1QMlJ5C2tprMW6FoojO+xefg/qRHNnOqIsTjE6CtOis1V8to4QfGuntVmEtvuoD4q60ewfzzmcdkmzD1IUj2G958ln9rjSOaWj30XVqelqQZJqjE5QZHgUdcvbVdex2HVWVJzO5kynp8xmU2azObNZQVFW/N8fpVBJaUFIQlugKUKIeQWxCCuEVpha3yNEJjwXAk0AITzaCNJ+l7yTUk6PIFORrrGpsCH2+9NCkiYpXkpOy4ogTWQq8bETuhdgQyDRgePjQ7LhBpubWxE/hWJeeprGIqVgXs0pyjFNM2daTLn42CWkCYwnR1y99iTjowP29/a5ceMGzz//PGmaUhQFR0dHDIZDJtMxzjckuUJoSbcXeU+TxOAR53rFnLXzhTQ1SNnBuQYfLEJGwjiEWHb9TIUAlXN8Y8Yfffk2k9MuuX03Wr4MYg8lArZJcEGilUAqTZpCELHjhgwGicHoBG1S9sYzlB2wZt5BMb1MXTmuXXU8+VhJpjrMppbx2LI3m7WCMqMoykinVJaRAC5EzgVPpJtchBPOaIcesaEOoXWV5fljcI/KZgmRWU0sSwL9XgdlFdPJCGsj12eSJggTvb0gY54QpZjN59jGIU30wpq2ZDxN85g3LEuqsuLo7l02BmuEFrve8mNEDs22DrFpasqqhBCwNtbvbfb65ImO6M83blGWJevr62ituXtnDwGsr6+zsbnG+sYaF3Z36Q0GkdRCqQisQ2BMDJzqdntzVQkyFrbqthS9qirSNI1d5+s65khtzdpGF399xvEdxejwAoPsKoOti1zYvUuejBHWYWjtsTZ9MSsLJuWI6XxGVc+oq4bRaMLBKLC9+wny5M8g5JxO/xWuv/ofeO2l6wjfUHlPQ0PMdp0Jymov68XchXsS2uex8I9QqGKdfqz0ILSdB+7B/tz776iaPeDxriExiul4RjGbRoIw25CahFxnaAE2xJrA0jqOR6d4F8i7yXIFHRcFWZqiiLxKKstpioiHCjJpH1DLHSBjfd9kMompn7iXYKSi3+0xG5+yvrXFzmTGnbt7TKdTLl68iLWW9Y0NpJT0B30uXbrE7sULDDbXSTs5Smu8OB+kXDQiX0xUVVWUbem/1rrtmeciTNq5WK5fQ7dj+OD3PM7xSPM7n7vNTDxOGL2LarbB7aP/D+P5H5GUNT40ODzexeBu4yq8anAhUDeB0HR57zt/lN2tj3H3Nkhzh6L6A6r6GwjvEbZDTcBJG/kSWjz2AnUi7lEAQQiylkfiTODEQ0c/H96m8i1DeGjZStpyooV9tSgWXQjWsoQKAM98OuZ0dMz05JCIEZWEICmrGrwm1QapFHUIHI/GrcEc7ZDIPx5TOdZaggx0OikmT9m5sL0E8vl2Yp11VGXFRr+LEILxeExVVZyenODrkm63g1GS2fSUjc0NHn/88WUkH2A4HJIYw3w2I4RAt9tlbX0dk6YIrQneIZRc5EGWw1rLvC0xXzyDCPCLcazFYqvqCukEhkAmLf3sNfYP/1eUeRcX+h+jqS7Q6f9FRqXmYPISLhwj1RQjIhEuIsV6wbyy1E3G7tZ72brwXubjG2APcfpVVOcElUJR1bFOcIGQXVn098Jllr9DJFhpq8yhhek8au/PWYtUOhKPyohNXxgIC4TC4idwrm+KDxWH+3c5PTxA2qbVXvFBWwENoNutb31zjUlR4k9GaKKwOOcQQKI1SZZiMoN1Na6pOBodYzoDBv0BNsDB0TFNY9nc3GJrbUDXGGazGW+8/jqdRLO9uYbSJlIxuorHhmv44Ln1xi3G4zG2sWxv7xBCS9djmxjtVmeVzrKF6zi3IGALWBvriBaL6/xkxUVpnadqLNZbtHYEl5C5lI3MoOvb3LnzGuXGHa5d+wEkT3Bp4/+GG77KaPwtmvom0p3SFGOcLFEysNbpsbHxBBubT6DXKvzoVbbWpuyd7DOznnktafAEWaG8isFiFmCAVu2IxZy1oMsQ2foWRL0LeLgU8tGHFPRC54TIU+SdQ4V4mYsydO89QZwZdYs8UrANWgTyVNEESVXWSF/TVBU6yzEqo2ws6xtDBhs75CeRvyAYiXUB4SwG6GaapJMzms8JtqLXT5mOxtwoX0N2erx+POLm3inF1LFzIRK+dtKE4zu3ufXSyzx+YQe31iHNEsgVTCBowdbFHcaTMfNJQVXUSCVYW18D4TFGgPSU8xlp8JF/ykROrOACjbOwYDv2IeKj2phUCAGjNYkE66BsLJN5HWkTpcQLjxUVUzvHywBqyvj4D3i9OsCLp+mvv49h9xpr/T9Lkkq0HiOZRmeJQJYFJrM7HN15DVHeYNDVjGZ7hDAhlw2JCkhrCBoEHukFcsHyJ2Naybfokkh1KfAuku8ugr2yXSBSyv8KKIUQYtzI+9aVPWPOXRp13hLaMp6lTeUDTeUwOqXbGTBzAmtjy/osz+nlOVpKbO0oy4K9oxNmtScojVYGrRTGZBgpSLKE2Twap8NBD6SJ7rQTDHtr7Pa3KfU+d2/cpt9JWe9lTI6PSDWMjve4c+cWmzsb+DwiKbI0i4iKJOXixUvc9XeZTaeMRiOSVJOkkcVuwWBsUr+075QxSEIkxSBWBouwKBOLXp5sebuCj4mP+bykKCoSFb3hICOx/7woSExKN+0gbEFdfIMyvMzJ+Hfp6w10tsvFa89Sew/CooTFzk8J8wOUO6HTFey9MedYS6ytwVuSPCXVSXTQ2zkUOhaWIGXb7Dw2NYotdMUSdiRb+oAFUkFKSTA6Nll/lEKFiA/XCxWj6gjcSsnOIrTvrGuJt+L2UVc1NJaOFFhryZQi6/dBRhvJKEVdVtRVyazeZ3w4prIelfWQyqMRGK0iHWS77XY7OUmSRppZk/M9H/4Yl9/1LLdmlu5Lr/H6q/8L3tbkWnF3fMpjl3Y5PT7i7t4+u4fHmHQLpSWgaGqPQLK+voG3DttUMf5kA2k/x7mAEhpjDE1jMU2DbGNSWgrQAhcc1sUWcMH5lkY6lvQLpRHGRFqfoqapHSaJjILCe8p5wc3XX6euKzpZgnACYR0dF1vJWXVA6U54/frLJECeSLJu5IeXwiDyHKsknUG0d2UwpKYXQzFWYFpDO0KXDFInsSA4RBpIkHh/Bg70PuCUxrUNoXxLJa50bKX3SIXqtJjTeE9QCbWvqeoGV1mauqZuGlxbymSdPevrJ6Ix+tiwQ1GPmR3vUZdFjEJrgRKipb12ONcgu33SwQ552qM6hFCOIm+DTpCpwXqPThLyvIOQClTOu5//EB/+2MfxvXVmBxO6R/PYjfTomPXhkCA0a1sX6A6GnB6NOT46oTfI6XRy8qwTcVNSEJqare0NlAy8cfNupLBuPJPxlLJqYggkjRRCSkpMzFZFK8UFXLC4Jvb3w7lYXi8lwVqaIJhOC4p52QaCQxRIotHeWEt/0KESR1GruRQjc0LQVDKCADWOvpb0ki6NG1Iwx2UN3giETOj4S3HbhYjORaGtiE5R61w1ITbxdCGAVmil0CZBiMjHZdpqJ68MjVBLz1UI0CHO1SMVqtcPjmmswwmJI1YJL9qV6U5Oqg09GVf/IsIuEFDPqfZewU0PSUKNSTReKIqmRoSADrRkan1cd8g46WFFQj4YYOsxRgrSLGvzeo40yxBSYT089vg1vvfDHyWIqDVt0Ny5u8+73v0sf/r59+Gs4+hgn7LxCDRJlkU+89NxRLImkjTJyDspeEtZzkAEDg9HZGlKt9ONfWuOTljb2ohNwlS0M5x10QH2bVWQteACTdVyR3mPFLE2smlqJtNpZIHRbaOAtg+N1ob1zW22dq5RVU9gQwyFKB3znCI4qhCwaJzpMpKaqahRsovBkNJBkWAzIkWhEnGbU5Ks3cIWCXGtFErqs4C1FG3bFX+uS1ciFKbxBBfQQsVQjHo4LfUdCVVv+4nYtX0VHy1aN5nV0i3an/Ef1jd4pRmsDTChwcmMwkn6WKS3sbmRElg0PtsiqC4+eJI8x+U5QkATIooyS3OcdaRZwsbWLu/70J+iakrcaB+s4njvlDuvvIQC7hydIEWgrEumJzPq6YThWh+hPNY6jo6O2dwUSyIzbQw6pKSiz+aFTcp5gSMKx8HhIReu7DIwQ+qqwkO7JcT8QdRWIByExuFdjPXMywYvoLaxxYgxIEUMMSil0EaS9/sMdh8nuVMwnRTLXssmTdDGELQiFaJt3GQAwdAGjDYxa9HybblFrGnFQXJt1wwV4hYWfFh2LVvyh3kfq6LU+fDCorZnUU+phHz0VEJaqCUF4qKKxS0FDM6igfF/oY1hJXINwTXyMEPbEikTEuvBl9TFnNBUeNdQBw1JFyEztBAoLxhswXqW0OvmZImmqQo21oZcuXqVrDekETA6OUInKZOR44WvvsyNb32NjpYcHR5y9cpFtteG3L5zGyNC1JIrsOEFuNCYSAyb5TnISKftwpyiquj3evgQODw4QBsdY1VSttTWcumkSCFb6I+naWqClDTORqiQDxAsWgnSxJAlCVLEJkh3T6bcGk9QmztsrUUcV6SylrgQqFjAaAJBx7/JUEMrFL6NSy52hoVx7bxDE2sAFsWowfvlOQsBWi31Wk3LJElyFhZaxCIfNelZUDIG/laFR+gVYo42CbpYCUK02HWQnS6uGFGODpG2iZ0LJMhMU4sCZytQOWvbu/R0Gtuc1SUq7SCFQ+U5Ok3I+rEp+PXbRygzwSGxCDr9AYeF4MUvf4H54S1slrK1cxmamkQKnKvp9brUTUVVVfT7fSCGQGazGWmaYJK0hdcIsm6HeVkwr0r662sorRmfjul2OwyGw9jTJq1JWsM1tEb5InIeQvxsa23sFk9EXeSdjDzLInDRNpFQ7WTEuLS4pIOwgroNLC8Cx1mrXUIIkXvdO3wSp8CH2NLFeR9jiC11JIB0iy02CpW1NsK9EcvteWHAL7bIqCDOhG6hzYDlex6pUOl+r22cKFiQYgiplxch2n06qJZzoZ0g5yMcRFabDDcu4k8PSaXg8pXHiLRcDiHg1t09bh0cUzQjqqpGWMik4rSec/tgBN7GHstKo01Gp9dFakVZV4znr/Gt67eYnpySUTEdTxmplGFi2Fnrs76xxuWLkb+zrmNtX57nNE2kZpxMJmgTk9nGGIZt4cNsPo/krFKipOTg7h6EQB9Ik4Raq1hh5D3WNkuh8t5T2WYZwyJ4lAwkiULJQLAOF1pqRSfITQfbJIQkJi4X2kIKgaFl+KdtuhkkQZvloohByvO7iG5RFAv+1YWm8u6Ml2G1zGtVmBbvXyyKRf1mkiaxq+qjFCrT6y6BeFG6I8fmIhGjdHQ7bYR20iJ7ER6clwil2Rrs8q4/82cYdjKcMIzHp6SZwbuG7uYdbv3Ov6eaTUlMTpJnaKERaUpwFmMUInh827KEJIltMEhxVaCxDm8LNgcdUi+YlTOOjg7wruGxK5coy5K1tWGkGZKx3nDBOd40NZPJmP6gh5CCLI99boqiQMlYWFrXcwSew8NDpFaYRKMUpFm+nBjnHY2NObmyihTh3gVsFZ0SGYit3EQs2tAykGddOklN4zx1cAgp0EpHj9p7KnWGPw8h9mVeVGhrY1qW5gWb3iKfF5YJbkHUpFprLDYSbYjYr3G14nxRLbUI2i5a4i0zBAuExaMUqiTtLjFHWsXVG6RqcfoxVeG9j7ZGi7P2ztPYhsbWuHnBLDfQHRJ6PZwI5GlKqgL1fMbG5gbaKE6PxyhjUaaMgUREq8JVdP0FyKZBKgNSI6Wm9BqlErSGyoPWBiEKrAw4ZRhN5hgh6HVz+mtDev0uOtHoADqRNK5CNYKyjPEoQaCTZVTzknJakOkMqROsq5gWM8zpMTqVeFuysbmNVAbrYvrJBkvVOGrrIkTGS1wVI/EqKLRo0+FBIWzB8emMiQUnbGy8udjqtEKhzrSMP6NkXNg6McMSNYnQrY1kozcXiH2a3eJ9SCIWIBrz2iiS1CBWIDyryfFF3nLxfc57kjY+98iEaj6vCb5cckx572laaV+ulhCWRZHBx1B/09T4qqaaT1mTGusiMXyiJCJNEcGiBFTFlMH6JtIcEITGBwlaUbSwGiUij1OiNJlOUSZF6QQhdQsnCbzjnc/R1HOOj0+w4ylaa9bW1vBtn+KNjQFVWWI2NnDWoo0hSSJMUEoZC0iJtX5JmpCkCVVdU1U1JhEQYoB3PJ4SgM3hgCzrkHV6KyaAiF0Y2i2sms1wZcFw0EObSIzow0rPGBuR31pH9OtiQpMkaWNE4tzkrmoUYOlknLFBn9lH3vsWvnx/0nhxvZFJuVkK1PK6WkTs4vOFiPxfj1SojkfTs1UhomaKF2IQSFAttU+IKE/ZwlBrFLYR2FBSlhWj0YjhoEcnaymiBVit6QyHPPWOZ3nhxduUlceJWAfYUenSDgBI0gypDUInoBNcgNl8TreT8n2f+D9TzGaMjg/53//3/xCpEpUi73ahaumQnKOYzeh2u+RJEknH2omCaJC6EL04YTRNWTOajlkf9FFKRwbmIGjqiEiYzWaxu0Rbs2i0IUkDXjStXVaQtI5Ji1xEIEh1QlVHoRaiZgEUX0z+QjMtkAILW2fhjS00yurfV9MqApCtI7H0/sJZ6Gfh/cKZDbX08hYeZGsfLpLLjxykJ4RBKtm2vY/bnDH6DELRhviDEKCivWNtwAaBUym6048cm9MpJ4eHMFwn7+QIFRBa0fhA2hnQHW7AtEHoWNOXtJCYuO1Guy3ISHsjlcE1ltHoBFEWNE6wsXMFpQ3XHn+c69dvUFUlOk1Z6/epipI0SfCNpZoXCB/oDLokaXJuRXoRtxadJKQdqMuaEARZlsf6wtDgnaeuG+ZFgTQpCEVZVtglXCRiuax1dHo5SkukijTcSsd8Zl1XS+8sxAqPc4b1avf6VfKzs7zqWbJ3cV5YLnyWvGCLv61upQv4cwvSPZ/na9+zWGiRKryNjT1KoYoEY7KtbolkGLRYNQlLuGyzgLu0iWffJiOlCpxMJuzduUsuwFcNWZ4hFTjfUBZTjg/38UGQ9ddidywZ8Kr1+LTCh4CWsfl1kCbCXquaui5x5ZhXX32V5979foxJ2d7a4uUXX2R6OmKwcwGtVeygqjTFvCBNE7SS6NZzcta1TSglAQ9aoIVGhtjJ63Q8JoS4kCCmQ6rKcjqaAFFTOR9QSYrwMedZlA1S+EVxSsujFVBKRvRGi3MPVLFETYgIgmQ1dhQnPEkM1i7c/rYIRiy6janle0JYmB9RMBaLZdkYYSF8rXBJIZY8qvE94ZxwLQF8/kxAH5lQKR2QMiyiUa0xvrixBbgrwoZZpGjaOBUBvFQEafjqCy/yra9/jZ31Ab1uTmIU5XzK4fEBR9M5It3Fmw7CCLRZlCTF75BtqiEISS00IXjKekKSwtHhiJe++VWu7TzJ5oUeV65cYqPfJ9GS3MTYTJr3Ka3DKLn0ZKuqom5sbP5NDCkoaKtLTGwW7hSF9ZycTtjYWEMrFXOdHpyt/3/tvVmPJEmSnfvpZosvseWetXT3cAbgAOQDH/j/f8K9AMHL5nT3VFXXlpmVGasvZqbbfRBVc4ucAVgEg29pQKK6M8PD3c1EVUWOnHMEo4/knOlXK5wyopMLicOQuViV5nsSXKkQZ8lGnGcSQhfKFdtb5DyVpjxDDPoEUMqOVo32T0m8MfWoQ+b1latCPuSMNmYOKlUoLSolkpL5gSHE4oCzwKZKYD1pUNWtU5vT7OL6YeU987wCll/EKIPSYjWdraJ78Zqwv+Onj9fsvrtD5UjfNbTrLd3LfwK1woeMsQmlE5SHr61MGTVKkVA0SjMe99y8f8/VasvRtBwe7viXv/yZ//ryv3B2ccEf//QP3F5fs95u0SjOzi9AKa5vPs12RZlBpp+Wlem9p28cOmtM4+i6TgY9jpnBT3z8dMOL51c4bZm8DBOqCW3f97gCth+OkcOQOO/kwcZYvBIQdVBVKtY8JcYowws+2yHqvT0Fln50z+cju+Y95fgcx3GWhdWfpRRZquRc1toZZK3vV5P8WiScjkyI8YndiZdnbg2y5flf9Wxyq05U2pDEEVghcqPkWvTFa8zqFc8VaBLWKJQ2eAxxCLQuo5QnlSlUWmtpxGpNSNJp10YTjgfC/p7z52eor/7A3f0DRif29/dcXva8fvsNHz/e0HYbuqZBmYYQAxnNYRi5ub1jvVmRUTN/XClFjl5c/xrJIZy1YDOqbRmHgbvbe87XK0Y/MU1ClTk/P5dqbziyHwO/3Y1c7wPbHjblASn1OP+ZoYGyW8hOpB9hRfXezkh5laKHMP87MDsRSgDIDuecQylVmBgnFmcIYdb0xQW6fmo5qfn95yDPmeapq7/ltlwDpn6Rqs419UstVppxlpygSw0qZUJSTGRM31El8TJfDYyPtG05LnRPzBldd0RtBXQ0Fh8Skx95/8svbBvH1cUzXr99wX//b/8Pq8bw45//zMPLC5p2xeu3X9P1a6zWaONoXMPVC8d0PPBwONJ2Ul3e3d3RtjKskSgPzE/i8JJyxqfMFEWTmEv1F8uQxmEY6LpOjg6VuBlGfr478GE3sFk5Lsaa12ScNWWB5bm6kkZ9KkH9b3eeGlB1Z1nyyz9PwD8P2vqMpLuRHqlnQgizxqD+bP2ctcqvlxZk9WmDalkVLEva+kXmnakojmvloJGt0ySIk8eg6Y1Ca/F/skag0xgTyRR9XymTUkyn0bFIZTmlSFSwv78j+ZGcI9///Qe++uYNGcXxcIfxE3HdMuxGOus4Hva0TUPrDKBx1nIMnlXbcHdzR9u1aC1GtzknUega6bOR5Xjoe8swQkLhuhXGKHIcMdYW4aioi23bc5geGLLimBL7Uby5vPfE0BBNHeOrSWiCzDyRecslB0rzjB9hB8TishNjlCN7EWjCxK0A5ylYq2/qoyQ957mKTrWZzCJ1Kc/XGKG71H/TStIPY39fuPxv51S1g12vz3OqmmyeOtxglCGoTChVj1NW7AC1Jvg8g4ZZBUI1iEgyPFKyWuEepRTQbctxOPJw8xtMR3aHHavLc4b9nsvL50QCRkW2/YqE5e7umt39Haw6lMm0/YrGOp5fnGGV4jBOWNNwfrFFG2lNZKOZUqRTbq6QNq0irBr2StNtt2x6RzvKcbjf3xPjRIoTWq9JQRN9QNvE5DN+CqRwMu9QVaOIYYzgUwQCZCMJdllQIYjMv+JIdQEvA4bFEZmS+Id2bTs/jxDC/Hrz2c6TKfN6Fjtf3TxSlh00JZkom5OINp40qOoHXyaSNciWdBhVVk1N9KAS6dUJCVYnDKb+nMoCLVS+w7LqWR65Ich8vHjcocJA5ywxBUxjCEc/MwtiY1it1mAiu4drhoc7tl3PqtfEcSQjO54pbMfTApHOvysLpx4LBsW675n8URqrumW1Xpef8ThTchWtaZ3FGnlAx6lMXi/NWXkfMMY+Pl60QiYslKoMUIvvv2yhVIO2GjD12dSg+Pz/f57Y14quHnH132cMEh49X4Ac4u8m6v1+6kteYiePd6P5nNZaaBicznRd+oNLIK/eytrisdZKPlZ1dCljjDQwc0F2lzfADyP+cMfth5/pu57z8zMisHs4kqPG2Am1OvK87YnG8PztV6RxwHWdUJ1LBWmsIXp5fyG8nXCfJYpdBQytleR2PxzZbDoaYwRMjS05CvsBoHMKgyflzMHnMmkuzWNwc8pop2YbcKUSWmVyKqlF2Y1yzrPFz+OFFebPtQy6mqMtd516LQNrma7oxa63fF19phXnwgpW+eRB9e9F/fJDpyQ5UChfrloA5Zwf7VxkyPrxWU+GtkjIY4wyAxgwjbiP1FWUUyaHiXjc0WoZQ9v3G7yHxq4hdazOXvP89besOkdzZdhu17SNZTjsebi9Zf9wT5oGwjiSY+bh4YHMikRD1zfy4MuDk6NYpl3lJIF3nCYG7znrW4xW5BxIQXCglJJAJFZjjGIaI+M04UOQnmBjC323PsSFKimXWT5lYYEEGDWphrmqewRMLgICmBdhvZYS9+WuFKMM7Gzb9lRslR1wuXFUCf9nDkb/50GlSklqC3BWt+NHs1PKarRaKK5Ka4zSOCuSeTk2jHjJIv5WKNkxZNeTh2acw5fKJOWEs07M4ZVGJ2YQbhg8z55d8eLFG4xxdHqF94GHuwc+/PKeZ1eXnF+dk02D6kTo0G4vuDjuONx+4nh/ix9GtusNfd/StA0pZ0YvvT9rfFnVgDJMhdmZYyT4iI/I7mVEaJDlxrBa92z7Bnc4ctCKnRdOe0qekBpMVESVcU6zbs08hk7J7I/CIZf81AePUhqjSv4ThWwXYsGRjCF4L3RoZ0lJuga1uJE+oCr30c4LOOU4o/VkkcxRcmBSEuWMUuJtkWuP8YmDCrXoOwG5VBhw2sXcwjfAaM04DChrZeSr0mjnCEmQ9hCGgo6XRioQcy4yIIVpnDSnlVgYhbTQ/cdIVo6Xb/7Ay+cvuL2+Zb8/MhweCH7g+eU5Om4hBIb9nnyxIceIbToa04KxuJzonUGniM6Jvu2kB6kVyvWomDAqQ4pYq8m6wehEmwPTmBkOR4b1OY019H1HjqKnc9oSW83V2YrtbuQQMvde2icpeHyK2KhEo6Azq0bhtHx3XWJKz2poIEUZKI4Sz64MWQu9W46ogAiL4yNYgHxqKCtklErKpS1jaiWpaKxDJZnVPEMYhXYt3q7laNRS+T5pUFktxPcMs5HscnusW+4y2Zt5zmjRqZk6hQGcsjhdjrspEKJMdNByeJOiCDSd0vOWrLUmFKOLh4cHVpuVBLG/4+H2hr5r+eaPX9M2Df16RQIedjua64a2a+nWVoDMRtGoc44Kkh8wZYfMStTH3VpYrtGPTMMRa6X9YWMGNNYZ7g97NtPI2WZD2/RErwgpE1OgsT1n6xU6fqS3lv0Y2R8nYujm3ZcMzho2qxUq34uwgM/A5LJY61G29Kqozn+fJ97Le2XLa2OMZF3mYNUMZIYlHufKcGJGADMFxpgGzRPnVBYlR1dKsOgdLfOqJbR/SiA1KRdRgD8SYxBtXEiM48DDw46+74kpkomcn5+zWq3oug6N2EyjFFYpYjn36++f6cD7e168uOKf//mfMdax2x3AOkKhEI7DgFNa/NethQQ+r2Taac6oMjU9K41tOlEN7w8ikapfrkxS9zGzC4m7w8R6t+fZxQqMhWTwYSSmwLoznK97VlbjlWZ38OwOnjgVX1Qd5Ygxis41ElAqkxc5aw2MJb5kSr4aUmIcxzk46g61rNykn1fA5ZiwRdtXHYaX+fGS+aC1PiXnJXhjLHjdU8/7yws0tuZVqBOxvq6a+uXr7hVD5Phw5OH+lvGwY/dwQ/CTKE2kgsc1jta17O/3/FQoFi9fvuDF61fQSk/t5PeU2G63OOdoC2/6q2++4Y9/+iPd5oykLOvmDGs0fhhmCyGrFE4pusaSk4GQJICCF0PbEDCFTWqshSRjRMbjkZQ8KWb2U+B6P/FxH7gfMpfDiI8RpR3GOWwSpztrFBfbDStrOcYErmPyiTBFgg8YI8eQ1brQjDMhRbQuHg05zy2WGjTTNJ3ovooZBF22c+prKiSRYhRWR6nKpccvJ04NKqMUxDQv1Bpk9ZorQyIpPTFOVfMkbU+ApJiMqpnCEYM0YzfbLbZtuHt44Ifv/s7w6cCwf0CrzLOrZ6BhHIVl2XU9IXj8FNBodIa7m0/8+Lf/wY/f/X+YxnF++YzN+RXPX76mv7igW29Ynz9DG8U//tM/8vqrt0wx4JuOpu1Jx4kQPMdpxCWPbg1+mog5oazGIK67zjv85PDjIAofEjoHrHF0646cA8ooQfuTZpgSYwCvLCOZm8ORh8OBZxtL2zhQBmccVinO1j2bsxUfPu1RMXA3RsawZh2jyM5TImSL1mBVwCc5PitFWGfhXoVSHMUaJMYQqPo9LQ6EyDOoPb2ad5pypFW2QSptM3l2wsyN82RZjdJGGt+ld0hp7YgKB7GPesqg0qW0hdrb05C08LCzHHvtquf18+dcPX9O03fcPMjo+R92f2F4mNg93DMMjsvnz1m1a4ZhgASrds0hH8jAtlsR/ZGHu3tMnth9+JWHDz+D7bl4/pqX3/6Jixcv2F69YNs5Nm/eMlpH0AZVIADbNEwp0LYN+jAw7O4ZJ7GAjFluoDYKZZRYPFsDIWKNwqiEJmKsZpoiSepUQoxMXoJfZZkEdjNMvLvd8WzdYJSSAU9WeFp9b3j55iU/De9wU+DjuGcXz3kWEkoJXjVlDRqsSajkxD0mBBqthY0REzF4lDsZ0SqtyTHI+DklM4BSykTyIxih2gLVFo/0GIv3vNFz6hJilKKo5sfOzuS+egIZa1ELjeOTBdXcwZ+TOnAadI44a7i8vODlqxc8e3Ylyo0YOB4Mq9ayPmtJQ0OvOrSG8eYDxnZ0rsFGj9Nw0XccrCHHxGq9Ai749O5HiMX+eggcUeycYbi/oe06Lt98TexbTNOCj0xhwqpA2zhsNLjckEZFCjI4iRTRyBi0pKXfZrSsdlvBxhjRIYhzS4jkGEWebyzPry65er3iEBW7KXI3TBzjyPUu0LnEWStKYuUczln+8O1XpP6cX292/PzjX7nej7w+i6xznuXykq+cUHRpfEugZC2/b4mOS2Un8AtZuPvWWaZwej5aaTHsL/hgTUf+PVpN41wh6EmLJ6ZYLIOKF8bcxBYa0pMGVa3kKmorVYlive55/uIZb9++ZrNdiwdAhnic0DmQp4H9/R2N1azPNqxXHQkpsY22DMMRazUXzy/ZTYH72x3r/gUvXz3j7PyM8eGeFCKH3Z77mzt++de/4VPi4u0b/tN/+c8YbTgOEypBHj2NdTidiSqRk4y9bazYYRuVUTmissYacEYa3rUNY40Wo/8QiDmTggwu0ii0E2+s1eacpC1jSFxPgU/v33N7v2fbWjZbMQ5R1uCs4yIoXh0D2+0VvdUcfvqOMcBGC4QSysgRpcRxOYXSOA6iF0xJen+V41QJeU4DqlZ9ihyTuDcr2eF0aQKnktfWHcZaO7v8zblYyTdH72mcI0D5XeXBF6md5HG/L1b+txD1JafHWsu663jx7JI3r19xtllhnSFk0dKFceB4f8f+7o6z1RamCWcUdtViG8PKCo33/v5egD4jJF3nLOv1lmHas7p4zqs//hMmZTbOEYaBH//6L7z/9Uey1fz2y8+cbS5w/QZtHOe2Yas1jVYy+SAFQhhxSuABo5FkMwkl2ajHHlviXSC5S5j87OBnlCamSIoBlSYaEiontvrA0QwMh4H9seMwTKw3mZhBq8yqs6xV4v7jJ9iPjHtPiCfMjRLQ2siAcqUKJaU0eWXU7ykoTjuP7Eam0EhTlvEjthxripM31rIq9N7PQeaKZlAhu5WpbRtKEbCg0aSS5KenZn6qQl1VgDGa7brnxcuXvHn7Woj9jRVHPS8Dg/zxSPYT265hagzadcJVssIBt60jp0y7WrHdbpm8xw0TSkkWc/HiFRdGsVpt2K56dIr4457t+ZrLH6/42w/f88u/fo/6+k9szqHrG5RpC8gYcSoxxEjbdOx3O/b3O7nx1oISxU/KHp0F/DQzrqOZSEwxgipTVpFJF+N4wCrETAxFk0cu2oaf3t9yfX3HZrNiu5lo+warMxbHpjEcPvydn//yPcF7/B+fM/qRle8IKZApqHWUPC9lScZjTlgNOabSkJedxRpNVpEQF8caYkqHykhjQygytR/4efN+CUPkLO7J9X8rpYQFYWSDUHXnc5bpqYMqZ/H9VCTWqxXffP2WZy9e0LSOlDzTFICMjZk4jpicaYyBGFj1bh7KXZuUxlr8NNGvN5IQhshmvaZbb0jaYVphAfSto20cRme25z13rUVdf6RpHA8319yvLrBGY5LlmHtW7ZkwOYcDfhzwx4mUNU3TSeLrA9poDvsHxuORMA6o0grSGgwZqxCvzCS51ThNDEkMOXa3d/jjBCmTome3G7m+3nHtLM/PthzPNmzPVnIMaTg7WzFx4H5/TdeuOIaJbg9NbshKYa2RxvbgUSRQmZyDmLzljDZVpl6a7ClDEZl6H6i5udJKMKmiohHdg5lZoDVgKu40734L8HpJ8JO8TtgTKiWCl7bZ0wZVCmVL7/jmqzc8v7qgceKhpEsJHKNnGj1pCkzDwDR6rG1Zr+3MwWrbtujbFK7psVYwr65P7POe6ANGK843W/rtGtdaVn2L1TAc9yhn+Oqbr0jDA3/+f/8bN7/+wLOznmQ6Jq3Y7RRd2xDK9IJUTMo8IkU3NhO0YjweOR728mB0UdCoakLmZRBkTah94Hg48rAfGI8jfvREH8k5Mo6J3cPIarvh7n7H1V4sGG2jBYlvNC//9C2X1w8cHiZ2R8/aKQ75QLfusUbROYUzmaxOVRkwo+lhQZupbbLKoFiyPeuuJH+fZ7fmukNVnMssMK45uS/vJYGsC94mswCV0rTmhGM9WVApEs5qLs43bFYdYRqKkgR0iuTopTFKZhoCw+7AYT/gg9A6hmGYt+OMQtmOrmvxZYWYpudqvRILQe3ouhXaGbCZzhlS8BiVWTlL1IrXzy/5zmU+vPuB588uePnqDVHDaAuZr/S5sta06xVBibcmcUTlRIwTfhhlu7cG64TSm3JkGsf5ho+jiBvG/cjhfs9xGFHKiDLaWFLrsG3mkBP/+vETL9+8ZDhMrNYNWgeUkqpxvd1ye/+Jj9f3XLVXqI3YJbrs2a4a7vYDYz61SpaYUz2+YoyzWcjnrZnKQ68BZq0hppOuoBZZS2Czfkf7WRsop1wQ/qJ2LnSh33v9foMOoznfbujbhrvbGw62JJg5o8IkOc90ZDcc2e1Hrm92POxGstIMw70klkYcb41xtOvzgn/AZrvl6uqC7dlKfBowKDTOaZpWQxKXlJQSh+OBtdasLi+wFoL2xOS53J7Rb1bgZHxIX/CW1XpFt9mgnCOEwBCCUJaREto6i2scqhhhpBTwfoIM4zBwPB65u79nt5dhlgktjnU6yhyaGFC6xWrD9cdP3Hy65epywzS1uMZCjjzrOp5vtvyUPrLbHbm/P3B+dSkPwCiuzrf8dvOAT0UPuEDUl7mPwAn1c552qBpMNQCrp3zOJzbJEk54TDnKs87gxGlXTD6I5lLL/MakmP3IniyoNLB72HF/e0tKURLG5IneizghFb9z40AbPJbuvMc4x0ZdSfJXqkbZmiVpbtuW9XqDcoIXGQWOjCNjciQPI95PTOPAOI00WjHGge+++56m2/D1NxsuL5/RrzqZCdNotAVyZnv1jK5xnJ9v2Gxa/HSQQCrAZ2MdmIy1UpqPIciwn7tbdg97hmHkcBzYHwa0stIYz0CIIr0n4bQjJw9If/PHdx/46puXxGlChRZlLK2GlxfnnHUd0zjw/u6el8NztucrXNdyaTue300c3v0mR1VZeCAmuhUN1+pEAzYF8a7eWKoS77Lo+qQDIpSXnELZ5YrBvhLlTozS2I4hQBYmhC4oekgea0RNJKa7M/b9dEElZHywTQcxipLWrWZbm0ymVZoWmQjfxAhWEkA/hZniEpQiEnHWFofcxP1uJ7vYHlpj6YzFpizJdhznbT8Gyese7nZ8uBuw3QX/4Ztv+erNG/pWOFfGKVxjiSkTm8j5pudi22NVwlgHSQblGqNpGoOPE9FPJGXY7fZ8+u2aX/7+I9M4ClxjHNo46rxOHbMQ7mKCxqJJxJwwWhrgv3z4wP3+yOWxx5kR14qA4uJ8w5tXV/z67j1DFFaoMg5jHa3SvLh6xm83N8IV0+Kip7SaQdJKGERrhsnPx9pSTVN3s8qmVSB+VkKSQitT1ONidS2vgZCKkhmBE8iJzjTzbpiFkvr0zM8JwUJSilCQ3lTMM4DSYFYc4yRgWYnuvKg45lJWn+xqKvswAdpajsnjtLi7kBVZNWRTEkrXMMXEYC/oriKXrzR//MM3rFoHuVQnKhbpV6J1lq6RP21xQ/bTRE4JQ8JPgXEc+PDbbwQf6dqe64/X+MmL17u2gEiycplSocowcG0MsbY2CpFNacUweb7/8R3r9QofFes1YA1NY/j27QuGw45Pv31kf5yYpkRrNF3T8uxS8erVS3765R1TSIWJKe2gGji5ALKVrl27ADXoaq+uQj9LSsvyCJymiaZpBMPSiinIEG/vPTZLD5S8oHoXrGuZjz1JUJGkwxkr1hETTbSPVom2mqkYkhqlykPWM8Ph8xbBkmJsi9mHNrJKD36UdkEWeyKVwYdIiImsLUEZmvUWmp5oZEXn4CF4DJm+77g439JYGedqilZM2OnyWWKYGI8D+4c993c7NJoQEinKhFSlLSEKfUYpyuiQVMp6GSfiYyITsNqilaHre35695Ht+RVfvQJTciNjYNMZnm3X7G7v+Xh9izINL1685NmLnlXvePXqFU23Yrcf+O3TDeM4QcGGlvZAikJUrLB3CaxcKMquWDVWlUwNphgCzli6pqVKrxQKiyL5QFsVy6poDRbgZ9M0BP/7Bt7+/kS9BJYqHyTlzDEcgWr8bsQ5DxaucaWaKOd9vTHGGkgnjruoaRJtY4gx4KNHacM0TXRNK++XEhCxOmFcJm16UJpPd3tWvaG1EZMTrTW0xtA1ruRPhuRHQtnCSan0ziI5hjIdNaOT5BQ5JIy2eB9IIaBtU/w0/Qw0NtYw+UAOQSY/GFcCLGJdw34IfLw7cHV5TsygyFgDnYPOGay2HIaRjx9vWa/OubpKGAfnZ+es1mc03YoPH6/5/vsfuPn0kWmaTvieNkQfBCD1XpTGWgxok5JAyinNudejxDyJG7EtqUgKEZUVvTaElCAUzEo/thRSSjEcj49k9E8SVEvEVVaezGOJKZFNZkpeDMy0JsdEUicNYPQepaQdEGIQnrXWs9lsCEJ7maZJTD20AhJt10k+lQtnG6FgTH4AkximA/u7W1at4fys5epc0PfOCUd+ynDcTeQQaFQso1ACSiWIE4e7Gx4edhwPI6SMDxNJWs5kLaQ2XItPiaSseGIlYWhYrfEJjHaoMgjKWENOEDPc7HfsxoFpallZMFY4+9Y5rNYch5FV25LywMNwIHuL7ju0bog0XFy+4D+2Pe/f/8rHX9/xcH8vp0QRdWayVM9KVEchxUITTgQS1aGnSt5iSjSNWC8pJNHPIZALjdg29iQwzRGVVNkIghjWGjvPJ3qyoPIhFAWvJKo6iweSAfLkadtWcJDCFYo5Q+X25CLVKu2QeuQtG50pp1l2VAG66CPWOJGfR9n2U4ikbGhdwzTuiIc7pkPg422EZ5f0r1+yenZJ0poxJo4+kZPGqUyDwbg1CU8Me26HxGE3YLI4qGC0WB8ljdGy09VcDyChiVmqKusanDZy/CXJp0TwKrvE3e01x+EZh0ND31pM09J0HW3f4ZzlOB55uL/m+tqhnMb2W2w04ODoJ/w4YC28fPuG1y9f8v1f/sq7D++LeETPgoZcFoouLoXic1WHIzD3/5Q6jYfTJb+qzyyEgDVWRsBUNkrZ0XLRbHo/wVP7Uy2h/rZtCYUUL1iPm1HfKnuv/KsYhA4cFxXMUiq0ZJOqLM69RimRyGtNTrKzOGOL9L1Fe0OKA01KrBpDHA6gE/uPv/GXmxv2b7/m5devSa4Rda22BCIhGhQN6Aa3arn4agXpb+w+fpC5NEqTrMMiY8i892SE/jFLyxefW5XjNMYMRmN0g1XQJPFayJO8PmMxTUdjAq61YAUPOw4H3v00kULi7NkrmnVAN4HjmLi7vebFy2ew7nDGcnZ2xt3dHcM0CssjBqEGF/VLGBPKaHTx8YKMzqo0oadTblUUNJWuXFOQCqaeRoecdJ1aa9CW/NSzaSpqm5L4SOoSzZlCNfZ+7m5XzX3wHmsdWZ2Eo8sqpH4RVyZSUb9oWSUK2YpJnphD2dIVrXNMSaGslUKg2ELnlIjTwA/f/Y2Hhxtef/sHcnfGpCy2cTTtipw1oz+QleL52TPW/6D56/HI9LBHW0dKJX/LAiqGLJWYMAFOx7/QVoQIaLWkAkolSIG16/Ehs7u7g29egzJSwmvN9vKcftPx68970rjD7xP317e8/fbI13/6R1S2rF3P9WHPza8TG+/JTUMcRzZ9zziNYldUAsf7gEZhrfg/RKQ4kvt9UiRXh5fMgvZSrgpF+JKjLVH8+XmV5/ykQTVLr5bKFi9N5Fwc3nQWObdVMu2qGmKrJYWCk6hxySQMIWILTba6k0gZH7FWHJFTSkUaFtBWofsV3kdikJFlKntMnGgt+P0d3/+PP3P25o+0l8/pup7WCKF/3W6lXRMim+fPefUf/oHv/vufMWWPQqXCDDWoMsCpHhnLEt0UQxFrmyKD8nTW4I97Gtfx6cMHhukfQFuUMtjG0q0zX//ha6bDkV+++ys2y+K7ef+Oq6sX2CmT1IFN2+DHI/7dB36bJn5+947YOpLVhb1QCIWqqpoX/hXCFxZqj9bz1K+Q0jwCpYQTcLKJEv/RUy9w2Yw2CAXoSYNq6VwbQiiViJ69EXJK6MaJ7XMq6l6tiij0JCU3JUGn9JhQzMrX5UOTL+TwkzRaBRM4VSMGwxQ8plvTmvIgTQ9hpLEKsgCU1+9/pjnsse5PPHt7hR8nFImrZ8/56e8/cB8ybvWMzWZNHgd8yKRiH6RSwmojahcryX8ujVpjLSpFSdSzIodADIEYNSpCJBBy5jB4GSTpGtCKzsF2s+HlV295//PPxOORvl+RE/ztf/4L0kBStH3Hqu9hSoUG7SEpOeaiKWClwDjBS/GTas6aJa8KWWbuQBU8FIsChMyoctEjpsrXkpHGCmbbbGM03ke0ytLaesqgWsre63+bpmGapkdKF2OrTr/AB0rqjxyjfLEYScj0gephkKvIUZ8S+NmTqUjhh3GSrViJ1aGxjr5XaBSHfaJ1BpMTKrTE6EFLe8ImGHb3/PS3v7JZX9Kvzri+/sj27IJuc8nPP/7Ey21D7xoeDnuUa9Cp6BwX06WmyeOKJ2glt8lMaWbL7xQSUxxpjUXlADHwcHtDToHGikdpaxV90xKnwPbsAq8bbOMkcJIIcrWV6tPnSLvqMBna3DDlhEOjsjyPyjqQjoaQIyXPlWASAFRkYbkwDmYqZyqsU1P4ZUkS9hACXdfhrOTJtVFtKrXmKYMKTvp7rcX+r+u6R8eBSLZOujwBSvUjJfNUWgzLRFAqJsDYk+vbggJSz3VrLcPxWJL6qm/T2DKoSKVAmkZ0cuAUYZpwERqXGYLn7v1PqKsrViaSDp/otWeTR378899IYYdyMskCLWwLtQig6vMwFqmU+FcJEl0bsX3fYUlYVRaK0Uz7e8IUyKkMMIiZ1WrD+faCH7MmG0dyrWgUE6imISlQxiAMqyxsWphn9GV/mv66RMtdKZiMMVLJlYo6K4UuiwAlw72NUhjrCFHIgGiD1TDmhFGgUsbW6VolX81PraZx5abWHatt25nPs3R40zmRpuLRXYxf67EVQqArLRvXto9+X93ZlvqzSut4ZIGjtWBIKc1jyZRrQINOBqsNJOGYN21DkzJOg4mew/0H/O49fd/C/j0315/Y3R0BQ7KNwApZJkakgs/kkuP1Rsxjm9K2cNoQshD+luQ2TDFsGydyUuwf9uwGzzYBSjMkyLbh6u1bNn//iY8fPkgf0RqaxhJTwjayq2VgqOb9dWRIVVMvioZ675dcdqFBq0L2A42aGRApB7IRpm5jLcQgng3A+aYnBvldjbXCeo2iKvq99JffHVRVEVs/dIUCqlK46zphHJZjraKvco4Xj0nryFkwrOoyMvN8FMBjX8ta3lbrnApLlB+SXCeLMCGnhMXgnCEHRYjiwWB1RulMIhKSI2TFeMjcH/akaAhO5uhZZUkx4Ar1Q5UOfyoLSrwMhFevdJEumZNsrZLchiQawaaTWT7HMXJ7PLLxk1B0EZwouIarN19xc307O7uossA0SkaAZPmjlEKnwktXiqzUPHzoc0hgSeZri1hFAGnpvVoj4LQpu9c0DihnscVfYRwHFEYMG4AQfOGz8/Ri0pxOnGhIpOiJOtM46XwrEtYqUpTKb/SSA8UUUUYmwiciGcm7si7JvVG4piXFMAdaNY6fg9SY0iEX5YfOwn6Mwc8iVvFEL9Y6xkoOAOQ4EVLCKINrW6bRC7MRaGyPbTuUKm7B0aGy8MFJMjs5JkGnM+AaWTjee2zjmBYy/xp4DZIeaGuluDCGmDLHQYzZpqTwY+BhSKwun9Ovt4y7O5QTK+/ZSUdrVJajVHLRSYzSgJTku4WSz2pjCqYncE4dDO6TKKZjqbalQCrC31zGXxqDpnCtSstNIf0/iDirCX5EGVWGWD5hUDln5+232spopXDOlt3m5HNQV8s4TXOALEWNYjd0shCiVC1xUcqCrNBqf1NNQVIszeGci2tmQtvPLAuzgIIz4JqNMB5AOFcAxYfTNuKB4Iyleo9aK+i/QtE2nVBC5ANBQfVzZp6xhzKkwtq0RlyUB+/p3AptDT5qRi+I9hgSPsPkI512fPXNt/z9X/+FTBI6cS404JnJqQo3XRHCJPQdJQTEWoUv0wU4+aOjBM7RMPtLVaFofd2joxQ101uq20vZUnCumYcnPVlQLZ3Vln3A6gqynJFSz/cKln5OvXBajEr9OM7HSeY0nWA+5srqqX+Xc6ZvHckPWCcTtAS7Os1rmV1oUpYxrjoT/YTRRnavgnU1jWBLyihU4Re1tsHapviNNvPOSdkZE5JAWydJN1BG18qMw1gfkkKmoGYgS1ANk3h7DkEMNhyJ4zSwPrtgfXbB/c0nkjq1SU4zgE7OK6eAke9ahxnV1GC50yutYQrklGmWCuSyaCv9pea0y2qy5sj1njdNQ5j8/wXqC6djqX65peXi0tKwHglt24q0HR4lkt57OieNWFsDoVRTS7qFMSc2QxWzzg1pU3pZBfn2o59viJhYyKo3BbPR1pCKeFMYkmk+plTxDwhJdqQ6JkVz0tvlwmqLKRELYc+UwM9I7pNRDL5gdFaDMrKbhYgfBt59vGZzcUlWGpUSXbfm+uOvtP0GfXeHMfybe1iNVuZdeAEa15xzmqZ/m7R7T1fEJjEIvVhpsWKqE7o+z8dgCYyeTp3ZcaYIUf9X1+8LPZY+RaLWqH+Wx1ttWs46/c/scGry3RQMRZX+masGEDCPR6tNzcqxqpdS4Jyg3pmIMrJVL6dghVCqGWPKcSK7RH1/kAJC5PlF2WsdpvQKXdORksJ7kWWFILKolKQd0jad+DUp+bucNUoJoa9telAG61pUoSDrHAnjgduP71DJ0xnN4X4nA4S04TiO6OIwaPTJLrzmOarkQtIr1vPzyCUJd1aA6LZpZlGEQizGwziJ4YbSpU8Z54V1Gs+bF/f3FJg1wLz3pBDkhPkd1+/eqdq+J6YkrAQApQnei7F8qcBUuSlVkVHHf8QkPOpUSt0QAyHJuR5yJowj1skoj67tZCpD/aKqrCIFypT/ZifvZQzjMOCJJcgdMQZxHEahVcKX1pLRupjuS+BnrYgI/tKUozmVRDemSCIJRqMVthFg10dPDHEOdG0EKa9wScyiOlFGjkfrDOTI/e1HDse97JQiTuH93R1u1WKB4f4OqyAh/lNyj808ZEqV9lfKieA9WkNTkH5hGEhA6pQJSVgT1hXWQha/COkJqtm8LsQo1WHJQWtvr7bUxBQ4Yp2VQsUHcnhqnMoYIuJEUhHWYQhEFefqp0INdVeiiBEreKaqnFppbHOCD1wBU50TuonK0meSykV4QnqGD6AOuPeTJyUxW03xZEhv6/sAru9n2MOQ5x0KTmzKJYArUxAC1UBfF72bNRalTrllBXuVPk0SzaIenB+IKu2Pjx9+QRuH6zbE4z1OJXQcufvwjlYndIwYpyHJopx3fKSgaZpCK1Ia55r5PscQ6IoJrCpBoZVGNyeVjfTa/53JoyVnapqGcRwfHZ+VVZLq79PF5Uc9daIe4tzrSzlB0rMev0qn68zdcRznHEgX0p5KUqZLA/ZEoxmGQVgKSkHVABqDztUvXJGDHHNVgq5LTlGPYqOlDZRq+ySJsYUfJxpjiYWKrIxUnMuk1RSkvpq26cKnWg5sVErN1Nyas1VZ1Odiz4r81yOkcQ6iTGbNfuJ40+F3LVuTGXcPJJUhCzW4DnWsC7MWN+M4PmqR1YS8djSMEb/REGMR6p5eWxF2OGkJlx2LCl5X26ATiC3mc6r0aZ0zZPPE4KcqXe9QbqjSmbEkiF3XzTe18q3qDdBa084DpEsinh/bZdeH6QrmopQqR6sq7RtZXVapRzdiTlDLa4cwEUMsfK8086Cs1nRtK5z0EvCzWBN4nFMw2/csWRRkkT5VfVx9EHUx1WpKfcaQlamnK5yTe3RX6MFNIw7MqsrecyKHU37zuTJm6XJXP//xeJQZhepEHUYtHGXyyTNhOeRoPq7LhlD/WGs5HA6S82aErVFpLzmBemqDDhCNH+IuEoof0lKbv0z6bOkT5pSEUF9uVIpRfBTKl6ysBdnyEyojZh0lmQ/eCw22DEWMC2ymviYj/CKdoS0BnlJCW4sur2mcJWCZfHy0A0GerQ/rd3DOEoInJ2m0plRwtQUsAkhwlLK+PrBYqqx5+FPKeFUBxgQqsVqtSXmi7zqiUkSkA2ChmPJ/du/LQl0S62p1nSvcUQKdUjHGKNhhzFnywJJ+1N5qvZYct+qpXi0bFXIqiNpJkXnioEKLRzdWMYRRqg1d6L+FpxNSoqlHZNk2BRkuXJ5ylquUaUtiXof4TH4CLUh9mEZcEZdiDGMWinJfktNYqh6dZWyaeDiJtjBW6EJlkk6F36WI0ZNynFdq08iI25gCPk5kldFKKtrJe0KIONdIVQio4qhX/Qnk5iNcpVTEBEmc+mYiXGEGJDw2K7rGEbMmaCk20Hbuz+kUSCmKBEwrUjG3bbRUpPVoU1qqOODR6WBKT7K+t+RNUkxIlSj+V5hT9VjlV8tc2JgiQVMnM2BZgLqoiP7Xl8r583Xx5fpy/Z9dvxun+nJ9uX7v9SWovlxPfn0Jqi/Xk19fgurL9eTXl6D6cj359SWovlxPfn0Jqi/Xk19fgurL9eTXl6D6cj359f8DVQzNOvdZpFgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "predict_animal(\"/content/test_set/test_set/dogs/dog.4001.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "Oqaf01XydGzn", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 230 + }, + "outputId": "8e0072d0-7be9-444d-9889-5d9a25500748" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOAAAADECAYAAACGEC3BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuwElEQVR4nOz9WYxlW3rXi/5GN9u1VkRGRuZuq3HZuKkCm2Nzka7u0bFNZ1s0L4CPz70HGQSSUbkRPPACEhgJP4AFAixcD0jYwm/IvNjCCGyBjAHDMXBo3JQxrnKVXbvNzGhWM5vR3YcxxoyZu8quXdd5vXXuzSmldu7IiBVrzTm+7v/9v/8nYoyR59fz6/n1nlzyvX4Dz6/n1/8/X88N8Pn1/HoPr+cG+Px6fr2H13MDfH49v97D67kBPr+eX+/h9dwAn1/Pr/fwem6Az6/n13t4PTfA59fz6z28nhvg8+v59R5ezw3w+fX8eg+v5wb4BVw/+IM/iBCC//Af/sPytR/7sR/ju7/7uz/n9wsh+MEf/MHfmjf3W3R9//d////Pfab38npugL/J68d+7Mf4q3/1r77Xb+O37HpugM/2em6Az6/n13t4PTfA38T1J//kn+Tv/b2/B6R0s/z59a79fs+f+3N/jg9+8IPUdc3Dhw/5/b//9/Of/tN/+g1/z6c+9Sk++tGP8mVf9mW0bcv9+/f543/8j/Mrv/Ir7+p9hhD4O3/n7/A7fsfvoGkaHjx4wDd+4zc+lUr/wA/8AL/n9/weHj58SF3XfPjDH+ZjH/vYU6/zwQ9+kJ/7uZ/jJ3/yJ5fP+nVf93Xv6j08vz73pd/rN/B/5evbvu3beO211/jxH/9xfuiHfujzfv+f/bN/lh/+4R/mO77jO/jwhz/M48eP+df/+l/zC7/wC3z1V3/1r/tzP/MzP8O//bf/lm/5lm/h1Vdf5Vd+5Vf42Mc+xtd93dfx8z//83Rd9xv+3j/9p/80P/iDP8g3fdM38Wf+zJ/BOcdP/dRP8e/+3b/jd/2u3wXAxz72MT7ykY/wR/7IH0FrzY/+6I/y0Y9+lBAC3/7t3w7A3/7bf5vv/M7vZLPZ8Jf+0l8C4IUXXni3t+v59bmu+Px619cP/MAPRCD+zM/8zPK1b//2b4/v9jaenZ3Fb//2b/+Cf+/pdPqsr/30T/90BOI//If/8Df82X/xL/5FBOJ3fdd3fda/hRB+w9/xDd/wDfFDH/rQU1/7yEc+Er/2a7/2Xb7z59fnu56noL+F1/n5Of/+3/97XnvttS/o59q2Xf5ureXx48d8yZd8Cefn5583ff3H//gfI4Tgr/yVv/JZ/7ZOl9e/4+bmhkePHvG1X/u1fOITn+Dm5uYLer/Pr3d/PTfA38Lrb/yNv8HP/uzP8r73vY/f/bt/N9/93d/NJz7xic/7c8Mw8Jf/8l/mfe97H3Vdc3l5yYMHD7i+vv68xvHLv/zLvPzyy1xcXPyG3/dv/s2/4ff9vt9H3/ecn5/z4MED/uJf/IsAzw3w/4vXcwP8Lby++Zu/mU984hN83/d9Hy+//DLf+73fy0c+8hH+6T/9p7/hz33nd34n3/M938M3f/M384/+0T/in//zf86P//iPc//+fUIIv+n39cu//Mv83t/7e3n06BF/62/9Lf7JP/kn/PiP/zh//s//eYBn8jueX5/7eg7C/Cav3wj1/FzXSy+9xEc/+lE++tGP8tZbb/HVX/3VfM/3fA/f9E3f9Ov+zA//8A/zrd/6rfzNv/k3l6+N48j19fXn/X1f/MVfzD/7Z/+MJ0+e/LpR8Ed/9EeZpokf+ZEf4f3vf//y9X/5L//lZ33vF/p5n1+/8fU8Av4mr77vAT6vMXjvPyuVe/jwIS+//DLTNP2GP6uUIr5DO+v7vu/78N5/3vf3R//oHyXG+DnJAuU1lVJP/T+ktPMHfuAHPutn+r7/nJ/VWsvHP/5xXn/99c/7np5fd9fzCPibvL7ma74GgO/6ru/iG77hG1BK8S3f8i2f9X37/Z5XX32VP/bH/hhf9VVfxWaz4Sd+4if4mZ/5maci2+e6/tAf+kP80A/9EGdnZ3z4wx/mp3/6p/mJn/gJ7t+//3nf39d//dfzJ/7En+Dv/t2/yy/90i/xjd/4jYQQ+Kmf+im+/uu/nu/4ju/gD/yBP0BVVfzhP/yH+bZv+zYOhwN//+//fR4+fPhZBvU1X/M1fOxjH+Ov/bW/xpd8yZfw8OFDfs/v+T185jOf4Su+4iv41m/91udMmS/kem9B2P9rXZ+rDeGci9/5nd8ZHzx4EIUQv25LYpqm+Bf+wl+IX/VVXxW3223s+z5+1Vd9Vfz+7//+z/t7r66u4p/6U38qXl5exs1mE7/hG74hfvzjH48f+MAH4rd+67d+3p93zsXv/d7vjV/+5V8eq6qKDx48iN/0Td8U/+N//I/L9/zIj/xI/Mqv/MrYNE384Ac/GP/6X//r8R/8g38QgfjJT35y+b433ngj/sE/+AfjdruNwNKS+OQnPxmBd/V+nl93l4jxuS7o8+v59V5dz2vA59fz6z28nhvg8+v59R5ezw3w+fX8eg+v5wb4/Hp+vYfXcwN8fj2/3sPruQE+v55f7+H13ACfX8+v9/B610yYP/a//zHE7TX32poPfPmX8vOf/jRvvvWEaD0ESRdqznc1X/v7fjdq0/CT/+Y/cv3oyDBOmKpGGQ1SIITEno58+IOv8PXf9HX8H//lv/LJX34LpSr6jaQ3GiMUtTEYram0JoaIqSr6+xdUpub/+Pc/wzhNoGtsCOAh+IAXkao2aAGtVvz2D3+En//Mr/Ff/vPP8vD8IbtmQyUkSgQmHDfTnotdx73tllc/+CH+1c/8n3zqzbfZaMnlvXOMMXjvCSEwTRPbruGrPvLb+Q+/8Iv8t09+miFElFY0lUI6RxsDX/Tgkg++8hLt2Tn/4Zf+B2/e3PKwa+nrmsuLc2qtUES6pqKuDL/66U8zDhbvAlprms5Q1walNf1mw2mcePLkhjfefIuze/d5/wsv02vDfrjFq4ATgjfeesJpmPnyL/ogzs3MIXB7PLDf73nxwUPCOLO/ukFpSdu1eCLWW+7dv0elFJUxzNZxOA7c7k88fnLFB97/fuoYmMaRGCMhBOZ55oMf/OBCWRNC4L3n8vIS5xwhBkxdo7ReJuZjjEgpkfJz+/oICCWJISCc5/Vfe43r/ZEnN7e4GBFAbSqMUgzHI5WpCN6jlcKHQNU2KK2JUrI/HfHOUSPRUhEiWB/Q2jBbS1NL+kZx7+yM+xf3uby4oO86jFK46IgxYIxZ3tvpdALn2G16KmNQSmGtRQiBcw5ket8q/7c2FdF7rHXIqPhf/rf/57MzwHmeEZPFKom1Fuc8IURAQAQfI94H+s0W1ddY50FIvI9oIEQQAYKIjNPMPDuklDjneXJ1hUBxOAmU0QgEWkqM0rRNw67f0AE9kYjn8uF9JufxEaKQ2HHGWUeQgkjA24mqUjStwcgAfkarSJQeLwJRRkIMQIAYgWRIEFFCIJXEGEPTNMQYEULQ9z19U4OArm3ZbXpqF9j2LZrA6XRi2t/y6NEjLs+2tOf3uL255bg/cG09e3FACElf1zSVpmk6XBCYpufNt18nBsHl5RaU5DTNnFU1RldcX73F4XBEmwoi6aArTVXVeBUJzkKE6PNnWQ4+nA5H3G6iqyvU+Zb94cDt/hYfArqquLneU2uJiJEowAeJd47gPcF7uk3P2W6H1pppmnjttdeo6xohxMJPPZ1ODMOAEOKpwwt33NIY42dxWaEQu2OetohoqWibltvjgDEao3T6TCFinSOEgHMOJSVKKYRMBj7PM6auMUqBjwhpUEYTphkjodLQVhW7Xc8rr7zIg/uX1FWFlhIlJcH79OylRJB4u+M44kPg3tmOWqllIqRpmuUzWe9RUiKVQmlN8IEYIz54wq/jcP4/NsDbm1vi9Q1V3NDULQLJNE4EH5FoNJoQBVJqlDaEdN9ASJIfE0QhCBFi/vswzTgXCBGkEEQkLiRjlt7D5Lg5nNifRiSBvq+5//ABTw7XuAhSKKRUKCHpNg3bsx0+egiOTmuqStIYweW9DU2tUEYQiVg8IXq0FGgpUFKglcRoiRDZCIWg8P6lEAgpEVKAiCgJrVJs6pYXL+6xMYqDtRwOex5sOvrtlhACXVOj9kdOw4wdR+ZxplKSWis+8hVfTtd1vP1kz81hwpgadIuuKyoZMUYipcKYiqpyOA+ztbz+xpsc247t2QatNc4Goo+IKLDO4bwjSoGMkeAcGoFEIAgcD7ccTwPOB6TWNE3L5cUZITik0ihdUVcVZ9stVXZAXdtmh5sc5tqQpJRLlIMUzdbX+nvfaYDvnKoQCBBQ5wMOiSSupEzvP0bcNC3RGCFIPjQdejdN4D1GKhCaiERrRa0llxdnvPDggrN796iajuAcIga89SAlxOTYQ37mMQSctex2O6IPuBjRWiejz+9bCIGSEq01xhhEiCAjdpqom4bDOL4ru3rXBri/OSKPA7dEKlNzc7vn6uoGgcSoGqUV06yZnUcGQYgCH8CFiPQRlIAg8CFgXcD5iNIVPgJSI1UFBFSQyEA+NCCIKCfwzqNVMu7X3n4bH6GtWmQEEdINujne0LQtbaWpmoYQPV1b8aEv+gBCmOTho0cqGMYBGT1VpamMAm8xWiFFRMSIBJQQ5BifIgvpJksZEcFRYWgEdFISlMYbQ9d1CCmJRHabLYfThBYV7eUDtn2HjAE/j3jnmazlyfUt+9OIm09YH6lqxXbb8MLZhr7rUcpAlOxvD2zPztFNzewC4zSz7Wpurm4I1tOahuura2Y/szs/Tymfc9RaU0uJbis+8P73AZLr2z2PH1+jleHi3gU3N0+4ur4mRompWuq6ZhrSs7bzvEQ9IQRaa0IIqBwV1qllCB4Z09eNMSlNW/7tbqZw/TNCyHSDc5SsKpMikRCks54MXADGGLRSuSQxzEeLApSUVNogAedCcpJEHjy44JWXLrm8t6VSMIeIFOlnvXOIGCEGtNJEFFJKfAjM40hTpbRXAlrJlAFmZxNCiXSBMM/pMwFaptdASUz1dDbwmzZAISRt29PWNTGCtx43O6TUWDsjOFHJwDBMyL7l+vqWm6sT3oVklNOMkBKkIARwPmCqBiE11qUURIaIFCCCQIqUGuEjQoEIEm8j4+iZfYqWIWpUAEnE+8j1k1uabuY2Bo51xSsvvsLkAq+//TZdvUGrCmM0SmnOuh7Rd+zahsYoYvS0taHvWlqh0s2M6QAIBM57tJBIEVFSIKUAUhobY0DGiAjp4fgYU2SOUEtFbTS1Udzb9bTGIGOgqQ1CG15+6SXcHBjlzLbvicJx2B9oiLzw8CXeeP1NHj16wmkccT5y1CeCczx4cI9ut0n3KYB1M7MOqEpR1zXRe15+4UU2TYsiMNjItm8xVYcUiuPtwMuvvErX1Bh5gRCSq6sb7DQxDiPV5X3GaeRwOCyppVKKYRjQWj+VXnrvs0HGJWUv/1auz/V1IUSOPpDyaFBSUdU18nhcjFAUZ5ydgFSSqqpx3hN9SA7Se3QEoxX3H97j3vmO+/fOaGtNpRUxWLRSICJCBNrGYJRmniaCt5RSSguBkYq6qpNjNyZlRTnlXkbDhKDWGu8cUggqY5ZIHQAl393c5Ls2wKqq6euKi/MziILL+w+4uTnhfcQ6YIz4CJN1uP2eabYcDidCiCjrcCGgtEZpjQ4B5wPWeaz37A8HRBzQlUebGikMSkmUkCgEnQERIXiJlDUhalyEEBQipvQqxkAMiuhlilpRI6VmP0689tbb3N9FNs0GJyZOwSEUBByc7zDnZ0ghaJqaB/fvc1a3tFWNtXMuq1LNQwyIECB4fHB4NJbAnH9/8qgRRPLyUojkGUVARYfG55Qw0OgKtMBoQWUUUtTsth0+OqYpRRjnPFoZjDZ4d+L29kBdOYLz9JuW4CPzZDncHtC6Qu5qjDFIKWnqGuoaTXrv0sV0AINHCkmMoFU6NE1d8/D+JZVpcC7w9uMndE1LbRRPTk8YhmExoEePHlFVFWdnZwBLFBRCPPXfdXRcG+s7DTPESMhFSowgVX7v+f+FLJkQy2tLkTKM8mzauqYxhvPdGbttzwsvnCOVTI5BS5QxCAyTtdhpZNNvIASQgdoYotY466mbBuccQogl6kNyKuW+lixASomPkeA9znvcbJHZoQgBIthna4AxRiwBUVcEIm3bULUtQki8A9lKNq3GTSOm1fTbHuskdrIorRAIpFYQI36c0FIwjkfcPHA67PE2IqTDm5pA/v6ck/d9Ry0Fk/XEKJitZ7QWJQxeaCQxRVY0LmpU9PggkarC+pCMNdeZSgikNszBcRgtlTohIjx46VVuntzw+OoGfbZFtu3i8bTWdLsOKSIyQlvV3D8/Z7YOJAQViT7Vt4EUnWfn8DFiraU16dDYeSLOI/NwQnJBu9vy5NFbnA43EATTsadpDd2mZ9P1VEbzyksv0lQVhMhmd8ZLL79IiDYBG8GnSC0kp+OJKZxo+1S3yRCx04x1logCYRBSE2PyzE1TQfQoXUGMSJlAHKU1TV1T1xVnfcu9szOcDxwOR95483XarkmA09Rwe3uLMYa2bamqiibXiMYY5nn+LIOT2eBEqbFjSfcFIpYaUqCUQUSJigIRYk79MmhGQEiBkpFNX9O3LZf3Lmjrmm3f07cNStpUMugKbQzjOKG0TnVtXVEbwzxNxBCWulVVGhcc0zSilCRGT/SRqq4QMhmz9x4pBdM0UVUVUspkwDHio0VrjbcWIQV9t33WBhiIWmFFZJjG5EFUTglCQFQGoQV+PNHoHW3XMFmoKkNlDLU26XuBME7s+jZFBhE433XgK7SBCZhdxDmHnWdmaxmlICiBjZ5I4Li/5cn+wE29RyIzkKJQqmbT9RjhwXuGeUo3LngiAutT0a0lOCGZosRFjQsCgcI6z+l44rEdkOc7mqbBTgGlJN6OtG2N1hdsuo4XLy85nk60TUXwMxFF23UYrVAZyDkdj1xdXzMcFQ/uX6Qsy03IGDk/P0dpzWbTs785UknNg4tzuq5ByJC9fcQokVBTo9nUhr5WYAQhRIyW3Lt3jreR29s9L73/IVIJjJB4b6mrCqF1gvNFRULOU1pXV4qqSgc71TTk2jUZSUIlSyRX9P0GpTRt37A729G3mwR+OLfUetoY2r5LgFpIr7uALSHgQ2pJhOiJIhAzmpmKvVxfxdSqwke8t8z4lPILgICW8ODynBdffJG2riFGmrqmqWrsNGHtQFSlVvXYEKi0QqkUjZVSiAhSJAReCJEiX/SM0wgypucdHLU2JLeQalNIk/9a61SL5nZIVdWcYjonMSRjte7zqxV8QQZoci4cQupXSZE+kPeBGCJa5fShTUV8zJ6rqir6LiFPhIiQEm1SCE+es6ZrW4xM3t+RjCXGiLUz1jqMMUTv8G5mmkeUEglhVIroAtE6TvMJ5244mhotAlzskpf1guvHtwhbcVu1VEZTVZogYZxHNrWh9RpZV/gYcTHigsRjQDUIEYhCMDmIs8crxdX+wCc/+atIAW2l0cLTdmcYXWFkpG8qZHYs9sUHSCFom4az7YZKCYyUdH2PEIKu6zBGp7pXqgw8pBoyhhw5pLpD23L6JYXEmAohJqSErmvYbTZ4b4k+5IOe4Pt1SlXqtbZtETL1s5qmYs79Le9S+ptkKnKLRmlUiAiZXqfvNhAE5+fnTBmZbNsWn+vkeRxT5AoRRCTm2riANyWdLX/XOh3DSHIORiti8IzThBARjKbfbnj/l3yIFx5eEr2nqu/AmkprRARhFERJVemnaraSOpae7uIwcipZWg/FGImRtm6Q3CG75WdKej1bS53f9zQlR19+nxDiXQtZfQERMBmY846madJhQCAkBHH3TlPBHpcGrELmw5D+XYrs4YC6rtLXVG4nKIkiIAQJ6UKCqajrCjundoF3lsYYNv2Wpq4RPkIIWOsYJotUmuimdKimgeF4YjhNBHuN1gNRRAI+9wtHnrQ1X/bbvghLZBgGjvsDaEOla2YHWilCDIQQqduK0XmubvZ85rXXwAdeuLdj21YoNIO/RbOlNrA5O6M2khcfXtK0PVpKJBEjIiKElA7nh1UOi8xEhUhu/s/zYjBCpgMUQ0RGSfCpHjVSUhlF8A4RArVUTNmzVxk8KSCKtXb5XdZavPPUffvUoZQ5YpWDG3MfriB/MaZe2HAclwa7tXYxKi3lkt75/JrOOQLg8+8ptVxd19R1jVQZZgngfALi2rbGGMWm77i4d87LL71A37UQA7LSKJ2MKniPiAGtFFJVxBhommYhDpTfV1XVAuKY3FTXWqdUmZLmpkO63I8YaZqGcZo4OztbamGywQYpMVW1vFaJ9qfT6d2a1ReWgmpdL29QyNRTyyA9MT88730K00Yjx+T95nlOkH6GcCURqVRir3i3vPEQAkaBiCEDGelnVEy5elMbpEipUaMlrdZIGVPPK6e5pm7QCrRwICJVVbHbbbl/8QKVaXHeJaBjODIcQCnB7Bz7/T6ljG+9xU2E68dPECJH+JhSqVfe9wpf8qVfzDzNOOu5ODvjwYMX6GuDj5H98QCIXOdIjseBJ9d7um5DbTRtU9OoVPu0dbXcj4uL+8goluhWDq3I98R7R991ue6LyJBqZG89WqUUfLfpErjlHEYlOL2kiDLXMCXSpKjXIITAWouUYLQBkQzPe5/SyJieb9bZIIaY4Pt8iAvQkt5j+hkZImFOfcNxHJnnGWstKMVxGlEqobTn5+eLI4/B3oFdQtDWFR9436t0bUvXNjRNldJImQy1bWpcDPiQGuhaCgieum3xzuG9Z57nxUGso5/MaW85p977dM+1pKoS2UFrnf5kIK3rOqZpWgy5GGBp2JfmfEGHi8jVMzVAYHlgwzCkgyBlSpMKnJy9oBASJRVCemLwib2g7/oiMcPVSuvMplldMYEYd78TYkyoXQgOSUQJIDhS94bE5IjgiGgiWqRoKQQII2i6ik3f0NcdxADRMxrFXFVIDY3SROfQIVIjaNqaTd+lQ+5dakR7j7AWEyVhdgzHkcc+Mk8jm7ZCqArnHJGIrmu6ncBHyeQ8ap6x88Sm69BG4ec5oX/ZYJy1aKkYxwEwIDzOedqmXQxGKoXKaamIAjvbFDGcQ4hIjB43z3jnOLt3zv54pKqq1Kt6qlUQlkN0F4HT/RYIfEyGO04TfdWilEhN7/xsbYbdS+QrqZfMDe15HJmGgcPhwOl0WqKuixFRV7Rty8XFBU3TLMbbty1KCpo6lSTTZLFzYrw0JqXlWkkqLfHOpjMgySmtoG4MlTYpGiqJMvWiGFeMrxjIOI5UVbWkn1prxmlaEFspZWopCInKbYbyc6W3Wdd1KgnyZy6vvzbqdyvf+K4NsNB/EuBQKE+SKAIhhmQUQtA0Lefn50gpUELiSJ4CfferQvDM0/yON5rDf0bEAELM0URKoki149nZLtUFMRK9Q6KQIn8fQAx4HxEkiDiKACLR07wQuHEi+jk19oWkqWr6uqaWiq6qeeH+fTabjvPzM9q2SeilS9Q7ozVYS1c1bDeblFYhuB0GnBs4nU7c3FyjqprtxQu8+egJVzd75mZCidTYv9htUv/Ie+bZUlUVV49vidZjLu5hLUiVPt80TelQCcGm73EuObO2rlNjGJjnKTsbASHQNQ2H/SGlYH6FxDbN0kw2xiyHSUWRWhgyeW0p5GKgUKIyCSFVd8yXw+GQvz9nNhmKvzkOPH77LW5vbxFCcP/+JXVdo9oaUddUVbUc4E3fA5G21gtoY+cJEQVGJeNomwpnZ2qtEmlFkNs9Hi1lAkdizqSKk8ifs7QMSmQqBlcidklB27bBBo/SCjtOiU+a+afOezR3JADnXEpbQ8CFlPpCqgNLxK2qKkX9Z2mAwnvwCaad5xlhJGiJ9wonLSqktkCImtPJUYWA9oEYROYphuxNA0EGJuvZH4dcX3lQAaMMikjw6WG7GIkuNfuJAhMVTdUy+4gTkSoKovcIqRidI4iInSecn2kqjQ1Qa0UrBMpZjK4SrKwqvA+M48Smb2lqg/cOWSlkW+OkBKUwpkYJgTYVngQoIKFuKs52G9qu5fLiHCUD8+y5ubqhbWp2TU+0lq4y7EVkHGectRwPJ550DX3b8Covc6kr9le3RGcxWhO8IzqBFholQPvAPM0YJZE6tV/sPDITsKcDFR1YC87ifGA2hqauseNIFIJKSmJBGK2nqiqGYcSInGZKRZQS50HGSN/1jNOEUQIVI1po3DSjqgTAdV2HlJooZEp1tU7kZOuY9geOt7ecTkeOxyNN03B2dsbuLHFJvRTopqHvE5mjrqpEXo4hgzRQ6QohJFqkyKKVRMlAEIEQLQJF3TR474gZ0dUy8VTJNWEMEetsbnWohFGExP31zqONWpxQjJF+0zHPc+rPRkCqxQEN04TRGj/P9G17V8v6lNkpJQnRoZSi6xp88DmSCgzvLg191wYYkAhpmK1nfxiYXGC2niASfas1kk1tEDEwHA5s+5rh5PHOEYMnhgBCAQLvErImEIzTmAxQJkOMIU02hAjeR5yP6Ji+Fr1nmsaUj/uA9JE6CqSuUouBiFGSSioqpam1SbWnd4n1r02qXVUkivT9IQaiz1B8rgWQgihkZmCkVDYiEDIZYAipH6SUpK4q2loxGYubZs53u9SHQ7Dd9kzzTKVqYgxs+pRqGaUwSqOEJDifIncI2Gli2O/puw4tItvdLj10kQCMaRpAKfZjAgN8joZH5xLJQSmOx+MduphrHZ+JD0abVKe7VA8pqXDWIbVGa5WdgKfJgIW1CUSx84xWuZ6KgmA93lqCtbjZMpxOjKcTx9s9gYCpKl555RXu37/P8XRivz8QteK87+iyEcpM94uAdZ7KmBSpnE9IqNEYrfB+whi1RK8yjWDy9yulaRqZQSTBMA5Lj66kyenvCWVeixl3XccwDMloREQrjbduqRdLFA3OETNwVhnDFAJCKqQUOGeX36dQq597d3b1rg3Qo7FBIHWD84KIYre7wDvLdgMPtxtevX8P4ZPHfv8rL4J8wmufeRs7B5SQiJDRLp9qSTvPkOvBGCJunpHSYD2E2S5h/DjcEtyEIOKdheiJITVLta5TM1cm79coiVICGQPCe1RmfRTmPPEdTIxcw3Rdh6mqRO0SIiOS+Y9MwMnSKhYJmCgFPjEm1C97QLkq1qUQ9HUFwXN/u6M2Gq0TejcPA/fOz3HWcdzv2fQ93qRaxgsYp4nTMND1XaqjrEX6sNQvBeoudU0Zn1oDD13XMU4z4+EIeY9gqduMMSnaScmu7zMjKWLOz6mrCu/8kqoGYooSIXD19qMEtFjLNI7sb2+x84zUCikNZ+fntF3P46trTqcT8zyzOdux3fTUtUEskSIT37WmMvkoqtyj1IYYPJ475e4CfJTatfx9qU9zj66ALWVSouu65V6t0cp5nlNbTaVU9Dgen2LzVFWVUGGllntcEE+fHX75ewiBtm2XyZBn3oZo+x5lJLXacvXkipPzhCjp6pqLVtMZjZ8mrp48ZiN2XN9ccTrusXYkeIe3Dq0qYoToUo9IAgqBHSfqugalud3fMEw23UQhqXKrIuXaIaGgSqArTWMMOnP4iOCCQ0uNjHlGy1vmDOWXSFauhHD63PwNC3OjQO0xU8qAhQwcVkBTKr5T/Zu2vInFuJfJgZAcg84RTASHEgojJC4GRPDM00RT1ci+RwGmrhlOA7oxOe1leciNNokAkY3fGIO1djGS8ndgqUMSEJMAr2J0WusFUk89w1w3ZSpdnY1ZqDtDN0pRKcXx5pbKGOw8czoeUwTLB1lIyabrabue28MxAUVConWqn4ySEDwBMnlCoqUkqoS1lsfjM2rqnVvaIaUNUt7/PM9pGiTf6+VA50ygPLe6rpfXKMZZ6lghBG1OLZVSxKXXelc/FgpcqSPXPNbUz06vNU0Th8Mh9cBjfPYGWNeGxigaEWmbGhPAHQeEdRzmkdM8cq0EX/N/+2rqtudXf+01DseAHR1+dkTjmJ0j+IibpxS1hGCeJuw44aRFVgolApuuQisNRJzzVFXymrXRGQGTSAFKptpFCPAh4qNf5vyMkpnl4Z+6GWHpa8XcYkjp7TCckqcPgSjD3c0Wd+MnwQesTc7BB79E1LAy1vI7rLVIlYCjuqlxklSHhMSLdd5ix5AIweNIbRJD/zSM+OCxU6RpG2yG86dhoKkb5nFckMxymMoB2m63C+zvMhx/Op2IQqT0KgMPpTFf0tSubnDzTGMqlBA45/GzXQ66EIJ5GHDTlChjMTIdjpCHUUVMbaXtdsd2d44PAYREqPSZrAepNIKAUsn4tBKIGBa0MURPlef/oku9PWtnRJCLsynPoUSYkpICywSG9355jsXwSppZImNpRZSvDcNAbaqnol9pO2ilFiMsznXhhiqRyqYYlzS0tD/e7fWuDXDbNehgqUTk4cWOwXp+7TOf4TRMqBBopeDybMtmdw9dtewHy5O3Dtgxj3G4kBquUuSBT4d3DqNVYoLkKNNUKke7xOKwdkBXPZEEt0NEEjP5OWQSvSSISBARTyAQUu9QijQcGe4MqiB6hZkRWf09f1+JdOn7M58xG1hJN/IEW/Z2d99fhllT1E1pzkkPVFoxe4sb5pSGxUi0HjenQ3w6nTBSMY1jYtr3DVOm4rU+0DYt8zjSNs1yeI7HI13XLUiftXY5OMOQaiHvPVIpTJWiZAEfgMxGalKaJROaTEhzhDYElE6MmZvra06HA1pIBBE7jIzHE6YyWOeoTEXdtXSbDbO1iSZnauq6YZrSYGupl2IIKJ3mL6UQaKmY7QjENMcISC2ANCompCKUNgel7SKWCF+a6uuothzufE9K1CyEgYKIzmWUKKerxbjbtl0MsRh9VaW+7TiOS7ah4p0zCKvMJK7e7zMzwGE8omebZ+ccBM98OiK8YBhG5uDx88T1fs/FtsVal2o6IREyFdVKp6HLcZyws82E40QpKj0xic+UtdxeCGnUhxiZh5EQI5Nz1FITfcBDMrRMuI5CgJBYnyhkhDQdnjiOJCQzTy8EfE4b02RAJCbzDYn54kMgA3LJAr3H2Zl5HiH49A8x5NZiyNEQXAjYeWYaJmpToauUKiIEMTh8RoUrZZhnm6lXEScgkDKD/e0tQkouLi4Q3lNnrmPp5ZXD5Jyj7/vloZeI6Jxju90uM25NXXF0Du8spmkS0izFEtG8S8+rjBcJIRiOJ+rzCjfP9E3LPE2cTqeFqeKJzMNEt91S1XUmYDTUTU3bdiilmazNw78NbdPQ912m2kcqbRIRHIHOMH9i0aTasK5r5jJl7v1Th3zNvll/dmttSm1Nem3VNIlA4BPQEzJrKoa4ACjGJIeoVUpBU3aVShYlJYTAbFProa4rIhFnLTEK5nl6CvQpZc34rAdyb09H7oUKOyUGvQ8nptOMsILgR5QiUYEIhOhoa4XbNcyjzQVrakkk7p1IMPVulxvLQE4XpUg1WXCKyYFzEu8EKoJEIUyFi9BGifCCqNIUfYjg8yCwiJEQPU+e3GAni4ipwoiZZykIRDwuuNSo9hFnPdY5okxRz8eQ9GaEQCGSrIb3EC3EGUFq6AdrCUHgbUi1nJR5FOtImC1+nrm1lovze1RaM08RN4f0mRtBFIFhmmm7jtk5Tnak6zqUh0qmelFVqXbRVYWpKm6urxfgSCmFMWahWq17q8fjkd1ut/RHu6bKkWAmek9Tb9EqpVtrVosoCKp17K+uqLLcwv5wyO0HgdKS4TQgjUZImTRXmg43O2rdEB047/HWEfCYWtN3PdMwJcRTSKKKmSfb5nQ+KSoIlZkrQgIpzR7HcanFjDFM07SMCBVwprBzRITZT4uBlmiklE5Gpou+SwZTQkSJkJhZBET0aWwrp5+zm9OQr1L44NBaEqNcUnm4GzguDqGwjp6ZAfqY5p6GaQYJQiceXMieXBIwmWRd53C9Ds8xgxUlBaiqNMaipCTkObvgA156CIKAxLmQ6glYmDbWuqRHoyNRBkIQhIx03s2IsaCB65m0BBTkkBdjannEiA2BaRHZSQYYQ8g1W2aCFJYI4ANJyiBPWGiliSL1jZDJm19fX+eUuiKE1I6RVYVAMI8jSkisTEadKFCRcRgWDmNjKpqmQSvFNE3M80zf92hjlvqtpGOl7igP/ezsLNV+K9Coa1tub2+JMfEbj8cjJqOpBQ3s+36pE733uFxflZpnAZiU5rjfUzUdm+2OyTq0NjgXEEIhpKKuG0JI5AUtBdu+RymNyahliRLGGBSJmF9SwlLfjuMd37SkkXVdE0Jgs9kwjuMyIFxSUe/8U/eiZAMFeBJCLNSxeZ4X4rmbLV3XLga9nvovv7vUz8XATqcTTZ4hLOBPadS/WzrauzbAzfmO8bUbKpXSyBBDGikhtRCEEgv/MEaWuqsABSVFKKmmtQlcCGHFlo8RFSMxw/x3xntXl7F83aeBXGSKWjmVKuM1Qgh22y3Nk+apGlDkuq68Nxcic4h4qZKWjQ+4mEAM6xxeBmSeTfTOcxpGxnlmtg4XI7P1RO9wPuLJMgXTRHCerk7sk/14xFubgBabRJScswzeISVUShNJqlpGKqZ5QkmZ0pyqSkTjukZJSde2qUbLKVhVJXpXufq+z/c1LH/WtKyCGrrMf728vGSz2XBzc7PcN6010zimZxzicqhKhJymmdkFGqnwIaJ1lfu2adB5di6VCvNE8IFKp36nsxZjdGbVJDW2uq6WCFZqsPLZSm03Z1mMokpWPnfXdUuqVwjmd6g0C0ra5tnOpfWSwZqmaZJBe09j+jSGtGp1rNkzxfgKwFWMrkS+5TxlAOiZU9HatuYqWKKukUYRbArXd/l3KrQSd/LOA5QHWt7kOiVYv9kQQgIwRBo0RZnlQ5W0aJ7nJDq0QMEy8T2zV1rIwzFmlkJGKzPftMy6iew0QOKjIOoKVBaVQhHsvKCI1rkFCQ1+Zn8csDYQMmd1GCe8EozWchrGJC1oKiY70jVNEg3ySf/FTTMyQm0Mk3NMw0hVGZyy9H2fEMiMvLV1naKwdWiTNG4O+wNxs1nSxfPz86dg+GEYlpS0oJfH4xFg2c7rvWeapsWDr7mNx+NxaW2k+ySwzi4ti+LIpsnSbTYIZXA+ImSSGJFKoesalGB26aDG4AmONJsoxfIsvfd4mYS9lFaLc1g76XJWigEUtBdYGuzlPZUIFLyHnIqvAZe1Ts3a2Isx1Tqh5mveaDH8cr6KM1tPRJT3VNf1kgavz/wzM8CqawgiYIPFRYdQAhccKtPEiiHYjIKt+yXrIrlYwjzP+VCkf3O5F1dXJkWzAv+TDdan1MRZB9whVgX/DxmNLAJKqVGucmQNOdImwR5E8uxEgQuRyXn2p5EQwFlHtI55mhhNmnJApKqR4JmmmXGeCQHGYcYrQdAyDQtLwZPrKx7eu09VVUzDiJGS7WbD8XBkGgZETAOkbd3g7EzbNJicgkqR5CGcc8iYoPs2G0dVVVgz4Wb7FOpXYPQyWVAcW0ndChpaRmSklBwOB7bb7QJulIhwOp2Ww260ZjwNS611PB6XKFjXDU2bGvyNrrLciKHpe5TRVLrGmEQ+mMdI33SJ9ZINxWdyuRApa5qGCW31giCWSFXeL7A4jUJ4LkSHkq6WiGn6HoFgWqWvxahKI32NBhdn5r1bPjvcpd3FERQGTkFEy8RFMcTiEEra/MwjoJACpTUup47DPCbELiYpg0K/sTldKb2T8mHKzYgx4nyedl+RZmOeyFZKZTQzDUoKmQ0wpEJcWrtMYqQmaBbVWtoKeaYt5uHPZRjULzWgIPUArXVM1uGt5TRNjPOMnR04xzxOSK0JIoE3LgSidzSVZpws4zQREfRNjSDgYqCqa3CeYRzoqho3z6i6QonEsPfOsdtskrCs1uy2W+q6Sk3+3C4gt2PWIz+lTimRre07jscjwzCw3W4ZhoFhGNhsNktNV+rE4sFLxCs11DiOy4EuZIV1n9DlSLmG2Iu373O7QeW6D6Vou56u26BqQ6UrNBI3DjR1xdlul4ximrIDahD5vaV7oZhtOsyF5VMceAE56rp+ypjKlEUBaBZAxqWxqDUj5g6ESSls27ZLml7aC0aa5bOWaYlxHBeD3Ww2y70qjqgYfYm+JTUuUfCZGuCvfeJXkCGJ6koXMD6ikInpIEELMCopgbVVhZIKbWqEyrQjqUnaZzGnjrmPlqk+UaU+kJe5GUtSQ4sCXO5TYTQGQRUUImoCGiF8mi8EhIuokPimUopldElnFn9IHQhihHGOnOaImj0oy+H6lmlwxKCJfmaaHXGYQck8vgvRO6bRohH0TUVlFE1liMFRR4GaPFVdoaTkcDgmdv080zQVddswDyOH4zHVJES6vmcch7sxF61THY3gMJx4uOkBwThP+BhApqHVw+HwVAQsPbEyVBtCYLvdYu0dE8i5gNF1cjApuSSGNDzatu1ymEvNNc8zAZBaMQxjSsWloO27NH8nkgSFNDXIms32XpKYdJG6NdhxTNRfKfBRZPaLzODLQKUSKJLev1mi/NqYQkgEaqXSeFsIIaugJVLEgnpmNLKkqc66xbDWrJiSBYxZ7bsYV9d1yOhT41/czQ4W5zXP8zL5v87sSj+2CDhP07Q06t/t9e7nAX1EIKnqhrbpEvuc1G/R0SNFyBErCRBppYi4NLIrk3pwuRFCJcHVqq4TAiolyKQyFWVOK2OatheZ8hKjSgij1KiYidIyNYalEEhR2C7pa8QUFYUU+JDa6UkYOOJcYLQ2T4VbRFBUUuDniXmaUDESfEgsHe/RdZXJzArhBWebDRvvFxkG7yRnXU+wiTidmtEeO1qqnFK6OY0EiZh6SLpO6Fnpn5kqyUIopdhsN0TfQq7htNZpILlpUroz2KcAivXgaUH5itevqorD4Yh3hSki2O/3bLdbjKl48uQJfd8/VXOtUTylFKdhYJoTXbDfbPDWcnZ2RttvidJwHB2n40BAoIRnnkbaXPMprYgiDT3rOuMC+XdM45h6mMQFDyiHX2tN13XEPBGilEqfP4+FaaOfijjLdHu4E4Uq0bQ040t9WWrAkiF455jmYUFSp9xvXfcaS61casnCOFqTGsp/y+s+UwMUPiKlpqkbrPMJ/ZIKleLgwqbwITDZCQR3kW71Z10wx5C8mVRZdXoVHYl39SMkAGWYxiTTEBPVCSkXRTQhJbkQBSTWTzifxHESmBKQMnkwnz0pbgKriVOk0QKNR0WXZtIIXGwuEfOEs47z3E8zSqbmepuay6fTCZFnx46ngfN75xyGgdNwQgiSxF70SEHec5FY9XVVgYj0fcd+v3+K6T/PM12e3ysHoBT6h8Nhgex9bmEYYxKdKqdpXdct09qmkLt9WAwqjSUNeVLCPXUY4U7CotSIheRcHE5VN0htmGbLOA8gDUGoREhQIqO8jmk8AQlQ8U4zjRPUCdWtc6M8oYl36VsxxPTzU7pPsJQr5R6R9WzSiJRc7pENdkmVSzQrzuWdVLK12rfKaeu6vlyjs4XsUFLLNZVtzVMtNekzZ8JEH5NOpzac5hnr5ox6eqIhGYNWGbAgUZvkZ08Gx4yuAYtHKpQuVoZauJXlw0FmmPgsJy6K0SXzDEJkUaWAIkXZyVpm53EBrPeEaU49uWCx84QMDj9NOBmJ80S0M9HNNFnwSUuJDJFd07KtG2pjaIzBGM1ud8Y8T8i2xVmHkoJN32LnkU3fMM8NT65vCN5Sa0N3vk3CVELm3liSnxjHke1mw8I7FILhdIIsGVEigXOO0+m01CVrtK1pGvb7/XJoyiEq2igFfYQURUu0SMCGXAy9HKbz8/MFPS114NnZ2R01SylcSIp3m01LiOnZJ1VqEv8zp791lUGdqkqT60YzDgMuTHRtmx0RS/q5jjjTlJhE6/dczkPTNujcgys/473PI1Z2ieCl1i3GVoCYEskAhtOJptZLXbjuHZd7WHCM4thCCClCF3Q+v481kPRsDdAFooQoFDEl93m8SC79wEDEBY/UqTFdeJTF2FavtuTuIhtS8mCJH5iLw5TK6nTYbAwgJcrolEoKCCIx6gNhMfwIaYog9w4REucj0+RQKj3YEB12ThuJ5mlGa8kwjNmQUpTSVYWdJvqmoW87uqpGhECjNRf3LpJhVBXTNKXRqmlA1obZOaJzbPoOHzxd12BHixYCGyO77TaJFcVIXSWPa8eJftMnsrNIg6EFhFF5FGaNDJbmb/HOzjnOzs6YpokujxwVaYS0zERR1ykVK60HY0xG7PQCbJT/lmn38rW2bZeIESNIaaiblq7r6boeqRS3t7cMpyOB5GCkUompkxOTeZrwYcIag1GKpkkiwiFHn/J5y2EGFlL0mlRxN22eDK6ua8ZxXAxeSYnSanEmJVIV41mzhYrBpLGjdC5L1C/MovIa6xbJug4sqGjRmSn9xfXc4TMxQFwk6iQZcbs/JiGdzCeMJGW0GMEFv0SnIl34Tm8QcipQJgtKr0cpVtHvbiYrQddJ8LTsXVia8sufZO6BSPQeSIOoQiRUdZwskoDzLklUuIjzAuEicg7sDyOn0RKiRAHTOHJ57x5n2x0awXga0sCqcymSyeQs2rpm03UMR8HhsE+gjBBgoakMtTGcddvkmfMMXVPXeGvTQG72mMF5KlPlFNQ+1Qw+Ho/UdZ14mPJurGYc03ByudYMjRLVEj/TcDzeLrB5SSWLAYRwx34pNVMBNuZ5ZrvdLu/n7Pyc3dl9UBXH45FHjx/nCfGMHmbhq2AtEDBaMk0zVdMhZWLklHpKyaSCPdn0GUprYN0LXK+IW7dNhEzKAWsSdV3XqX6TKpU1OS1dyx+W/5YIuKDNdlxaHQUJnud5AXPWKey6bVPu0Vr6opztZ2uAIWbibGL8G23uok+ZGhdJB4Y8rIhYRb4Yl0gnhEQovUyACYocXlqTJXMtJ7MKVvA+txZSm6OAKkv6GdJuCOs9zpe2SKr10jSExzqbl3c4Ip5gXSJsW1BV5DRZkBWygkoLtITj8URb1WzPz5nHAUHEKMV0OiUwJROhFaTI5hOYMrlkZIunJAFCXdswDSN1lVG+jMSVz9LUCU3T2ahiTL1LYwzepZlGbfQCopQIlwaAa47TcYHKS+RMTJG7xrTzjjrUi8dWuQeW6NF3jk3KBEa0bYtUinGcMtoHN7e3jJNnnqfk8mJCmqd5RgvFPFvcPOKd5eI8ReZt7NBSczoONLkGbaqKQ2avaKMZhzGVFcSMfqqlNi0Zk7WWSOT25pbtbvtUdCtjRiXKFdYLgNbpM1g7472jripsvk9SJPpgCQbFSMvvJZ+bYoyl9lNKLUa6ZhwVlPrZGmAUSOkx0lKLDikrvIwgYlqwolJKWCPQ1qHinWEtVDQysCIEViiC1IgoMUKnFDN6YgxJeIfErvFuRorERRUkYSOdXytV/WFBaEMU2LToDpP1DhI5POCcRSIJIc0OihhoW03b9QQhmANEk2qFCkndtEgi++PA5YMHvPS+V/F2huAQMmIqiZAKpQU+WmKUtF2/9DSllFzeu+D66golYhq5EhpjFEorbm9uqeuKru85nU4oozlNiXCsTBaaDSky1iYdljYfiK7tcNOMkWohKcvcfIY7YnDJMNJsYno94WPSMZFpuLfrt8RDkl8MITGItDHEkBkvfc84zpiqRpqK/TAyjbcoEmqtjUZojTAGFwMSTxQe0xiMT4tWEILj4YSiQxJxUTLaiVPWgLXe07QddV3Tdd2S/kkp8rNLNXbdNNSlLync4lQKclsMrjJqaZYXepl1M1qRCR0aKcvkSTYwG59KU8u9K1G3RLZlL8SKaVNq7lJbFsnHZ2qATiq8kMwhUvU9UWicVBilECLzN2NMXkzINCArklRgDCE3JPJrxcjkZiBmaD8gfEhCN7EosSgEKX1M50mm+cCMkqUUxSNU1mPMddI8z0n1TLjchJeEKElrHDzep2kLIyTDcMK6QNN3TMOAd5ZN11KjePggKTB3bU3wju32Aq0E3qZJ8JQeS0K404YsLH0hkpbk48eP6ft+OVDzPC8tgs12s8zvFbmD3W7HMAzMUyIBuCxvHkOSO1jTo0oj/p08ytJbOx6PC09yiXa5HirGWaJFed2C/q05vIXh0XU9s0/RNk23m7TUVIhEYhciL8pJ7UpCmqyfpykvwXTM80SIjkprjBL0Xctut2VbN0sroYz2pOjuQdylneX9FkMoiOl2u116cSWClVZC+Rze+zxs7BZmUHk25dwUUne5ByVwlChcWhOFHVRoe4VbW4yxpL7P1ACbzQZrB7wQzCEgtSCU/hM2gTExMUy0qRBSg/B5c67PgIhYZu4QAeumLPyTOZjRp8GfmGb6glD4KLExTzwIiTIVAYHzaddA8D7Vo6Q0YRzHtJlGp2n64TRBVPiEe2SFbkkUkarqEjUtgJsnGpMWOu6ajq5taOuKukr155PHj7h3tsPnBwgsacd6krrUare3t1RVtbQJiiEUoKEYjZRy6cMV8EPpvCVY30nolUMFcHt7uxjtfr9fKGd11y4Rsaqqp2QbyuEBFrBm3c+6o/bxFD0thECX3x9kkWUkfddxfXMDQlA1DSbvAEFAlWcH1YJMJjBl8qBUkuVvmrTFtu47KpVWHRTQpTgEpRV1fTepXgyvtCvKvT8ej0vq3OaFosWJFMdlTBLoqvJrl/qvTFOU+1Vq4JJergEZSIyc0vZZ153r518IAu/metez85f3dkgCMi/IUCJQKRC4lJbFu6mF0zjj8vrqhfECeQQo7Q/yzuZ0M2JjYIpgpcYJSVSGKQosCqcMs9SMQRDyEhXnIzYb4DhZhmFkOA1Lo5Z8s6Ysd2GERPgkDCUDS5QNOXVNSx99ksUPLk1rE+naGi2Tp65MEs6NOSUqD7/0xwpYUor6aZqWh7HuoZUHtx6ZWT/EhQ6VZdsLCFUMsTiZm5ubBZxZUL0QFoMqCOE7GSHl9zVNswhjFcdQDs2ah7looRAXcM3OM7fX1zRVkrAghAUjcNPEdDoRM8kZHzjtD+z3t8yZcCBV2fxb5wkalvtXUOWu6xaAoxz+UtsWwOOdhz05xqcnGEp6WECd8nqlZ1ocUzG2Ysil71p6ewUgKt9TgJryGkVmv0S/Z46Cvnhvg71VtMrTyHT4ep1EfXwWv9U6raOWyiCVATdSAZa0EWlZdewDjUkiS1FJYlNT1S1139B1NZXWoBQ2RPpxxiOowozQSZPylVfex2T9QtvyubnunKfteo77a+qu4vrqCX4aqGUSf2oaQ3CKSGC0U9qYGtM0u5GphuzqisYojE7rxBI/wNG3LSGktOidaUepD4rRX1xcEELg9vaWBw8ePIWIFXSyGGmRlChwenmwpzyZUAwXWNDDeZ45OztbUt8lDfV3U+MlDW2yhMU6ypVGvrWWvttQ5Pqcc3e9w1X6FULIOzLiwmPVSMbTgMhoowPcmMA3KRJwpkRSqiMEuq6hMhWbpmXbdtRV6rMKHwjCE3O0LClyqvPuRorWzqCkniVSrZ2ZEDK1s6Rcong5d01V4fLvWNduhWiw3odRXhvu0vXiaN/Zryzfv2bGrNHpZ2KAL51vsDcd83CgwyIEXPQG72AMGitYtFAQiv3+xBu/9hmiTcDKPl4teif3zs6osmiSrA3VbsfFSx/iS3/HV3BeVzBbBms5DBNvX1/z5qMn6GAxVUQqzf0HD3j05JrhdEivGTyVqYkkzuDl5SV22HN7e4M9HeiMQEZBJQLbeztu9tdUpuPKx7yWWnK+3SIIdG1FZTTOzpxt046+6C1KJpRyf0gTA4fD4akHX9LAkhIVMnSpsbz39H2/oGcFBi8pozFmGaIttYUQiYpWenEl9SopZTHyEiGOWY6+OIXi+dPBXEkl5tKhMF+KgZZ+VzHCuq4Zcx9O5WFrgHmasdajjcFU5q72jhGlMzska61KoG2apJe67WnqirZK266Cz5qls027QsKd6FUISZNGrjbNlvdXqGWFwxpy5E+oaUCpZHhFI1VrTd91S9toTd8rzfZ1yl0iZMkk4K4mLM63pMrr8qI4yZIhPVMDVJVkt+l4sr+mjunGGgJBKbz1HA4H5nFi/m1fiiNwPB0YT0dqkd5kGdZNb1aghcCNkTBLutbwyouX+NORYTrSCcFGSG6GG66u3uaNN9+i14qXqp7T/pbTkyeMj69xbma3abl6dMXhdqLb9Iy3N7TnW/rtjuEwcr7d8uLlQ64e32CtBwZefvEe02xpq6QLcv/iHpu2JsbktTdtooHN4wDB0DYN+/0Nu+0ZddXw6NEjIM24JcrUTNu1aG0X0Z7NZrMwN0r6UoCOEhHf2djdbDYJEVUKr1VWFxPoKtVLk53THoNVM3k9vIpI678FaeNUZeqlgTyMwwLrO+vTmjiVtlKtx5feSbGqcq9QklJcIyXSqLTRSimG0zExkHwSZ4o+SfV1XYezc14ncEa/6RHAOAxJSU1J9rc3meJ1J72YDAIiGu8GpBYL9xMmBIKqrpltWgxgdNqmZLTBuRmJgqDSzhCVBL5Kq0FyRzZY3/tyD9eti6ea9PneHI/H5dkVB7buLwJLubBpu2drgF4ZurNzXv/0p4kxTRYMk+VmOHJ9fYObk+iQNhpVKYwU4AIet8znhZi0VmY7453FTRGFxsSA3T+GYU+33XB5ecHFbsv+9jFdJdMUvp0hNgg/U4vIg23Po8cn7P6Wh7szBElZ7PJsR9s2mEozxkClDQ8uL3l4/zIBAbm3FUMaDC1RZLtpadt2MRhr0oLHw37MrRTF6TRwdnaPum64ubmhaZL4lJRp6qGkS2uUrNQEZdauoHBPnjxhkylo5T2U1Gqe50WKo+1TimpdUr/WJolRFaMpEVZKyWQ9zo0LqDCcDksjOvi4iN9671EotNGLRy+N5vKe1/UQMZEbCpI65SglnFjeczqUmfIWRa5jDS+8+AJFAKtSKQKP1vL4rSsu7t/nZH1SzBPJMOZ5xjq4uT0hZWS77Yh1Us8u709pwzQncauuMYkMEgJ9V6O1Wto1CyoZIzbvblCZobM2ulJnr9HQ9T1ZA2Fro1wTI0p5IGVS8do0Le/mevdkbN1SdZGrk+Xt/UC/rfjEp19PNZidEyFbyiQJLzU6T6ZHkaUgshdJDyjXTDEDH96ivcUIUG6mEYJeG1qtYJ6Z9rdJYe3lHqUE1qb9cy89vOTe+RY3O6bJsn3/i8hFI9fjGoWWib95Ggbun50xz2lSoe26JSLdu3dv+Zwl1Sh10pptEkICCspiypJqCiE4nU502VjmeeaYx46sTVGxzKAVT1/Sz5IGlhS2bdtl9KXMoJX0pqoqYgip9lo1mxcIXWuub27Y5Kn5Ytx93+f3HxavvUY6Cyq4jkIlAhZq1Xqubt3/WkeNZPQjpqlp6hplZE6fm9SKynxWFxOPsiC4Rmomezd7WCJ6VenV0GtBch3DMKY9kBGMFui6ou06YkzR/ubmBinlUynqepi3OK21TOGa+F7SysPhQN/3i5MqZ6L8TNHQKVnGmqj9zJkwumqJQlLvztnbgHCRYQ6IEKlIytUiSrTQ1LrGqCTzXgjbMj05hEjqz22/wVQ1Rilq7WkUGBGoBWzrir7S7Ooa6SzueCQFwYnZzkx24nBz5JWHl3TaUPcdk82CtNbRNDXWOlpjiF5w2h+oqwoV0we2IRLyDoC1snRJHYElFSxoYYHh9/t9ElzKN7scygKerNkUp9NpeZjFqAqFrNR3S48qR6o1EFB6h2VQtvQMp2liGO7GZyDrZSqWNPOO0XK3RqxE3/WUwBrMKFFgzaEsn7Mggfv9fqmVCvB01z9MRG5jNIg78aM0spUU0opx3e73dzxNLZYabs1eEVIxTJbDKU2ZF4pZarbz1Npo7xwCj5T9U+hoMQ5gcTLAQkZftFMXOqTKG5PaZS9gqT3XWqTlmRSDK3zUpXZ859q937QBKo31lle/6IO8/cYbnFcV2hjcaHEhHUCE4HSa8nhsYuHGmKYdyrR6atxqHCbJDgYBIXlBGQJGCiqj6dsmydALCM7iYmS0ntthYghwnC2vvf42h0dPePmVB5xfnPHCwxfxLiClYhxGDscTs/ccT6dU7OeoYIxmtjYt61xFmFLgryUfysNLB1os0bCItxYkU0i1yD+U/pL3d1PlJRUtxlMOZknfSttiHYUOh8NiUGu5ifUQbkEr02GbF3R2bTxrIy6/q9RCxfCKk1mje1ImiYUSUUt9u3Y+pUFdRna6bpPFd9VSD01Tqt0K3O9iIjAW57UeEVo7BDtbZKURKq1Im51HhogPYExacyBzxJqniU3fpPVnq2i+ZskshO3sWMv7K+BZuY8lQyifq9zv0top/ch1u2HdfJ/nGSOe8TgS3mK05MHDSx69/SZCRCQBISIOgYtJxNQDh2HkcBrSGuW8p2FRNROC0zhzfXKMXlG1Z8zzNUSVFqmQaGdN16K0wmf9zhjgyc2RmZrrwXIYHbObkE3Nxz/+S1S94dVX38fFvfvstuec3btEVycOwwnTtRz2ew7TSNe2KRIryaZNoEcxquL9SjpY+jsF0p6m+am0q+s63n777fTwVOLDlrS0pHqlr1Ump9doW/GW6yHQ0hAuadOa5GutRSvN4E6LZMJCVvdJkTvC0v8rn2WdVh6KtmeeOi8gQqljykFaz7gVR1OMA5LD7ft++d1nZ2dJakIIhNYoVRraMksgGg63+3SgBbSbzRJZnLNst9vlsJcIPVlLnx1PumcRU92tl071YMoMTOFueo/L4FSJTOuWUanxC4gFPIUur/+9IKTFOZV0vxhcQTvL8yylQJ0nZ56pAba1wbmJvmt44cUHuXmd6CW6Mtx/8SHn9+4xA289ueLs3n3iyzNumrHechrHJNLqI9YLRq95fDNggwJlMHWLmNO83s3+JnnJrDGThi8DkxMwOI6DZZg9w/6Iuz1y/8GGwTo+/t//B/j/QddtuH/5Qqp9FDRtjW5qVIxMs2XbNMzTxHR7u0Sy4vnXWpQFEi+E7zQD1iaycW4F9H2fH+SdNOI8zwsKWqJqaV2Uwc5lmiMf9K7rllprSf9WjWKtNcfMlFmDJMWjh5AmPZTSC9BUIls5IOWzlj/lYD41UZ6dhhB3k/UFqCiMk6ZpiESaJpEAdme71BboWsZhWtJMLVWSpveBaTwsDs7FQDweUTqJ5JocidZ8zkQc9wsjJnhPlZ2akkUbxqQoKcgZw5HNplsiWDGyQj1T2WiLMyt167pHWu5BcSzAU9P0pb1TIms5N4X/WUoQo5+xKpquKlSw1MJw//59bg5DGoyNqW/00vtf5dUv/hD3L1/i8dt7zjev8MJXvYoySf35+vbA1dWe08kiMHS7B3jVcJg9MYq0DNGnCYUhzAwx4L0EK5Cq5hAnougYDhZlIyoEZjz7GBHzzP3NjrPOMN0esOPIm2+9TtU0qNrQ9z21MZg8DHvz+HEeEjWE4JeUrG1b6rrC2gml0vBxYZhM84QPFikUKkvY3e6vF/Sr5P8lpSw1QYmuJW3Zr2qfYkyHw4Gzs7MFFKjqOnFeY9KiATgdjssqt5IqrXtQ6z0HxfOXlK7Ue+UglWZ2OexrZ1P+SCEZh2mp/YKPGF2x6Wusm5JET6VRQbLZdLRtwzTNOGdp244QIlpqnA14GxFCZ73QxGaKLkUziVw4suuaTYjEOdUiz0dKtSyMkTGp2ozjhFeSpjJoBZWpIYqltiufdelxep+ic/56nCbcNC/1ezHOdXpZgLOS0ZQoB3eA3TrVFyJpyEb3Lu3q3RpgJHkeJVLqcX04LXvOvXNcv/kWMkROV0dUe47uWk72SKUkppLcf3CPL/2y38Y0OK6vTyBrbq4eEdxEW2uePH4LHRxX1xOvv/6r/OLH/wevvXXF4TRxcbZD65HoI9ePnzBPYxqUrTRtXRHCjFKaumnBBg77PdGmnQS3xwP72z21MWy7Pi2/lJJ5tjQxsj8cqEyqZ0857RzHE03bYHSqFYsRaW04HYan4P9S5xWPW6hh7/TCRTx3zR9dAzjFcMqqYyEE3jnmmAZWCzBSDP1wODylvhXCnYhu6Q8uqenKsIrRv5MdswZgYkybpnyOmuX72rbN6TZok7YxnZ3tMup7QueM4PZ2jzGGq6urZXo86b7YJd0tauAh34u1jMRyOPNBLyniPM/LvpBUIgia7TZHe4nM222VrJbotZAlhGAYR46HA03TcH52RnQuiTwJwWzvKGrAQmovzrU4LLhTCZBSLmNhawS3bZpnXwPepS5yyb0jKdWYx4nXP/lpHn3qM3z57/yfOP9Ah9ps2YlziDPBj4Rgub5+k+CyenSw7I8DlY5UyuB9WrxJ8BxOJ1578zG3p5mTDRxOM+M485lH11xfPeF4e0tbabq6ojMq6VcOJ26U5uUXXuB9H7jk5uYGGzy1SgptwUX2+yNPHl+hpGJ3tqWaRrbbLeM8I8sNzoTv42lYag1EkfrrgOEpUKV47TWVrAAnwFP1FLBQyUokK+BIUezq+z5T7O523Skh0pLNlWRCMeJ1VCs1XfHex+NxqVOKCnRJi0sKVYAfYKl9vPc0dZO4mvn3lGmDlDnUIFKq+vbbj5aIfDgc8DZtP176mQsj5OloURBorTXb7XYxwGIwJZ0rDm0N/1trETKiVZ0NYkYIgzBpguQwHPDeLzS/EpmUUpzfu4fN7aXWVKjqabCmZBZrOl5JOZ1z7MrW4vxMS1peMAEgR8BnzIQRQuRlFZ5Kp4HKGJLGZhK6TZMOD+5fsr234zOHW6SqaCqFrBtCmHHeIpWgaQ2zh21Vo0VE4jmOA8HPEAP7/QHrIzf7U9JzmRzCBabBUklJfbZFxkCwE1eP3k49Iq0JWjPOlvt1zXa7QwI61ymHPJ4jMuteaQNIbm4PpJGWDW6cqKrSByy9s4j3Fu9hvz8sD6g8hKZpGIZhiZLlgRXAohhGOQTFqAryto46a8MtzCGfB26nnGKuAYLCS1z4k/lnS81TomqJsAVAKU5jXdvM87xonHjvkSqJOxWjGcdxOdAxRE7LJliP0jodulAm2acl2haw5HQ6LfekvP/NCogBFoMs96S0N8rPrsGTOmct6Z6qpQbUWtLUennv5X6P45hEllcgjxWWIO6Qz3WWUto+xbmsJSeKcZbPVhxgKQOUlM8+AsZY5P8k3t95lOgcLgZGoRgAvdvwJV/yQT75L3+C//LffpG2a5Aa5mgRStI0G6pmg9AGHaGtNGfbLe1mw+1hj58dTnVcHW6ZYkLmxtOEHWfm0wnvHFqAjAEjip5IkikMEd56/ITz83t0pmLb9gidZtWMrhibiWFOAMNkLcLdTVGfhpmqSiTySMT6JNWQjLUm2iS9HlbI1ziO7Ha7padUvPqaz1n6RyXKrFsd70Qey/jSNM84m4Zhh2FIS1Li3Q7CeZ7Z7XZAkpwvB9jkCCCEYLPZPMX2KJ+z/L2AMoW1U3Rmiifv+z6rFNz10EpUTWlwhdEV1llElMmxiUgIdolyJYKkelTjg1si+MXFxRKNy0EuYM86Vd7v90+BRuXelvS6OAcIbPsu0day0ZVnUO5ByJ9ju90ynU5pYDsbe9cmGchSO69bDcURrJHPYhOlNizyFM45TNOg5DOeBwRByMq2IQT6ruNDH/oi3v/iy2AqXrs58PbtkaFSnI57vuylF/jwKx+gPz/jdjjwa2+9xZtPrrm+HdgPjkfXb6Fj5Lxtab6457w/x40WO1tE03F/c5+33n6EP5wwtcAIiw4ROw0Q0phLIX8n/rdB6IhQntNpYnexwU6WOCdOYG0aTNVg5pnJWhAjgsA4TUnx23lihGF8QtPUiXsYI1JBVQ5ojmKlRRFj/KzeXzGu4rGXVdDxaS2SO6O5S/tK76+qquVhjuNIpXVSNnNh8c6FSfOUgUmFyupeJZKsqVLF+Es9VwjlZZr7KUBhmtHa3JGslWKz2SwpXVmso5RaCOO5y7TUlyXSJmCpoq7vJPJL6lZ6Z+UelHZMuUfls5XPUoCudD8Nzlqcnen7lmEYidGg1B0BYUFenaPJEobjOKZWklRLvRwAU5ll4cu63it167rvWUgUxXmuhbLGcUSY6tkaoIwR55M8u3WWXdvzJ/73/xeNVDw+nfj4W4/Y/9wvcHVzzdXbHS9eXvLFX/Zh9sPA2zc3mM0Zr3xIUXU7rA+chiPD/sDp9oamrum7M7r9SJBpjZfqOt7e7/HjSJApwqEqlI6Zvjbj5zE3+gWmquh3W7rdlifXV0gpuNidUWtNxCNipG070ALpFb3oGPNkO4CLAa0VwzAzDRFnJU3doE3akydIWp5z8Eih2O8PnI4DZ+dnOfr6xfDKQ+m6blEhK8BDoaiV2qsYJtylPpBQVCUlkkRg7poWkZXNQkYFERJtKqb5yKbtCPFu0mFdL5VWybpuXM8flve9uFohcN4x5z0UJUJaaxdwIkYYx2M2GJ1fRy49w3fKtxNTrRZjUnUrOz+8u0MaF5BnVQeWcav1IU+UPDidRiYB57serTSVlvRdixBPr8ZbGu95KACfl3X6JHHZtC0+hmUaZU0uKIZc7l+hL242myUbKcZafk6rJMD1TA1Q+JgoXBHcZInzTGXSSuXbw563r5/gQ+Dm8RVvaI09P6O6eMLN4ch+GLk+DexPI2f3oaprmqrF7Ax9u2EeR06HCeHScKf3M9r0eBUZvE3LE2NgDhIfJSokKpzJ++YqUxERaCm4fvyI+w8f4kTkrcM1L56f09U10zhgvKapDZt2m4SlBNzeJECia5oEX2eY2whNnB2z9cuNDTFgdIU3ga7tORwODKek07ndbTgeD0tULA9ku90ukaakLmvx14J4lsK/1Ic6141NXTOEJEtf1w3KGJz1DONEiFA3LeM0o7RBxrs2xZpM/U6IvUTiAsKsiQDrHqgUagEgSiQvUbm81/QnyXuUSLsGgkqbo0T8uk6tAkjaOcZUiw4rpIjTZFHi9XxgqXeXrCILOG+6BmvTzg6tNU2l8dmISk1Was+S/ibNm7uvaZ0m8sszKb3VkrbDHQNp3dpZi/CWVs8Xen0B0xDk7bMaFwOnaeC11z+DFJrbw8gweqqqZz6NvPZ4zxAU+q0Dp3HiNI0cxoHTPBL0NcYkZNI5xzyMkLminsjsPdZbpps9Igi0MswucSdRCu+SBsl2d0a0I8PpgJtntv2G4zCwPdshheB4ONBveqx3DFPa+PrgwQNM2xC04ub6ht3DhzR1zX6/f2okJ0nap/Vm1s5J5Swvy1xvRC0HpaBf65SvFPAlZZJSPvV95bCVuqsckmVp5YrmtPbIRhukUEukWaYd8uEokhjAUweqMHpKVCyevED8a/i91FV1lceyVmloiQrrNHNttOWzlagPd8SBYowl2i4gUJkdlHdrpkvGsE5Bl/owEx8S46iibsrqM8dpSA13a++k9ed5XvYmrskWcJf6FjXx0qAv6XN53yXdLOlvodiV1yn1ptY6EQXi/GwNMGqRVpGFQNO1EB3H4wGJYhgcbdOycZJxgsNoGa8ONI9uEVJzmlKfyEfHkRu8D2htEIC3Nq9tj1n9LOXj080NnVRs7l9y5SPzaWQWlu22pW8b5uOB68dH6n5LZ9L7evnVV5Yb3HcdRkqeXF1xeXGP+/fucToe8ccjk08bXWVfLX2cx48fL2jWMiVg7SKNXtc1Lk89rxkwZUtr2iWfHszpdFoOtlJq+R3lKgaz7gcWxkZRvl5/vbAskn6JWQ7MmjhdXq8QACBF2t1ut6SbxWuXKFVSvnJI13zVvu8hioWUXv6tGNo6hV3OSHx6Jm49SVGicCFolwNe2DpCiqeoeuV3FIcmpVyQZiEE3XaDDx7nLfMcaesObXTeSZLIDSXal9cs93TtfMozL9lBcSolgyhgWSGhl3q5DD4XVHfNpNE5bX+2BijKzZUYJdBtw/Hmmnm2DMeJGBW3b18RR8+m3zCFmf/6s//nIh8Yo0OJiPczQwYPnEsit1qpJKYbIkLLtJ/dBSIyDVrOSeGs33R0lWE+XuPmGaMk201L33ZcXFzw5uuvY3SSat9mTRHd1hgleXx1lXfHR3b3zrl/7x7BhwUFvLy8RMo043W73ycWhtZJIXueOQ0DUmYnlA9BqUnSIQMb77Qi18yXs7MzgOVBSSmXUZymaZaRl2IExUDKgSkGkIzHL8YILO2GddtjTUErTeP9fr+Mz6xZO8Xbl5qr1DQhpMZ5ifTl+/b7/eL9S9RcK4GVuqvoupT3UhxGSUdLVJ/nmao2y2uto0qB+gvSWKJkjJH9/pZ+06F0UsLWRtE0Sc0ghDuiRKHlwR15vFwFgV4P3ZYWTnlW5f0UwyuE9PUkShk3KxlH2eH4TA3QyDRo6MaBf/0v/gVf/z//P/j066+j8YjoCE6gpiNhCrzwgRf49KO3efTo0xyurxExoiNIH4guCeV6kQV0I2mg0oechmZ16wAiJnZD0ncSDE+SipSQksakJR9VqJFEPvHJT7LbbLLEwYySiqausVLw2uuvs39yxYOLC77yK78SZVL0LUZQbi6kRnjMRiAzuXnKaYnwkXkcqbP3LA/UWovSd7v21nVBm5Wgy8Mu37MeDVoLDxVPba1d6FnrGbZxnJJ8frzTRlkbQ/G8ay5j8c4FLo8xstvtFpJ4iUbrSYdxHJBCLYZadhCu+2DrdLREqEIs2Gw2S8pYXrOATmvqHpD5tWWN2h1gVRxPSYtLup3SUYPWSRZSyLTi27rklLU2T6XD5b8lpS3PpLx2ec/ls5XeZInaxSmV3192daxbHKVGXfYDxmc8jqTyurBhHLh66y2k91xsNog40MVInCF0ilkJXn6w4/Unr3H/TFEFyf7JDcIGdJBIT1KrVr6IZyOjQMS8tEVK0nuPED0ihCw9LwjOpX5TEBAcD19+ma6teOPxI6o+Gd+9szMaU3G4vcXambdur5nHgQ+97/180fvex83NNdZ5ZpfkEM/Oz4kxLKlZiQrWWRBJInB3doYQMJ5OyHiXTpWHm+b+FKaqcKfTU1C/1nrZYLse7i3GWxTR1oZT5tFKJCyHcl27lJ8r6Vn5ObjTJ3knibh8vnLACntnTUpew/fBx6fGqdYpZnImSVi3vPbaSIAlFS73oYAURdyoUPfKAXfl+Uq1pHdrdQFgcW6m0lTGcP/iHpWWNI1OA7x2BhufqsFLPV1+ttR2BQwrXyvPat2OWdfYxQmW+1kGnUs7qDjU03CietZ9wNnVaBk4Hg54C1q2yCpRyGQ07CTYBh4PtzzYnfHF9x8ytDU37Y7Xw2scrm4So4VEpJWolNaGuDA4AIRPTXMfPVHkNWQksVch8owhgn67o263fPq1z6C6DZLICw8u6duO6ydPEFIwOUffb3j5xZeotObnfv4X2F8/4cH9C97/wQ+AURwPT1Cm4nBM4y5Ka4KdaXLqI0Ui/d7e3uJ9Spevr6+X4rygdnXbYo8HfEzT/13T0jctMkszlqb8OuKUtWRt23LKhpuKeIUQKtXEwSGFJgYByDQHl0nZJYUrhlO89XqveSEPCyTjON0NSbuAl+kzO+uXZTgxptnPZGxp7UBdN3mgOEnWCyGJQaBUalc4Z7NT0iilF2dQUuyiGLYetyrtheJEpnFK6Gh2xNM4g0jkggLeFAM0xtDVDbXW2HFC1YYxRqJNrSQhwhJdy+8ovdXiLIoTWqOcJX0v7aKSFaxBp5KavlM9oDgc5xxK3m34fWYG6H3SBD2djjm1EQglAYXCUCNQcoAYaUzNru/ZNhVn3ZYwWlSA2+tb7JSXrIi8i0C+c5WTZLZu4WACWdI+oaRn52fEKNBVzaOrK+qup+o7zi8vkVLw1ttv0tQ1lczaHyFy2O+5niYu753zgVdfomtqhBTMbqZra6yLdG3L9c0tx9OJ97/yCm62Sw1ATHsdCkBxcXGxGMzS7L3NA74hsNtuubx/P0vjJ7CjTLCXxn3xxut0tABAVVVhZ7946oWiFsHOd1J65evrw1TSrMIWKZFG5Ho6pavVXQTjLi3uuo62bbm9vc0Hvfos6lUIAWc9zqbV0mmFeGpFRCDtXrjTzlwmPHLaDjwlfVjucaGeFSeSaut6ieLOuaeI4d55ghR4JQla4QFRmSV6FudT6j9gAbgKmFJqxOKw4C46F/DlTuJeLYRwYCFKFDDrTpUtIe7PnIpWqcg8nXDzRPQ+q2JpJBqJRMokYmRtkpirq5p5dpzfO+Pi/j18Zp4fOaQVXuKOWrW+YhDLPrt1KiCkoKkrDscj5xf3sdbTb3ZsdzuEMXibpuYvznYQIrvNNt0s77i8d87Zdstu03F57xw7jdzc3uCnPGQZLG6eeXj5AGV02nSb0cySPpWp8JL6rVdSNU3DcUwSeJf379N3Hc75tAmpbTmejsshK8DEunZaSxiWlLBwQdc8xLX8/bpBXMCj9bxfef1UI84oyUJsXiN05fVLyrve+FN+viCJpb4txOpUMQjqJte53kLks0Z2qqpa0ND1EHIx/DXSu6amGaOX+10iV0J6B7ybaJuL5Z612Vi9d0tKWc5X13VLpCtzmQXtLGlzyRgKwFJq3zV1b72yrHw24KnPlf6BwuB7dgZoROBmf01wEzE4pEj8P0jiq0oVeQEPmXokRNoStNl0zOOO6ANKCA7HI5O7W35RjAwyYJD3gRf4Wsq0iNM6x/bsjNm6JOTbtozzjDsd0VqhmoZ2u8EohZ1SM/ve5WWiQB33vP3WLcFNbPoWiJzvdvgYOX94D6krjseB0zAmhNUYzs7OFo9XlmMWr1iK7ouLC66vrzmdBtquxVRVVgEPT3nNcuAWalaOCOuxooLEeR8w2jCH+SmAaN3ML2yT8vVyr4QQix7mMnRqDFqb5feuG+XLrJy7Uzcr0aEghMXgy2Gsa4MVLrXjSCsACjsmGe0dGaBEteJ01g3sNe2sRI91vVlI4YW3WjKFpmmoK7WIe52fbbm4d56oheOwADzrunEtO7+WlVj3Lct9KF9bI5lryt96IWrBAIpxGpM2/67bTs/EAKOfOB1vUDKhllpnbcigcuMxPQDnik6lRjYVxii6vsPOM8F7RAygJByPi/d7KgrKVKOsGRCQwJB+u6PtW5yPbHfn3O5Tw1kQ6JuU9soY6OoOnaUHayMhONpKU287jFHc7m852+04350zzTPH08h+f+Q0zkvaUgrrcrBvbm6W6LPuRz169Gjpm5nKMJxO1GdnWJe2OU25j1YecHnN/X6/qFaXZnA5nGmvolxSuHJACxuleOQyIlTAjHJgSjQpaVRcDfLCHVJaXrt8lnfe8/JsCnq7NOKFwuiKYUhwvQ+Oqkok9hjuWg3lUJbWwXp6pCjAlUhZpkNKyqvzuNvpdFo+S3nPKS0UqEZR12XSw2F0adXcaeKU9LIAQAX1XhMP1sSHEmWLsyqGu27VrFcCrOvcgqaKeEeCeGYGOBxvwTuMSrLjJSQrFdBCMVmHyQ9bZj6cVDVGS6pK0zQ1rm8RIeBjxOYCd/2wl0V5n2Ox52azod60SK3YnW+ZrWe726Krinubnk2dRqS6pkZEj5aKKGRaqBnSeqq61mw2PRf3z3Gz5a033yQAp+OYIqpJIrxl0Hgcx4XLuX446wZvVVVsdzuiSOK0wXtub2/pm5ZpHDOjJi7we/GSpcBfP8g15B1zdlD+fU3eLge5RItyH0ukLXsVTqdTuiddx+k4rNTL7mD5gk6WbKS8DgiUuhsgXpPJp3nCu5gYKKLGunGJVlLIBUxao7AFbDkcEl1v3aBfN/nX3EqV2UglNSz3SOTU13lPpxr6rsdohTaCeb6T0wCWc1o0X8vkSmnOr0kIpUQomcA7ieClBl2PVJX3X5zJNE04a5mmZxwBrx6/nqg+48QcA5O3CKXwNhCDIyLzuIknOkew6cBElRC9uq4JnUPFZAzDODFPM0SRCLIxL3NJAh9EWDbsSqWomxatK8ZpYp5vqOomaX9ay6cevc297YauaQjzRGUMk1J0XY/WFVob6qYmhMjt7YHT6cg0zWn7rTZ0m00imjufIuE0cTge04xbjPn95IFXEpcV4DQM6dCb5K1tHhuq24rZ2tSPcg6X6y47p221p2OiS8WYFlFqYxAI5mlGSInL23JjDMSYdrzrvHZZm7K2LBn8PM0kXDhpqBQHoTJtbp5npjGpadt5JsTiOHUCtlbGVQy9GBAiPVNtaoiRac61WAg0bYPSSQq+MR1KpZ6cne1T0D/wlETEGtQoSGgIPrWmYlJTU1qhpMoLQ3PbQwq22x5jNBAxRrHddPSbDpkBoFNe8FlS3NLKKHVdMfxC1Svo6nrO73Q6PUUAV0ot318cXqmvS5pfspt1G6h+1tMQCgemQbea5uI+swbrYJhnjALrInPw2OCZbEKxjOrwTqFVh2ok2AnhJF2j6dqGcRgJPjXdQ9mmJH1aukli/IcoaLsN2lREDzJKrq6uaZqGs7Nz+r5F9x3EgDaGvm/SDvKC9MXIbC3zcaZpao6nCSGgqnvevrpJtVTmYNZ1WiY5eY/UagGOpEhLQdMG3sh8PNzVNESOw4DOejN1Uy9M+Wma0ibe2aGVQSnDNBaScTqoujLEAMN8129LadqJSEovN5sNziV5R0RktCObvmeYBpQW4NNnbJuOEO/0RCFzHaOjy0teKmOQIlUBzjmqusFnpe1iKMCiPi1lXhstoW50lhh0iEol6Xeh01amDJSUtHatBLfmf5bDLoS4Y/FEv6R3xmTHFJLjijIR9I1K84QyOzMlA1ImxzPbOafPKfq29R1KXPi3a+Gp7Xa7RLG1Ns46owghLbfp+z5tQVbqKaO21nJ2drYY8bpVMU4Th2HglWdpgPdffAVlOmTV88Vf8T9xfrZjHk988nTiNB3QpmYOkTHCtZ3xxmDHmau332bbt0kbNGoiFUIoqkphjGAcHCL6JeUSISz9vxgi2lRIGXn86A3azZbd7oyHDy4xJqlw9X2PdQUh1MgYqCvFNg+kHo8zUt5NoFdVqueeXF0z2XlhYBTGiQ+BwTmUVmlLU0gaH3aeGacZ68NTCGaRlxchLjJ9RUC3pGAFnSxes9RuwALDrzmJiZ6lnwJ9ysOd5pkYwrLeWmvNPE5Lb7HOqWlVVUt9Q37d0kooNV1Jn9ZGUf5rpKSSmhDvlk6WlkJSOU86KjJrc/qQHFVJ2QpiCyygT6mBy2dd0t94J09RSAXep0n7PDiRyhqtgTuJ+DUBfCERzDPR68/6fWvaWUErS1pfol2JzuX3bzabp5xHAQsLkFV2C5Y0vdzvuqrYPOsaMKoOWW+IqqFve0zbIlTF62884dFrn6IyNW8+eoI9pdRSVQ3/6if/JbdX10gCbW2w80gMjmk8MtsT82Sx1uF9JPoUAaXM6Z5SIBRdv+V4PHB+7x7dpsXakbo5z+nVSFVrtGk5jTN1jDSVQZga07T02y3z/JhpmheoX8o0jf3wxRc4HI/LRqHT6ZQ0TbynyYdgHE70fdqqM/lArQ3GpD0XXZvlG3KqrXMK8k6N0fKAS6sA7tZdFW5mIQevGTZGG2IdKTL36/aByaRto9M4VnC5Ls3w+Rpi32w26edDSHS5mPY8RDIh2p+Au/0Sa8ADIZbIVtoVfd9zmgZcSdFIJUMhq6+5q+XwlwNbkO1yoEsdHOJd37LUaUqlUbeYSdrWWgYiWt2NcK3vSQG6MjS7pN86c4Odc8sQbWGwlKs4mALAFcMu7xvuasniTNac1+LI1gTvdzua9AWQsTVRaHwQBGlwUfDam4/5yX/1b4mHW4TzRB/Z3r+g8lApzS//j//O6XBIqKnK+wBjQESPkDZPeIvcMslDpJneJIgIGXlys6dqakzbc5iu2O12jLNDmgqhDdZDEAEvBMdxxnnPaRzZHw6J5G0jTV0vSshKpWnmqq4JufGtVJr2btt2qdkiYJSiaxrcbPFypu1rXLxDCwHqXNyPuS1QUrACHJTrcDjQ5X0U5fCtJwLW0WmeZ+rmbrylgCwLPF9+TinmLNVXDK4wc9ZTFTFGbEjqdamLFxeD0KiFZLyeREiZh1icQnmddK96XNaErbOu5zyOBO+xSzp4p/ZdsoxyX0p6vv7cwFMSgEII2q7D556jdw7TtZyfbRZQJcawRNLr6+vlZ6UIC+ezMGHWzq0gpQU9XkfT9dREea/la2vgpWQya2dSHJcAzLOmohXhGwR5XZThzTffoN7uUP2GcBqR1hJj0pNsz8748Ee+lBceXOaiOH2Q0+nE6XRgnk7c3h7Y7w8465knm9oYwaWUQygCAqUMZ+fnNNuzdNgjPLo90nvB2dkZwcE0HPMDHAhuZp7SzsCmrtjWHVVGK0vKppSiqmuEulviuMi353+rqgp84pbutlsevf02V0+uQOmFqeG9zxt/WcjIxVsDlPGg0itaC+aWvlZJuQrLpnjWYRgWA173xtYHwHtPpTTtosimUJlGppaULYk11W0CFqIo9XZq7Siynk5GfcvPCplGfdb8z/LHxoR4u7zrYb/fU2UEd90ELxFvjUIWx1OMJYRAiH5BJosTcc4hlKLt2rRRtzKZ7H0nOBxDMqA333xzYSgZnfY5ljSyoJrlXq4pcKUfuObGlqi2nk5ZzwOu+aNwx3dd3287Wyr1jA2QGBAEqkoTg8fZmd2m5w//r/8rQ4Rwe+DRpz/Nz/7X/8IxRuoY+Z2/63fS6PTh9scjT548YfIzwmi07NnpBmTN1dU1UaX2gwhpd52Q6WhUTcfm/AFIxVs3RypjEEJytX/EG4+v+cD73493HiFgs9shiUmxO3i8s7SmTlt8V8yakua4cCdPvq4XhEiFv1KKqydPuHr8OHl353DTzCHrmayNp6Rh5cGWmmQ9DbH2qKWVUIywvIcCCqwjSXnP5VCsI1LZ2y6EWGhlJQ0EloNdIkUZrm2bNhPOU/tnPUZVUizv078v/M8Sfb1Dack4jRynJD+/z/S14N3i7Lq+p82fMTnIcakPi1F777FZHLcY5fJ5MvlCxYhWEqETQnw6ndBSIAXc3t4uxIOmqfM9ztE+Pk34Xqtgl3vzTrJ3MaryrIx+mghejHFN7l6nsN57gvOoZ10DWiRapWn46XTEzo7TFLBaMwuBQzHqmrNXPsijU+T6127AOk7Xb3L1xms0GoIbsGGmbirGyfL4as98tPgx0J/d5+wDHyDqREKWJIXhTdcn+XFlUC6lqJWS4Gx6/dPMB97/CvN84ub6inE4IYhcXtyjrgxdk2hICf1LKsup7gjY6W4gtKhvpfpCZUItidXgHLf7W+YpLcismyTaK0SSCwwhkMA6T103hODw2av7EKlMTdN1KAlGadq2RghwbiKNWyWUNERPiD59Vu5AgWSACa6XkHfbl/Q59RSjkEw5ApXDUOTxd7sd1iWQAJdXWFuHQmC9TTs8BCAFu/Md3oe0YEXCFFLjPXqBqRuOYmbwATkFlFN0RnO7v8GRCBZtm1JEozW73Vnqo/qkvVJqqOJ0yuQBUaTIHSLBB5q6pWt7nLO46FGIRG7vOobxhHNpeLuuNMfTyKZridGDd8RgUSImwee2A+84Hub8HC2zfXpbUqnDy3OWSuXNvxUiJCVA4QNIichEdRf8YpCFyVMYQzEmxe/JP+MasD27B0qzP47E6PnFX/hF3n7tzVR/SIGfBkT0nHcdanJ0teHxFHn90S0yKDZ1g6grulqBiFiOyMphfIXwad9DKwz67ILU5Uop140PCGMwpoIahPcICcJqdBPAWn7ttdeoNbz04ktIESAG3nj9tRS1xsS8N1oTvKerkpccxoEhz6+dVmwVrXXaX2HvWPAlak3zTIh31KPCDQVo6jqjkwGb99fXbZNBpsw51AalspamFJyd38O6ssPcYrTOy0CzhgtJGtFUFdYWiQOxAn401rrl62U3eknxyiGb55l5ssxjroW0zllDXltd5Q1AIgFMERKTSUg8ClM1RJuWpRyxeGOSI5sdlcjzLVIhtKJq2jRcLSTjNCX9FVJPN4S7BSjr7bJwx3yaZ8s836V5lU6HWyud2iU2RdmUjjqUFDjr2W17rm8P1EZxtkmygKfTCW3K7KbCOb+k+mtep3MOZx26Mhwyp/Z4PNK1LfM0YZReUNjUob6bsSxE7PX8ZjHOZ2qAu4cPSRp9Bz71yU/yxuuvcfPWIxqt8G5iHg7E4KlMg5wmmCeuTzdc3VzRaIUY87j/YSYGOB5mTpNAeQXB46LntL+lbnqiqhIIE7PwkjFM3hOjI/oZi0CT0kopgRAgCN547TWInot7Z7z68svsb285Hk7L2A8hYFUCJ8ZpwsfwVLO4NKFt3r5aQIJSB63ZFKVfVriOzlpiTHqjSeKuSr07Zai0pu8ahIBpOBGigAD72yPO3aFpbuFJetpNSwwRpGKcZmbrMHWDQTH5aUlD16ntOoWFO6Fbv9JcKTVmqSOtSz3PQgwYx5GmrhFCEqImePAxrT4LAcYqgq65vH8fd3XDRd8z/MrA8bBnU58tQsLrmrWua6ZxhOwY3oli3rFv7mTzU5SK9P1mmSJZ81atD7R9n3qQQXG1n7jaD+y2G7p+wzSlldnWRxptUKWsyL+/tA4ga/mYtIW4yyVD23VZ/Z1FPxQBRhlUuFM6Lz9fSOFr4OuZGuCnPvMGH/jAB7l3eZ9PfepTvPzSi7x4dsY0HHjy6E3aZsM0DDy+esKb10/48Fd+NbtdD+IVYkwecGdqnPPYyaLUCeMdtQR7dcXxdIJ5YHz9V7O3TLqfIq8sS6miZ54nZAicbXq2XY0SAlUbfE5d26biuD8wDwN1XdH3/UKIHk8nnCybhDwqr2hesxliTPKF6wHT9Yqrtm2f2g1Y2BMxZPKuyKJMs8VUFU1dEYNktj6TBWpiSABDMoy0eSmpg6WDdxpOTOOMqQwJD06NcR/Sfo51U3nNWSwH966OtNnLx6e+b5lUlzI5uAw6pd2FMwFJ9JAa2xPBOTotsd6hTMNX/8//d97/8qv80n/8z2y84DOf/jRN0+FdIGpJJPXICsghpcxlBZ/VOlgT1Es9XbisZC5o+fqa0B1iZMgRfRhvqEyFVBKhHdf7KSHvlcZkqcm2rZOw8mqSoTTWpVJJvNkksWgiKCEwdZ0GxL1PtMKgCH5OOAQw+TvhpoW/ugKfnqkB/tf//LM4F/jtv+O3szs7441f+1W25xs2u5a60wQ/I5Xghcnxqdfe4s3bqzwEOoJQSc789ohGYBCJjhYsV8cDHA4E7zhev0mjDbVK3siHgKmq1HTWhkBD33d0TU0vQEwz2qR5xBh8Slu95/xsx6brGMcBoe4EauWDBxghub6+JsSQVqYVZsXidROhXOu7CYVCmi4Pb2kUq7vNqM4F2q4nEtEqoquKKATj7NCqQsZkCEJExiGxcbRUC3nZ+7UQkE5tgNzUn6YUmZsoaArA0XU8efJkSaMK/asI7parHG5jqgXlW0PylpRAXF/fLlmA0oYQIIYZgUcECw622w7ZaV566SFNXfHiiw/5zC/8EkobKqVRRtNUEmenRbx3YYoIgYhhqU9L1Chr2dYIacky6rpGcTcFUnixAHVlOA0jwzhS1w2nYWKz3fH4OmnWdG3N7CNGRrQSnPkeY+4kNoy5WxEevEcZgwoR6TytkIkiOdtE/QO0MWlDb4z4zJVNSK1cDG49wvXMI+CDswtkSPsRdhfnfOBLvphhf8OjX/1VGpmkANq2QeB45aWXeXS153iz53Q8EhFMw8Dp8ROktVQxYMPIPu9wanxECkmtFduzS6QymBCJAmRlkFpjTMWm2eFdQt10bXB2xmyTrmhrDF1b07UNTVUlCXul0FXij1aZETKPqVUQiFxcXlJ2vZf+VwgBO99tQi1pXJmFKzNzhWlh8qiPEBqhUhsgZOaGynN9tWmASC1rYnTsqnO0VszDhJ3sSkzJgBCZdhUTCCAVxqQaRkpFXTfg3XJ41t4XWN5nQRVTZE9/L7J8pcZJaafAhkAUEqlNEsHKYEgtJZUR9MbQqUhsYPvwjPe9cMl//2+/yKf++3/HH05pHM1U6LrG+9MCzReHJaVMukD6Toh4rcFSnFr53vVwblXd7YM4HA5Z/kPjvUMQaSvF8XjA1A3BO6yN7LVhth4fIq0R7PpUi2utFk3TMtZUHK9GUAHj7YFxnmnPdnijGWUa9G2aGhEiwqfBaGJA5wheInNx5PM8L6JZz8wAv+5/+VqaTYvual566SEvv3CfT/zix/n0z/8cOip2u455mrl66y2iqOgQdOfnvPzgAZ/8xC8zHvfc72vECH46oMiLGnNElAKEEnQPXsTs7ie6k1IE0sGUQtCqVMgrASE4GiWZ5om271DZqymVUsWuqRFCo+uaruuWHQtl77f3fmHmSyGIQtC1HT542kYwz5au7xZ5gcPhmKODWmqWCMzWonK6EbxH6Sz4CkglqdsOiVrk7YlJGW6aRpTW4ALBWiJwU0aUcm+yaprMh42ZyWIQUlKbZnEWcJdOlT5caUcUyL+qqrS6Wymsd1zd3ACCWml8DAjnqLRkHi1RSJpuS/CRjQxsdz27TuLmE/vg+fBv/wpqpXnzV19jPJxwp4RkHo9HOgF+OuLs/NTwsLWW4D1t1sBZyxr2fbecsc8eeH168LW0L4QQGJWYUONkads6URejRynNZC1KCoZhxIh6keA4Hk70fUvXtCASkursjABqU3G8uuHw9ts0WnN0M2fve4XBztgxEH2gMQY/T1y98Tp+GND9hv7yEp/Br9boPKRcPftG/M/+/H9jd3HGi6+8wOl0y+PP/Crj9RNeun/O6fbEyY9M7oS1B443AxdnD7mZTrz95Irx7bfR00TUGoEgGo0WPb3zuOAJMi2iFAKcFOwuzqm0Ae+TGltOz4QQhBiZppHGKKSPxNkha0PXtbR9R6UlWktMnUZ63Dwz+bt+n/WOcZ5QUuKmu76XiKlGSUYP26ZfIp4Pnq5PBOkQkl7oOE9oU2N9IEqNFDGhmBL6bkNdNxyOB8bhQJxGYlWDu1OURsDsHUELdg8umMaRKTqsDIw+9VhVFjySMaJzCjePAw6eMr7Sx7Kzw7s0AV8iCFHgfeT/zdqf/di2Zel92G92q91dRJzuNnkzs7I6VpHFImUbomTJMgzwSTCsBzcv+tPsF7/bBgQLhmFbtmzLssUii5SqyarMrMzbny4idrfa2fhhzLXi3CKLzCJuAJn33INz4+zYe805xxzj+37fFKTD60dQ2mKLkiFIbp/FUyjLvq247ybOQbM93MB8T1SR0zAxA5uPP+UHv/l3eP/uzJs3Z6yq6ELHGAL4GX89o+2TZWqZK4o+siJFhZ+lS6y0lN79MLBpNxlBUX2nNIUnneZyB7xeRXRxPl/FOYORasHA9dIJpUEnHBsKVeJHuBwjBZrDfoclc2SswuNp6pLz8UiYAmN3pa40ZugIsed0Lih2expV0sfAFD0OTzy/ox464vnE7CzzzQENlCpx7R65TDPPDx9/vwvw9Ppbvv3yl/z2T/6nfPGLv+B/+7/5X/M/+P3f4/ntc1JbM80dOimGa884DPz4Dz/jm/t3/PN/9keoccZEyYrXWgt7B4ExhZQbu0ZTOkc4PXD+4ldrGVOVJdvdFpRB2wJn5eFN3jPNE2me6OaREiR801qKwqC1IqQn3eCH6HWl1Hr3Wu4oS5lpjcUagT99GJAC0pqfpg7rLCUQohI1ibUUVk4559xKWd60rUQVpyfcwYfKkoXGNgyDnF55eJ5SkpFG+G7IpDGG7nIR75u1aym8fG9jDRa7AoXatpW7yTxRt5IdIW1zYfporQl+YIqR66xIZc2l0Lz47Dk/+f3fIpmJh6+/QPU9z3cH/tE/+g+pTMs/+Rf/NWPfMafE5XJm7K7YFPEqK3Oaem3CLK9bo9FJr+KEsspSN61yCtMTp3NJfpKN6gkteL1en5pPkKVvOZouzoQIpXXsNltJJ9KWwcPkR5IbUGVFmyLOaPrrleh7HlKkcJbb2+fU7R5/OuJSwiRP358odhti8JRlRYjyvpV1g5pHrFccyooBTTkHxvsHjq+/5DiPhI89B/69728B/sl//V/xe//wD3m+33K7aXl8/Yb/9+u3/Kf/6X/KH/3x/4df/eLnXI9H/Dzzk5/8Dh9/8hHvrkdi9KTg0WRcxTJryhfypJToE2MkmJldioTHd8zThC4cKdacxjOmqCjqHUOQbmKpFcRAW1VsmprdpqVpGnQmYg19Jy6A+NSNWhwRxhhBIOb7yDJeWDSVtnxCJizqDbHryAnmstlUR6jqgpAHtvBE4foQ266UhJD89TGGRozJIAvDOcf1KvyYUJXfUVxAVm5ME1oVK9Jwuad672kbGYK3bbumD4mutMyd6KfXSPZYhtHT+8TDYKDd8Xf/vT/g7/7hj9jdllzDzI9//ye0Hm6Klsa0/Pmf/oKf/dlfgPdcLxfmcYQU0DpvWFEaLLe3tyuO0XtPVVbsN3v6oQcS1mogUZSOFBPT1K8d0GVWp42mKp8CTZefdyHUGWspSoPPQgKtNMZYhi6bmpFKqGkbvC157AdQNZWNXE5nQn/FqcjdZ58xRbnDN/sbaSJ1F4ZzB1XDZv+KeZYxzKZuSdsD175HW8swTYw+MMcEx0foBtrkuX775a+1rn7tBfjTf/pP+IO//3uUBuqyQKWEDomPX73keLzn8d17bASbFIXVHG531E2ZdzARN6vF9I5wRvPeJjukMezaDY/ffIXCcHh2h58nJj+y2e/ZtjUYxxgDVmlKp9lv9hy2W2xZUGUHeGHFbpRCDqDM96FhGL4TJzxnh8Q0TRyPxxVTcDweuXTiHviwwSEudpGXSXe2xGkLaIxsx6vge+myyQI0BB++00Vd7jIh5xMu5dZCWP6QhrZ06z6EOhX2iZ+ylHhLF24tqT8Y6IcQ0UGYm8YYrLMM4yguEQsxGVzd8Olv/ja/8/t/j3ZvKK3nRdGgQhTC1wz/4r/7Kf+//+8fczyeUdPA0HfoJCogtJw0ILPE/X6/4iTqusYZl+/c2WDsFiOsvD/LZrXYfJyT9KIPSQCLPlYSdSd88BxPV0AoeSnJpukxTN5T1BXKWgJw6Xti4fDDRGkUjS1Ajcw+p+vakmQNrjTYqWfoz5TO0l+vlPXEdZgoyoY+JjY3zwh+JllHKguqohZo2L4l1IbzN18RLsfvdwG65FFxJhFF0JsSzjjZoeYJnRQ2yqmyaRrqpl5VA9po6XXn8ksltbhGZEVGyeF7vH8AD0Zbgt9zuLuj2e+4Dj2n9+9RbkClhCkshWtI00SYRorSMU6TdBangboucbZm6HtSekK2n06nVQ6l9JM37MPuXLtpucncEuA7Sn5pYQdRr3iPNgVjxhfqPCBeRNnwxC9pctruorZf1DN3d7eM07S6GxZngJ+fgj0XrsnSWVvmeWsL/TuLWvSgy8B61T3mBhcojFtc/qCtYU4RhWbrFOHxLd/82Z8RP3tB2Jbc1i3WKr59+w1/+mc/5S9/9iuGPuDHAYaOylmCnwkqoYxGabBG5o/v37/nxYsXvHnzRspQZUg+UdXlmrBcFI7L+fwvYemXEcmHI4PFIXG5XOSqkJVCy51R9KMSJWeto3YVPk5UWEySPsLlJLHU1W4LhaW/XijLmtPsORi4Tj1WO57d3OKngS5O3B1uMNYwG0vlSoyCfu4p9zccs+wx+hnd1hynCT8NKKCy33M2hLMKkifpBEahjJEP1OYPOiV0MoDcX3yYmeeJlAJaLQKn/KUSpGxDyvedFCNVVTLN8PLVJzx79YLH44mv/uIv0daSlKbewLZt2dYNm6ZmU1fUZUHwgSl5Cmu5ubllnuXOprVBK8M0PaEXlkW3y6fhghs8n89cLpdV0bDMAJdch6V81VoxTjPGe/pBJEgxCWI/xbDChj404C4n2dKBlWF/dkNk98US+rncExcc/lL+zvNM8EG6p4q19b220a1d9ZTLg+y9ZJpP84RzMo4Zrlecq0DJidtsdnzy8ccctlsmH3j42V/y+pdfYuuGf2onzqd7xumKjoHueKE/djAHNBGsJkWPc4bdTozJ3fm6ugYeHh4EcDUOq1cuEVmSh+d5xhWOIQ/UP8Qz7vd7OeWTSAWPx6O4zfOVACUyve1mK6XgODEME0VZYktLUVm0ScR5YPa5A17vAMO3b99RlQ5rFaMP1PPMNs5Yp4hEujHweBnYPb8jaalkNm3L4rgvi5rgNTc7R/fuge225NyPKCfs1cF7RvPrcQl/fT9gWVAgl+loDU1RYiLMuWGRjCKkgErgQ2QYRH0SonxYSiWImXCNWoNSlFagFdYZNrsNu9uX+AD/7Z/8CfM4SrNEKfa3d6gtoGGcJ4rRQIwMfY9Xit3NDTFGjscTwc9reu7qSDcSAKOVQrPwNwsup+Oq40MrlNYy3/FBMIp5gbiy5HQ6MvuZpGT8UNc1VdXk06jKA3y7PkR109A2DaUrhdeSopiEs3dwmjxGW1QpVcH12qESqJRIKHwUSrQuKrbNFj+OTNNIVAZlXD6JpdlTFjLM1s5Q182aeXC9diitSPnnHcaJEAbI88W7Zy/4gz/8hxy2Lb/6xS+5PSi+/PYd96+/oTcz57MYqk8PDzilUH7ZTBfwbUVZFIQE5+ORwth8jxNGzDQFtAafPKUtUErLvVel3CgxKCcKnzkGjDaM08TDwwNlVQKREOT+Pc8T8yzcHKUU0zgT44QrSmKK1KWlqIT/46ylMpbSCCDs+c1z5piYZlFATbMnYTK3R6LNNm1D3/W8Pl0wmx2xrIkk4jzLCU5g29boqcePHZdzh0Pz5vUbtp+8QqnEHANNUzH77z2erMBGJe16V1BqQ+ks745HETWngFESqBIiaOVQ+U6oAqgol+SUqaUhKUzh8CnJoL1u2Rxu+Pb1Gx4fT1KW5vZ7W9VsypJ206K0pht6To+P1GVJXVU8/+iV+NmmiV3bMocZPwtb05QyFwohw6K0yadQibGWsqo43NysTQtXFKQgQ1Zyg+h0Pn/gKI/EBAtn01nH5u4ZQ99TVyXBiymVlLBaUxaFoNbHkXa3pRsGMFqAxkmRkmbMQuekNSr/np9HQgEOTVXW9N1AClA3WyKBYZ7RQFU1xJjJ5dl1vyhKjMn+tFlGL22rcLbEB0F+1HXLZrPh/f09VVmirUP5wPNdTX98w7v375m6q5zeWk7cpOWOtsmu8rKqn/IUtIwbxnHIHU6597vC4pxh9DkDQ7MqjeYQmEIgzTMKsEbiz2PeXJWBEDyusPJQK/n34EXGtzR5YoxYrQnjQFCKNHssmtKVFFXDGBJRgbKaNCHNP2lqMnQj7+7vccdH2VibBl0UTFKoYQuHcwajFP35nuv7t6h5ot0/xxU1oapxZYnRgSnjNcrie54DfogSMFpnn9gias2etihzJXFrW5gVKlpSkJSBKUa0KzCZGBXyWOJwe0sCvvj2LSoqbm5uUDHBoojQRnbD/FBPMdG0LW1di69tnhnGIcOMxJltjFC1FqTDNE34aaIpynU4/XR3UCs9eVHgBy9R3D7rDp1z+CCt/RQTgxuZ58A85W7gNGEGJTYeKzl1FsXUDcxRQiWHTu49SWseT0eUsaupd/JzBhwb5pgojAivC2Xx/YgzhqA1g5+wJmcTTDPjPDKNI4f9fh1iL06CpYk0dR0hJWK8ooyMRcq6oKpqqqIgzjPReyDx1ddfcn9/z8P9Pd3USTc431urquJyubBrN2tHdeoHUia7uaJEK01TtxSl4ANjCii18F+exiqLeDwtz5Qx6+dmrcVpgw+zULDDUy5fXddroKpzxTqGWbrWRVniU8JpTe9nXIooP6GWBNzchxAhv8JHkSTWY0n0M4VzbPJmE0PANhVBSEb445Hjt98ypcDLzz4lupopSuk8TBNtoTEobFEwlb/e0vrbLcAM3xVrhnQu7+7uUDkuOHPN8N7zxVdfcpkDqtnK/dAYKudo9ju5exh5SG9vbxlGCT9p2m0ers8UZbmWaslahtMZG6FtN9ze3Kw5Bvv9nmt3pShyquk0oZIYOZVSzDEHLnov9zkvd8FxHCm1WscFC0xJqFoVhXOEGCibBj3PXK4y+B0GKZMkMTdCGvCzZ9u0JC93FJ0Sm8yQfP/uLeQHxTlHrVrGFIjWEueZ0A8U2mInT4iJMUxURcM8zXSDaExJEWU1UUPdNqTomeZZEPpBuq/LvW9xgC/No6qqJE4rSLx4ShpjCzabLZ/94DN2O6FKf/XF57y/f8/x+Mj79+9kU1VqNTJfzmex7FgjEsCsTkoxUlj7QSCJ+AeJCmUl0QqVpBTOG952u/0O8sFagzVixVoCUY017HZb3t2/ZZ6v0tnOtrBFVLGAkD7U8RpjmILn3HVUdcUc5Z5vMw+HJBv7te9zMrOiLBx+thz2W7a7DbasqKuS2U9cug5XlqSYuHzzDXaeaJ7fkaqGLikq52AO6/ftrx2qH4iu/RtW0r/lAvxQPW60zLWUcRyPR6ZJpF1m+XMp8ebtW7YvX/Dv/Ef/Ief7R8ZhEDNvDEQ/M00j4xBlkJvvK8QkJWtS+PDAZrulrCopU+aRsrPcHm5W8Kxxjm4a8+4e17keMVEsANtCEASPUTBzt7t9dgKo1ZKydCsXII8k7CgxdGqNKkvKXOYoDUVRMk+zOMpBTslpFgtVNnSec0lb1hVeadq6kYTe4Ala8frxHoYBN0xU2nE9d3hloGqwrWM0TixX84wKnjQFTGFBJzRwd3tLd75g8p3V56bNOI5st1v6zCwV9oqT1xgik59QU8AVFZvNlt/9rd/CWYVRic9/+QvGsUcbCBGcMpJYHAJ1UaKRE2+72ayYj/P5LCeX1pRFiVVu9UQ6ZSTLEOF9otJqxF1mfs65rKE1jH0vzxgwjRPjMBCCwJQ+JJPJLLagLKt11rk0paZpYs6lY5g9fQiQx0FzK/f2w35P07b01ytT9iy6qqHZHtC2ICGlsTWGUhvaqmV6eEtVWpJT2LoB64heVFGtshRFiU2T6FQzp/R7XYAgrAtIoETBYLLAd/nLxBku865pHInWMFzPnO7fMnc9164TB4KfGYInBcG3ExPkgM6oHDHfD2MUz5+PUuLcHA7c3txQFoW0/WOg1E5kXfOMNYah6yisQ2fLjnU2jxc2DF3H6XSSxBwlZchyQgCrpMuPcoGeJtGrLqRsAfNm3EGMWa2jqJfhcXZGDF5ob5tNKxTwUUYIz2/v+NFv/YQf/v7f4Y/+4s/5s3/+x8TTmeHc4auCc4iUtzvssxcUQTPdPxDPR9Q4oJV4Jn2caeuad2/f4qc5N2AK+mzbKcuSx8fHFYnRdR2bzQ6jLZ5ZRjxBfHZvX7/D/M5v0Z3PRD+z322JKXLuLkzzRJmrFJ2tTct4ZBpHSZ+qasI8M46TmFYzXkuhqKuaRGSaRwHuGiBfT5Y02WUxtW0rCyGfpDEKfXu5Emy3WwAeHx9XVZA1dp2X/nXit0acJoRA9ImoDcok/DTTqwUBpmiqSmbD3jPHxOkqEWxtUyFtMGhdSRVgTJHZJLSVz3kboNYGpxQtBu9nHt6/x88eozSlfUri/V4WoLWOcRgzvkBYzCg4Hh+JuazT2cZxvpwxxvL+yy/42T//54znC9pL2KaNEtDidZSOn5JxhFIJJ3Qj2u2BcZ5ASY1+e/eM29s7dtv96l2bgmTb3d/fQ4pU1qLKkqqURsgy3hj6Xsq18ITuE+XFLFDcvIPudjsWZF0opbSLJHSQxX+5XinLgpiixITNAWvEpXG9dPTDQNcJm2S721G3mrpuZHPqe2rr2Gy3XLuer7/+hn/07/4jfvt3f5uf/smf8le/+CXlFHh584xP/97fxVcNj59/y7c//UvBH8SAjTPRRHyITJMnJREIx5jWQfY4jpzP53VeuASUKKW5Xjum2aONpW5ajo8nrCv44ovP6a8nztcr59OReZ4k3WmaCOOcA1BCNkhDU1XUVUXTtjweH9fSd7UUzWEtNY0160gmEXCFRRs5pcZpYtO2+PAUmT1NQrVLMWZLVUJrqGu5sy+lpFKSBVFX9TrW+dAGVFoRTYAIEUwCq5S4JbxmYx2lE6PyMIou2GjDOM5UhTBkVbIUpeP47j12fyficSdOBxc90/GIKoW63l2vDENPaR2qKCiMJujv+Q547UbiMFMhptPJKJLL6o4Qc8qtSMvO/cikoDtfuFwvhBTRVlNrR52U7IxKWCnBOlJdMY8dVUroZHFNg4k1URmKomR3eIZPMKQk99B5phsk4GOz2bCpaja5QTDmclLlHbYpBZFg8ummlaLrewr1BDByztF1HYfDQWaFVR58X68CYppnjBKejEbTDSPRJ/aHG3yIdMNMaQzOWjbtRjDrIRLmTPaqRGz8zcMjN2i8esPx/sTzH/2I3/l3/n2e/91/iEKx22xRTcUv37zBHQ74mwNv3r+j2h+43TR0fcfxeMIoTQieafJczh1DNzL0ckcty2K9Wy2Y9a4f8ElRNS2wgKk809Dxp3/2p9RNuWa4T4OIHeZ+gCjD+yf0YaKbBuaUuL9e1jllW7VMGukaz55t20o3OUViyKeZMwzzTJpyQlNMXIccamMc0UfKouR8PjHPI9rl9n7TEkNicp7LpaNpm3xf1KuLfvE4yglqwHtx35cF2mrh1aSAHwK1cfTXjpDtSLJxTTI4Two/G4F6hcj7t285PHsBm4KNvqF/3VEHUGNH3x+JyjLZlmOfuLl9hnOJaA1+6uiP3/MYYn/3jKIUO40xhnazwRaO6zAQtUZZh0LzG7/126im4e3jkck5fvh7f5dEonQFaZoYHo5cTo+0OuF0AXVD9fyOb774FfPQY5Jivl5xRUFZicn0cjqhnSMZjY9Pvr2qkmZJVZZcL5e1o7bkoN/c3BBjoG1biqLg8fFxbZmnlHj27Nl3iGFa63XQ+6HHbs42puXDtsaw2ezw2bHfthumviMqxTCOLCPYzWZDBAYvdiKQ5tD5dMZ2Pe/f3nMFXv3kN/jo1Ut2Rc318p77P/spD9/cc/r2NbebDS92W6zWfFJXHI9H/DByf/8+l/AxR5XNTPNI1+m1FLVWcg37YcbF9MEAfMy62cT79+8pL5JhYY3hdDzJ6aUl/3EpE5ehf1mWmKqgn8ROFXOX2DqHRgTwx9PxO2ZmyOJzFZ/ECVko4KeZdlNjC8MwdLRVxSV4LtcrbVOvwuzlc4shYsun4NE1sDM8kb4TcvdWxqyJxcoa8PE7/JaF4SoxCoYweggT28YRxplXL59n9qyn0oYpj9MSgQmpotra8ezuGVVZo4YrUSl8mKnt9zyIv331kiKnjVpt+F/9L/8XlDFyTZH/+H/2n/D+69ds6oYf/+ZvMyvNqKDeHzifT7x5/YbheuXycGQ4X+jPV4o0k6Ki2B3YvHhOilGaCsriqiZrGJe72EjTbkk+EMaJwhiqJfoqJd69fUuTxcnLOGHFA+TItCUp6Hq9ror8xc2+jFMW53xVVd+JjQbWU2UR+S6LNAYpYecoIvHgA+M0stls+ObNa2JMzFE6xM65NZasqir2VQvjxOf//F/wyz/yUqY7x7u+o9Ilz8uKl89uqZyEnzabhk8//Zgwef7ipz+lKhzj0HM5HzFNg/NiVF10qMtCHCfPMHRUGZgkCPeRoTeUpeN67VaeiUJJMEoCH2bBrxuL0mSw0UycpLw1WlPkDexyPksjRpvvgG0X4bk1hqpuhD4HEIX3oxWM1w5T19TOce0mmD06ROI0r7rQD5EVC+ZxFbXrp3zEGCUjZPZiAEArtM53U/VE/V66psvJmVh+JjidO24OLQGHTprp2qGtob57xjR2dHNPtW2pTYmyJbPSWKMoCosqaiY05vtWwsxGMcVAyryMtmkxfmZOkb/39/8B6u+lDBGyJGOJSnP/7Wvuv/iSt198iR8Ghq4jTLOUA3g0huj9Crc1Soy509BjtKZtG/pxxNqCeR45PXpubm8F5RBkwfTTTFPXHPIdbikpl3tFTIph6NdoqWVHXvSFS2T0AmBaWB5LTPPygb9//579fr/Orlwpbe2qkKaRc4aYOaN2kK6jD4F+GJhm2YU/BMRuNhuursRUJWbTEP1MW5QEBT/8+BVmSOgEw/nMm8sJreDZszt0hB/+4IcYrfn5X/4F33z9peDiuytF0TDN03eaE5fLhegDVeEwKmY3iqh8LqdHzqjsFpeG1c3hwOvXr2nahuv1jDaKohIIrzZG6GdGQ0wiZHZiEm7rRqqQQq/w29X6lTcrlVhR+mVVkXIjy1UVUz8Qk2eaBoL39NeOqqlXNCM8BWZ+yFFdvhapYV5VUnHku51kTAhykfQUtf0hcAsU1skCHL3HR0M3JpSaMCT6jJes25bGaqYYQFtCUlhtGOYRYzTN3R2uKoXi930uQKoSrxBpmRIP14KvU5isMdOgRF4UQ0RNPb/66Z8yn6/oGNFBuJbJ6KyfTDm0Uy7JPiUUEaUNRWE5PtxTtxuxqljN8+cvVrzBcloVzkmLP5edC4m5LEvO5zPasCaaLqZPYO1iNk3DZrNZUYOLs+BDHOE8zxwOh/XB8iHIvciIheWv26qUMbKhOEelNGjRdy7l0kL4uo+R3bM7hvMjcRjZGAvGcP6rmTZJsm27l85kVRjefP0lOiYKW3A+H2We2jRcMoOyH/qV8LwInOu6JpYJf7yiYBWni/3Jcj53BB+pSoufAvfvHylcBUmJVYhAVRWEfN9v20biypThcrkIFMsYpr7HKIlAMx9sgitIyQvXdIFtpWzrUkoxTBPXy4Xj6YEYA/3YC/mgLGAYVifLwnD9EAOxbJqLAN4VhTBIqwptDUprAlDVFUVZMo9PqU273Y4xz6C7WaSLTV2JwuvhQjd4DtuGw7bG1vLcXHrRtfbdQLXZ5DhLOWWHMFEYR3n7ijl+30qYsiBmF4TRWlrORlO4AhMNc4jMMWPTMx4AI9VySCNGKZRFZnYqYZVGJYm4tlqLuibfMVRWooiiRhaUsXaFp8bwFK08jSNj39HUNTc3N6uyZXEdFKVddZHLvWianpAJCx9lIXEtH+qijnn79i1KiTpnHEfev3+PsY6m2TDNM5fjiYQGo0BrwjyTcvc2Iki/D3H1K7YuCoqiP59IhQM/M/UDZV2j/EwXPKfuQig1d3e3AsB984bjwz2vPvqUpcN3fBz46KOPgMTDg/zsi+Nj8Rh6H9humtWYrDUo4hqm4px0AIvCrSXZMAwYl10WWSi9kLmNcavheBECiJlZIt2WhbcAlgCck7t8WZbMIVDl0cE4jhyPZ86XC/3QCQnOGCY/MmTY1W63Wzew5SqwLMS2fSIXlGUpiHzvQeeE4LwgE1lQzxPK8c2bN+vVw5qCIYvry0ISjtCWqgpEFNos0sMKHZDycxSBxDBeqNoKpQv6fqSbenzU/Dqe+F9/DKENQ0qAxqGFg4HFZmOrQeFRTDFi08R4PkpedwwkrQlRBLxx8QSmSIpyYljn8slpqYqSfhoJQVgwhTXSPkcxdRcu2cYye4+a5cGwznHurnKCpsR+v8fmge84wW63wznHw8PD2jnbbDZoBFLr2g3W2dVBsAB7zufz6p549+6dzDdnT6GtoAPnmTkGlDakyDorm70XjJ0SEto0dCsGvShkVBKTlINF6ejnCWMsm3oj5ObJgy0oy0LkffPE/eMDm7qkLBzRTyQ/c72cqcqSL774gtPpiC0cymoRtxsrVYnWlNUSammxhWIcFPMUSLkcq5tWEnUzqCl4z2bT4JNsGvM80/Xj+r7M3hNmL4RvZ9i0DZc8H61zB3kYOgpX4Aq7QoyA9W76YSR1s9kQUdRNjbWaaRqZxxGj9NokWTbI5dfee7GMLQosazCFIwAeEXpra9lst6Ts/FApQx6T3N2teYJDTfPA0A8oJc9GUga0x5w7jElEpdi2LcoopmHAaU1ZaXm/honheqWoKqq2ZRxGivQ9g3lr48joVHRIeK0FphQjIXrwijkqBhUpVODbL37B+fERfJYlkFBJycVYgdJpRS+Mk6TxRG24Xq6UdYHVmmGaebh/T1E2+Gkmec/h2TNcYSibGj95UU+kRNXWDPPENAzYbGJtm4a6qVbry4f3rxgCPkQe7x9yR1Cxv9nJwzNP66nZti2Xy4V5nul7cREYa5mCZwpevJF4rLY0TY33Lu/OT+k73dhLXoDSGKUEUouEZO53W+LDAzc3d8xj4PH8Hqsdc4zUTcN0vnAlQvTMVlOUjm+/+kKsU0gX83q94lxJ0uLtQ6tcfinKumQcRtpNwzB2fPTxcxSa9+9O7Le3vH98YPYzMc0Yp9jvN7x79w6NDOyle6spiirrMR11WzD0V2IUbSxKMkNU6XDGUFfCMy3LgmmaSSnmWZtbS/8lHUmAxBJBVtWyAE/e49BsqhptLXWW1y3XgsUxr7Q4K1zhKIxmjhHjhEYHrNmGzjmqomQeJ5Gf5dmzycLu7nqln0bqpiHFRD9MFK7GtiVzTPQzuH7GmIHCQtU6CmeYh5EYPNYojBFy3TxOzNNMXX3vg3grnTHv8cHLcDZIXe9jIs4wBph1IvqBt69fU7jiSSOq1CqElTWY8wAK9+Q41xqrZSbn54TJd7mEELNubm8p6ortfk9C8zg+krLu8/T2LbvtlqqUB6UuS+q6xljF+XxeL+l933OT1TRk79xS1jw+PmYv3iR3CaQZs9wrL5crm2YjP0cuxYdxxGT3ttVGlCHDQAqB3WbDOE4oLeXshyXu9XrlsN/x+PjIMAz0fU/fjSsdoCqLjJ+QOVxhBWB0uV4ZOxkjNFkLO88z/dBjK0tVi2haUnVlE9C5O/jixQt2uw277Z7nzz7ieh5593C/3nWlmdOtJfzC5izLck2NWvyJNzc3610spcRut5OmSG6oLfj3JXvBe8+U2/1lVVFnBY/WmpByVzl4/DxRNw2vPvqI7W7D6XJZY8uWtKMF6FuVJVVd048Dh5sblNacLpe1OSM0u8tTV1hprH4KoXk6/aa1UdS2G6x2THkTLsqCx8vI7IXC/mzfYIyisIaoNcGL+EBbiQB4++491hWM4/d8AjrnULMnZpiRylKueZ7xMRGmyBQUqbT01473r99S7dscmJhWP66CNfU0hICfJtmB+oxdSBFlFNYK+uF67Xj27AVKa/pxYNYK//o1o4905yulddw8u6NqKva7HdvNBquNfLhKEcK8Gj1jjNS1qCemcaStm/UOuHRDxSgbiEkW5oeYiKauZUjtg0jxjGHbtiQlNq2+kyaIjolt06ISbOqG4Tp/hxGz3M822y2n4wO3t7ccH8/4/GFWdc2Qh+ils9RVQVVayqLg3du3ENUqtF5mfcYaRj8wjyP73Q6jNS8/+ojT6YypNFNWrJRlyePxka++eEN/nUTzWDwRAZYyb5ombvZ72biCZD3M+Xu0G4FfLU2pw+GwLrhD1qEu0c6LmXiaJmpjOB2PzLnzvQjG50AGZQXKwvH27VtJJJ4k8/3u7m5loH5I/t5ut7y7v5eTcJZ042ma1kX/YVBoVVX4nMK0JAIvjbe2bYkK6qbFGIszBZuNkAwCMEwzSgfeP5zQ0VM829ENI0M3isTPJ6a+42c//ytS7qaeriN/+I+/zwVoHWmUh8gUT+rzpBSeiI8RpSxGKb59+5YwTVTlLcZo0oen37oeM04AJdrSvEv76CHIXROds/wKaQDYouDtu3c8/6SkG0ZM4TgcbtFG025amrYleC+CZaXY73d4b1Z1yFKOAOvQfrlT3N7ecrlcOJ1OVE39HaaK1prj8SgNi2VjUwarlOTPzzPTOKFQVHVNkaOqX7x8yc9/9vO1MfLheKCuay7n8yoSuLm94eH+iFYihSJDdUtneTwe2TQll5QYh2nVGS6l3DAMUlEAL1+85NNPP13hUfvNBoD3eQYawoxSGlJiGEd0tvg8Pj7y7t072rbld3/3d/n888/ZNO1KCLher2g0YfZZyjdxuVzWGdx2uxXIcT7hAelC50Vf1jVv379jmCbev3/HNC18nUDd7HIzSJKHklZc+o5pFmH527dv2Ww2jOO4NmSE9ibz3bppMj4yUuZ76qJuWmC5i02raRoul8v6eYB08jebBmMdWmnmOcLsOU5HyqahKAusVfTjwFdv7qUhGCauj5I9EhNcu4HH44mIwoc1hOr7W4BlWTJkJqNSGq2NuMxTzNRjsbmowvJ4f09hHXVVseTKyX/3BGJaviQBKOe2LgoUZxDStOzuD48PKKXxWQgOUFYVhS3wKVI5mfGdTyfqsgIDh2fPMjq+R6mnhbZ0I50R9sqSjtt13XraNfnfF4RFCEEUGQnC5BmmCZWdFCFGuuuFm8Pt6sZIQPCeL371Ky459iyEp27oip6IgbqqROKVjbQKmRcqUr6bLuGfEzF46qpBJ5mDpSS59AsS3egKlRKnLMZeTv739/fCXz15nj9/xmazpW5q/KwIKT5lySPNim+++YbD4UB3vnA+n1ly5hfXw/V6YbNtORwOa7nXdR0hBE7eU+ZxjrWWtm159+4dj+cTx8uFN2/erCMS5yw6CXh4KXuv05j9nSOH/fP1egJ8J0/RWktdVXz00UeEPH91uQO6jJeWhNxFj9qdZYNdOqgLJqNpGuqmYfZBQFlKKrymaXnz9jW3dze4eo9yLdPQ8eXbE8TIu2++IUwTPkRChDHHrYtX9nseQ5RlwZA/dK1VnpXl7poWVopyNckqzqcThdE0dS1JqvnSm+IHp+AHX0rxAclLY60jBrmXPD48oI2jzLHLthGLUGEL5nHGKi2g3qpku9uR8gf07v17UWkQCTHgsopi+aDGYZTds665dh3xg5PJZ/bIslUUznE+nUSDmNRqYUlKTu8m80hjRhJKfHLifDrlIbLNao6YsRWGcRwonKXLSpPlAeu7gc1mQ5AJDeM44P3MtZe4rL7vqYqaMeeZX7uOmBKFtWjluXxwZxrHkTdv3or/zmpu9nfip7y944vzN9SN0Lzm4BmHkcPhsKpMUkp88snH/PxnP8dZK37LEDkcDlz6C0t4yocnoNaaIWP+l/f5w/vkOI60m80HsKkq536IqNlZw/Hhnsu1Q2stgT0p5eaWz5iPmmkUAvjlcuHSdWy2Gw77PeM0UWah+KuXL/n29Wu2bSuRcosEEZHNLeX7chIOwwiLIiomCicb7/Nnd8QwkvyMMpZxTrx7OAoIenvg7etvMt5CMeRmYkoJ9+tls/z6C9AYI3lxPqCjxmi5Y4nbK2CMQhWGWUXe3r/ho6rkcNhRFo4eZGdAhtVykEn5KTOcJ9WEtZKL4IN4uIwyIltSGm2lba2wzLPMscZ5hnmi1Ib7128xWobgz58/53g8gVHCdDGeuqwonVujletNi1aCuHBOFPL9OIgQOSW8Am0tPgQqV+Cs43TtKOsatGDxlTaCp8/5E3UGLw3DgA8B5yyzD5lyHSmcIoURoqcoas6XeQ3WTCbh6hK0oqoLIjOuskznXlzW84wxEOcZrxQ+k7O9gmikZDbOUZQl+/0NbdMyTYkXL1/SDYIhfFbsuZw9s08Zmeg57Ha8n95TWkdTyvhl6gfep8j2Zs/5fKa0JWVVElTk+fNnaJ1PvXlCWcs8ysbhMzB4uYudz2dAXrNNkbauJTBHScUUYspJTAmlQCcFIWLQlK6gqgu0WSRmlstFZom2cNw/PIgNrXAMeayx3++xpWPqO/7df/D3uTwe+elf/iVhnrG2oJuDCPq1ElmdlqjuGTAxQUhUTuja0URpgp0GrlFAUdp7Qtfx7bu3NJWjrjcYO9N1PaVza47j6IfvdwEuDA8pPzVayf+UtliFcF+UOB0u5zN2U6MVq1PaaCVkQhYa2tP3TjEujUXm6Ekh5VIMvJ8gKabRUNiK07WnOXQoV0iZazVj13M+nthsNhS1vM7L5UI39BRVidJ67cheznJvKauSYRrWJsGi3PDzzDwMtLst5+ORTfaitW2Ln6U50Y8jzaalqmu6YaDIHdcpO+o/lEUtJdTSedO5KbA0mawVE63PTRrnHHVTE5UQmx/u74EkgTMhUBQV4+TxXtr78IR42Oy2gkSwlhih7wc++eRTQUVY8QmGIKXfPAe8l41gHuVhiSGIAGKeqeqay/UimtXDjq7rQMn8s3CGwlm2m816woU8+/xwzvftt9+uHdYYI9EHhjRgrKOqW4ySho7WluQles4ocfVfLxe00tlatYS12HxlaJl8ZJpn7u7upGIIT5as63Dlv/8f/Y85tC1q9uw3Gx7OZ4YgfNqyLKVrbC06aJQx6CjxCIU1zNNENw64pkYX0mn188zbN28yATBQWhGuL9UOEWKI+MmjNCvR+3tbgHUjbvF1pXywiJTW0uItCrpuYOw6lA+0TbuWIVJ+/qsFqsZa9KzkgYqBqPJumBmX1li67op2mqZqqMqKYZ756ttveXnYsd/usG4pJYaVm7k0AyQXT3LuSivD1/P5TLNpVnTeoqAxxqDrGq0Nm7ZlGgb2ux1N03L//l40pTFSVTXjJJ0/bQxd3xFmv8aEfagrfVKDuLU0XB749e6S/35rLdM4YQoBOjV1jU6IxCs3s3ITWZwIMXJzc0NVleKKL0tpUIwTySTm6cKzFw0vb255/fr12phYk5WSvL5hkM1ov99TVRXD0FFWjhBmQhBfXowereF6vUCezdV1zfF4XO+CRVFmIb2MHhbS9ziNRGQjVnkA731Pd+0kOzEmbm72PH/+nE9/8DHT0MvdTocVSvzs2TPu7+8ZhpFxDuvr1lrzySefcDgc+OXnv6Ibe16/eUP1ySc8nk5chwFTOKoEw3ylH54I6cMw4n1EGy9eUmuFejfNuFRLJZT7BsvGvnw1jWhwPxT0g2gOjP2e/YCLbi/JK1lLRrQgxp11aG24nk5M157kA3VZ/TXB6wdfIkyEtGRtW2nsoJ6UMknYILOXDuPY9/g50l+vjBkbOPS93ANnoVsvxtoYI9po6rbO+sOI0+ZpNlS47/AzF+iPMEUCk5/x44Qzmv12x/3DPZe+Qylhu1wvF4qqzHeQLefTmbqqVuTC8gEvp+si/l0+pLqu8VERhnmFDS2NgZgiRZZuaeH4P3FXokI5YfLEEKk3WzZNyzD03NxsPiCKZSZMWfPm9RtQ0vg5Ho88e/ZsHYls93tIcvIej8e1afHs2TPevPs2v6dbQsh2qnlGa7W+zyEE9vs9l8uFx8fHfIeXx2rBTozjKPaypsofvFRPRLhcT4SkKFzBMIzM04BSkuc+Dj1l5dYuuTGW25s7vv7mG/aHGxFdZ9H3knTlXIGOM+8e7mmrihevXvL1m9ecLhe6aQRilhVKxh9J0qTKXGFEa3n58ccrI3bbNAQjZfX79+/XubHokEtS0igMWlti9Bmspdd7/fe2AAU7p9e/fPk1uUtnc7v+dP/APPTEacr8fvMvlZzL+ltfhLXEBdiaJMQyd22ExI2MFfw044qGeZpQaOqiIM4iCki5fFs+DKUUZZZFaWMYB5E37fKIIMZISOE7BOrlvw+5XLJa05SVJCxN05O6PgOWLr00cZYHc2mSLKffotr4UF8qGRPj6s6AJyX/QmvzwaOUvIbL+czt4UBVloz9IMLfhJTUhWLTtlwvFw43B54/f4bRmrdv367CiaVTOgw9h8OBL7/88jtyrpQSbdOsWAcpUwOQcEZD9KiUqAo5uTdNzTCMq0ChLMu16VPXzVpdnE6n1Y4knJZA1dRSFRmHnwI+ekrrwBZPc0U/Mo6daIeVRilhtELiFz/7Je/evcvXh5m6WbSufvV61k1DXUu8NMbw/OUrivKnNMDlfY9xms9++ClffP41fgpsto38PQRGPxFSohsHqrrm/PjI+8uF5AM//OEPs+9yWjEaQz8JPzYJrkU2WY3Wlr+p2vu3XoA6A06XDpdWiqhF6xgz7985x+nxSPIBFSLbzSazQVjnf3/9K5HWUmopGdc/qyDl4A+VEimr6Evr8CBcmaxaMa5cswNijGy3W5TS9L00Q/w8s9/umL0X4lkIXPsrm82Gtm15+/at+AnbFmOt8ECKDUZpIYIFyZeoyxqlpcN77SWd6HK50OScu8WDB6yvZ1lgy2tbS070upiXu9Oyo4dpJMXIq5cvMUqJeD3nzpd1uQqrQ3br3+z2IknLp4+06w2Pj49sd3tMzPnvWTh9PEp2QfQi99tut0zTxD4P37XR+c6lAcndKwqhSd/e3qC04Xq9rjK9ZcPpuivOFdzc3HC5XFa1zPXaowqHP5+obMn1dGUaRrQ2FO0mVykeUr5DAdfrlbquuXtxt75vv/rVrzidTtymiA+iyFn8gpvNhna3ZSTw4uVL7u/v+fFnn+HKEt93/MZv/pif/OQn3N4+o212/Pwv/wqtHNM4YXWgcI5ZwWa347NPPuXLv/olP/vzP8dPE6fTicfHx3XT6roOjeAx5EGV0lMbOVFT/L4XoHqy6CxDbKUUVgmiwmRU4bu3b+RhAx4eH2XnT1mBnRSoRFKSfqsiAmRKEKMge1MGL8tiVOuwPiY52rWSUMfLOIriwgmewee5mY8zTbuhbGrm4HEa/CwnRgyBaOTB8cHTbBpevHjOu3fv1xDPhax1e7ihv1zoponrMPB4vWQOpfAiu06MvZfzBR8CZSHNHqU1xlnh56QkVLU8iD8dj/T9QFE4iqrC2ZLrtaOuivWU9N5nnWfkxz/8odzZzNMpkFTk2g/CICkLfAx89PErqqak72e6awdJ0fcjIUSatiWhOF0u+JQoqpqmadht9ww522COMs8sygKlFXVb4ZxFKXnPRXcZAYUrasbJU1aOpt0Sk5L5WUTQh0ozh8C8kMqMwedRS2EdZIaN9zPez5SFxmi5207zhNbQ1g0KKJuG+9OJfp5om5bbQ8nLl6/45ptveHh4lN7DMyvihUHuk9pYPv3xD6jLktQ2/N/+7/8FWhv+w//gP6CoHJfrmTmf5C9fPMfaki8//4KQAtEHtHP4ceT1V19zfH9PU1Wc51nufkqjjMMaKxpZo7B5TaiUgMjoJ8Y54crv2Q8oIy9FjEvSkcKHSJHAILabwQ988fkvUVpx7Ae++vbr3K1TKIQoBpCUWHV0fuFGKZSTDysGGe4/qWOkAaC1wrmCyXsu3RVTFBSlZRguzHFkuz8w+Z662dDuNsJ9BIa+o64q2tt6zRZYMgqqSjqDZVms5eDQdzw73OCHAVcUdOOIR8rDpq4hejbthsu1Q6EI8yzK+sbisrE3RMk99Ll17mwOhDGWIlPYyqpiHnoqq6ic2LH6YQDv2daigd1uWrFZ5rvOOI/MSbgj5abFWo2yMMw96Ry4299w9Ikvv/oaW1QkFRknj9IOHxJF1bA7HPjo5QtCN/DN559z7XuGcSKhcYVZ2/7OOs7HjnEUid5SVYwjuRs6ZfixpqolZ2P2M8oZxnliDh4VE0V2zp9OJ3T23F3yZ6MMmEJjtZKNTWmKshS0Y1nw4rAnEZkz5qMbB159/DHOOd4/3HM5Xfnqi694/vyF0AaOF66XK3Vlaa2lqmseHh5o6pp/8cd/zP6wI6bAl198DUnRtlv6fuTtu9doZ3j+/DlD1/Pui68I2wPTuWPsR8kF1ArvISlLSEburVYzh0m8ryQUCVdm8Jf+nk9Am6FGIVPRFo2nPBieaBTTZeTbb16TQvpOtNRyF/nOV2JtyccYSUoGpPM85mP96b9ZB/TOooycQm3bkp4/I00iQzp3V8GDW8fx8ZGU29mbdoM1ZiWFLYi77e6A9wFrJdfd5+CTmxu53A/jmP85rLrLaZp4cXfL+XTGB880S/PIGkETdn1PdxWU+2azka6kkXJ2nmeJ2S4rGTlkOhspMk8T12ni5cuXq1B7t9utIvAFm1/XNSENbA87/DxRlo66KpjnCWc17+7f0l2vlKWlaqucAxHRBjZtw+HujnYrKp/ueOLu+XMe/urngpccB4yrQWm6rse5QFnXTLNkYRRViY9PabVkr19V1Tlnw1GpiofTw7pZa63W68V2uyWlxPF4XBtA8JQNvwjip2lidzignZVKS+UgmpRWM8Bmt8NV8j6GGPnyq6/YbrfcHA7MwfPzn/0VX335Db/zO7/DT37jt9jtdrx584a7mxd8+eWXPL97idKajz/+iJ/97C853Gxkw4qJ7nKlcAXd9Vv6S0fXX4lKLGc+gjGaeRZ6W0RhNNIgU4qxH0gqZtXQ9yzGFkiPIWT39dLEjCmRtCYqeP/wwOV6xihFCoHDfp9jpfhX3v/4QCOqVc52bxq6rkdrkW8ZI101nVF0wygi2oDi9PDIdD1K3lxVcTgcmCZPWVVMs+d4OjGZjk3WW9oPWsP379+z3W2ySsNzPp+p64qu60Xxk50SVVGSRsFpfPLJxzze38smlOli8+wlg0JrCmsp8/0uRYHqCjhJ52yKQFAZxY4iKoXSZpVOLS7+pUu5lKRd1/Hy5UuxSk0zp+MDh/2OqrAS2DIOWCK3twc225rj8czucMPkPcfHE1VZETwcjw88HB/ouo5903J7s2d/c+B8udBuNoQwobWjrMzaPNrf3q6EbJfRgYvmcgnONMaIdA+ZPV4uJ/FZZjlWnX+u7XbLdrtdgzY/LLtzeAhVNhNPowT7WI0okLQhpsDoZWSBMrjSUmpNWTXM3nPJgn6I3D+eeDxd+L3f+30++VhRNVv+/M9/zrdff8tm2/J4uuft2zf84R/+AX/8z/+Y12/eMU+eaZwoi1o+XzSmqDBapHI6M4BMvkapmNhst2hg7AeZFAB+mojqez4BEzL/SyljF5ZVpRVLr/Ltmzf4acakiEmK3Xa7dtf+5cWHLL5cXq1A1tFTVWWe47FCd1LeNQvnspUpS9e0elK45xTax8dHNtsdwXu6aVqd37vdbjV2Nk1LCophnORNrypigL4bqZtSSFhNI2/uOLLfbLmezuvfM/lAUsu8T4a3y8+z4Nptno056whar5rK5R6dYmSz2Qg4aRz55ptvuLu7w1q7NoVev37Nixcv2O/3/OxnP5MYt8JxOZ/wc4EzmsNuw+3tjcy3UsqVhThVirLkcjljlCUoxf3pSIiBXVszh5m/9/f/gJ//4heAyglEwgEtCoNXGd+QwbnTPEt5lRtSm81GTM+5O3g8nxhn6fAOXS9puVFOhGUcsehWF6OzLHQnCPw8thmHgWQ0hbEoH0WOl7kwsw9C2ZZZVZZBapzVOTKhzMjGkZQMP//ZXzH0E//uP/pH/Ld//CecTyeunVQJfg7803/6z/j88y+Y50TTbKiqhnkOxAghirNfkUh5053mAaMVOgUUivPxKFgOJdkozlqhxJnvWQtKSmuGuc7UMWssIc0YK8Ecv/rVrwjzDD6gUuJwOLDJaol//bdOa0mycFOWOOdF1V5kLWXf9zTThJ0nrtcLOgRubm7wKWGdZZpmYkZjlGVJHKe1E1dVFdcsKDdGGiXLyVMW5ZrtFxGkhA6ewojiY8g49aIouD8/UDY1IQoBum03hHmmHzpAzKVt09J3HSHIh2Lzw6WMkdllWfLq1auVsn25XKT8hZX18vDwsHb47u/vc0CMNHHCPFIVDk3i7vZACDPjMGUTbeLh/siY4cEpQFEZBu8pnKWoN8wpcLycGPyMLR0PD0d2uz2lqxhHsYi1u41kNk6TIEJR9ONIW1XZpzitHsJxHAnery6Xm5sbHh8eMqxXAL/Lqb6QBuq6zpunuNO1NfTjKPrYwuEqg9NWYshCyjgTRfBxZcoUZS2uDmuEPFeWKD8xh4R1BUpbvvjqG978Z/9HiIFNW/GjH/+Yd2/f8PbN+7yBzDhX0F17fH7/rJO76DQKREwDZSFYFE2+v5qMR/Qen4IAp6dZxPjxey5B1zFEFOr0MgtchvOJxOvXr2UkoYRwZq1ZIUjLzPBf9aUUeZAvAJ1xHGmaenWxz7OXEjR4ks7cEpOhPElzOp94+dHHxATb7QaTI7iKosiJPWo1l8YYs9NBYrtkwdTrST2OI1M/Y52hbRqGrid6T1UUuMLRDT1N26CMYexGWmvpswrGapMlV57+esUZi9UyT7lkHGLMd8GyKJinGWP0CgVWSgk9+3Lher1+4E+UUcZmsyGmyDCMVFVJVRYCkVWCbvRzxPuEyWL2aRg5jz27TcvQdVBYbu9usDnWrXRiMnZFQbvZ0jQtJEWlHUobYhoY54mYxG4m8W2Oh8dHDKyjiw8Tbed+zvdp8SU+PDzkUn1e7/TL7G75tYgP0ioEr7MR21lHkQUEMT8/MYq73mYlzzTPq+pEK7GHgaZuZLSBtqQIXT8S/cB//B//Y57dPedXv/yc//L/8f9CUVA4S0xBCjrp+DFMI8aVFNbmK4S8hqoqs5N+RhvNPGXHvSvwy9XjQ0Lb97UAXZSIMZ8SGoWN2T6kFNYA88zl4Z5CgVXi84KEKyzKZKBpYtXIJSCqRFKBpAVTKI1uGcT3XUdR1ljn6EdPiBDSjA8JRaAqpTRtmx3aaKwRsbIEtyqIrADYcRzYbltmLw6CccrckeTZ3eyY55nTm0eK/CDJEDzx/t07OTUvF3xd4y/nHIgphK6bg5zSY9/hrKDOjTVcuwun8zG70qVktTmyOKXlbjeLgB3FzWHP5drx8qOPGIaRoqzp+2F1mV+yy3vx0G13Lbe3N6QYuX//nrfv3kvHdppomw3jPGNcQUBh6wpdFoKARE6a7WbDMI4k5D7ngN1+s8KNiqLkpt0wD4r7h0eSsYChqhzOKLoUOV+uPD4+UlUVL1++5OXLlzw8PDD0IxbHNHh0nV30yJgphJyxYSwRGOdIvA4cdgVV4ejGSFMXxDgzjz114bj0A4GEayuMs6QgSqhCwxwhhhmrC6GvK41xZr1yKK0oSskmnL1niDP/2X/+f+bZ3TORLeZZqU8JkslcVCidw1jZkL2f0SoRwywk7CBpTj6Ai5JtMg2DBMAo0ZWSIuZ7H8RDDqiUO4bKnc1EQsfEHOZcD+feChFXOFwhpaPOVpClG7P8f1LSAZVAR3FLCN5uJkQ41A3GCBdUaQQ5bg2KtOYwOOc4HG6eytcMVCJJcGUI4mD3fqaub7heL7Sblo/2ByKJfuglX7As2G63dGPH69evef78uegmm5p+HHFWMu+U1gK5zV27uqrWZsSieFnYJyaHmyxNDWvL9fdPpyOH/ZaUItvdjofHR67XHptzJBZVz2La/frrr3NV4TifT4zjJPHTpWQoWmcJJKqmIUTYH/Yoa7FaWuZdLwEul/OFusmWpqbJwgRP1/W0bQMqMk09ZSEBpuOcMNbinBhRQ/CrEOD6gf2o7wdh0iSFYN79Ex1NC74vhpiZriCYfNkglSqAmB/uwDyN8vAbzZRLW1LEakVTljJnzO93iF4WeR4khyAxalLeymutqgKXsx1OF8mLLJt8zalKwiw5G1ZLrmQK8j2NAitaBCmjUyL4yDx5+nHAWulPKK1X9IckhX3fTZhsNv3rx2vKd8Pr8VEU8x98KSVlyb9OiC1GXAm1FHhtwhhhxngvo4ymbTgdxbLjjMt3CnFaaK05n845KVZMr/f392vrG1g5ocvrllKqYLPd8uWXX2JyeOOiVFmCQpRSbDab1agbQpByo6rWjuXSUl/KsMU5LwLpShigk6gnFl1sSonz+UxKYcVAlGXJ+2+/RWvL7e0tfhzo+251ayy2HuMcs0+SG6gMrmgwtmSeY24iVOLQ7kdc4WhaGYcYIpt2y/3jI7fPn+FsQVFUqCQuFa0UTd3iTEEiZa9npChrTCEk8eRn+nHg2e0dX375FfAko5umZWHqLIYPEkVNyGL3br2bL4baRdw/eQ+j0BWsMbiypDSGa9dRF3WeN8rGR44Nn2H9rJzLg/EP3t+FgLA8swstHcjUtmF9Hd57nHKrdtfmMYtoOg2ksKqnxkxiM0ZmlvM8SgNOP+UdmtUr+2/++jVtg6zi4g9ncyAd0RijRGJNU1ayyIIbhkHKOiVKlqcl98Hyy+YKnXcQUUWQH1i4Xjs2mw3OWbkTZN2m0op2s8E5x83tzYpWX/CBiwvjxYsXHA6HVeJ1zg713XbL48PDWuaVRcHt7a1IsbxwR9+/f7+KtGWM4VZA7xIYuTSZ5nnmer1irSyg5e425aizRaq1LKj7h3ue3d2tcV3HR0kack6YKEVRrGS2hU2zNDGGYcxzUbk7jeNEzH9mATTprG1dnOrz7DmfLmw2W4yxWVpWEiPZQ6klWBM5vYZhYpwDCcXNzR23hztK6xi7ce02bzYbnj17tsKLVcYILp+RzImlweSsWyuUD+HHSmshn4eUeSoVVdWCMmjjpMGi9fp8kE+ZZZThvX/qLOfeRJlDVxbWz4cywEWDu7xm+e/BzxMpzJA8fSdKpBQD0zhwOZ255hxEqw3zMODHiX4QIp/L4KoiIzJRSrIovs8FuABMF0z4h7u5Au4fHnIqLevC7PthFWv/zQeylKVGmxU3sex2i7ztcrnw7NlzTO50LfI0lwGyS+Cj9xmTBysScPn9cRx59+4d7969k3+f5KHV2c3RNA1N0+SILL96y5ZTrq5rDof9KvS+Xq+5jDw9zbIQV/vygQ/DQFE+xWoBqy/wh5/9kFMWLc/zzDfffPPkMEkpl5jjmlGxME36vicpjbaO2QtacQqB+8fjdxiay6nvssrfzxFrC6wpCHMiBhj6CZ1zIETDWq2LuK4botI07Zb9/kDbtAz9yHDpuJwk3+LZs2d89NFHtFngbo2hqmSkInrhJcVJ9Lofnnyr8D0EvI/EqDCmxLoSW1R4ydVcT9fFtRLzRupy3oSYAlhPvBijBPbkzMaFoPYhkW7psC/GYe9nsV35icIaqqqgcEaE6CRcnkMPXc88TasxPaYkRPSUuA69qH+MlpL212zC/NoLcNldPmT+L79vrF1Lr6XU9CFQVUs+3dOJ+a9cfyhcpjLDk+xNIQt/miYk731mzoPgqq5WaVnIc6mlI9e27fomC3n5uIpo5b54WP+uaZqo64bnL16sSax9168G3ePxuKILYnjaQRcc4IJM//C9SSmtQuIlW75pmu8AmaSpMvLjH/+Yx8fHdQN48+YNKMX9/T3b7XYd0i9cTOsKQIu8TxmqukVhadtdLvlgASlN45S7j6yvLeZMjQU/qJUhBhhHzzjMaOXQyuKKkv3NDS9evqJtt0yT5/7dPdt2w9ANzLmr3DQNn376KXd3d1R1hdaGpmlWz+HynnfXK/ucY7/ckZe54DBNGOsk8zHf22OUmWpVlqIk8vMazhKyuB6lVoL6cj3wmcC2ULmXxbsArBYw83JFWGLJwzwBiRRl5ft5ytT1Hj9NzJmkN/b9sjOsSMOIZH9oI+nIRVF+J7fie1mANhtZQ4wipM4noNJSalzPZ1K2BeUiVRAQRbnmJixG0nXdffB7spuptY6PIa6taWFm9tze3KCNES/fNGJdDtlICmcLuRcaw/lypht6Zj9zOZ+ZpxmVxODbXa7sd3vevXkjcVhNTdu2mQkK58uV2Qdhl5QlXddTuAI/zcQQVwjSsmA+zGHY7Xbrr5fxy3LSXoeeqqlJCsq65tJdefHiJQKtgrtnd5mZ0jJNI2VVradGn133NkvcqrrKs6pCUB/aUJQ1Cktdt8I3yebXFLIXsqyomw0Jg3OVdJWD+O4KZ4khD7mdpW5bqqrhRz/6ER9/8glVWfOrX37ONM08Ho90Q8+l67h23Xr32u120unVCh8DVS12J2cLjNIi0MhVTfCBoe+5Xq7ifDeSdhxToh8GzpcLSbGWc0VZYpRsHiHGHBIjY7CQKzN5qNI6kvhQSbQI7D+8+y2fkSTkihh9HAau145xHLLvTyxyPkgTSGtpJM7zhLF6rchQ2RerxZSeSPzrar5/qwVo8mrxKRIAZSUlSCtQKRKGgVIbXJLdOSQlMcabDbOR4BWTyDHUOfsR6XiqJOm6iSeIr9JLiStD177raOsNrizQlaU5bOnHkRgSOhmSTyK5ioF2t2GzbxnmHqM0N9u9UKnRfPTiFeeHI01VcnezYxw6Hh/eCWbv2vP23T1BaUYfiUnLwo5glaG0BaS0hlku5lXvvUR6RbGkKDSbdkvhSgFMaU0/z0wpUW42JGvQZcl2f+B8urLdbLMROcm4ZB4pqoo5BJS1+BgxGQLl/UyYBjSBcRix2lG6lhAM1rSQHPPkaZqKwlmUT9TVBttUeKWYI4xjkHDU6DHa47ShcBt02aDqArdp2N7csN1V1IXj3bdvuB6vdN3AeerwRiKbr+NAVBJVjlISGRA9xhnaTYtC0VYtTjmaqiFMM05prFKETDqfx2kdb035Tha8J84ShR2NzH+D98zjKCDksiBoTdKKgLgolkUXM/NzOXnX1Nw8A14YpSBXo7qu2e62Ivo3Nm8CI8M4iVFHKZRVJB2Z44SyoJwiJC/NGGsxmf62bM5jP5IG//0uQKVEIR/XE+7p9xf8wJP5VMqxaRjz7qTW/eDDfeE7v9bfHVOA3CO9Fy9aiJF+GLi7u0Mbw/lyWXP2Rj+DNWgr5edht8MqzT7TwOYkD4UpLUFF7o/3XK4XxkFkaos/73I5Y42hyc72uhbC1joIzie0Uorj8fgkk0tpFauDdH43m81TsGfujC2ICZtFDder+Al3ux3nyzl7GNWaZbEI1Rci2EIfA8XQj9RVTfCJYZgIPmGc4Tp07G8O7Pe3hKBomh1EKJRG+YDyAbzHAmma6YbIqYdAjbENu90Nt7sDL27uKF3F/ft7fvnLXzKOA8MomI/tdstht+fli5dE77leLgx9T5g927KiP59zF1FcDd00kfKGusmNs4WovdDkyozSWAhqSzu/74bsiDHEkIgxMY4zIVuoQoyM+XQDVtgvsN4DP+x+hxBkXpmDWL33bLfbFRm5YEGWUndR9iyNoPU1Jwk8Xe6Zy7Vns9lQVCXh+y5BgfVN++tjiJgWfyCIiznPQ3Ir92/6WpabkM6UJCR9sCwToj5PJKpSmCdNLWDVuq7Y7QXS6pOn2TbYQixBhIRJCnzi3F3AwHXsqDc1b96/ISgpo40RQ2XbbOWNtJq7O5FQ+UnueVprib2ua5JS4iTourX0XNT9dVVT1/WKhV9wFy7vjtu2pa3rHMeWKIti1YJer1eZVeXvqbRa7y9d161dWLlDlmw3W+qqpqrkAyc3US79OeewO8YxIldCy2ZzAFWhbUNZ7VG6RtsWZWpMdaC9eUWze8Zmc0NdVtztd7RlhZ8Sv/rV55zOJ8ZpICHzVK0Uh8Oem/2eu7s7nLH0Xc/1csGkhNOGY/brzTHiteLa9yRYO70LrGp58BdT73Jfk/DNkhggzAk/RYy2WFOQkpJKQz1RspdfL9RrEOfEciVYFs/yHC934qV7vcgml2Sp5XuCkpRdY2k2O8q6BW1xZYUrKrS2TKPn/v0D12vP0I+ECPOvV4H++nPAmHePhT4Fuc7W0sYuywIZrD7tNPM8P0WLKb86Hz403i4nnja5La2AKNI2pZZ5is4tc79KtIZh5N3rN5Ta8JMf/xhbFQQfOJ/PWG0EKGstY/QoY1HG8XA8oYyly6WbwmCN2H3atsGHifcP7+ivF168fEX0gW6a2e12DHlnXRwAu93uiVVZ12sL/skZ3mXxNaKSWNroSYS6hXOMvYxO7u/vKZtG+DG5STMOkk3QNI0oftqWcRzpux6trHQ0tcMnj7Ul3idCiihT0A9Bkp9cxWa7pWpaZhzOVjnRd8ZYRT9eKZuStt1DsJRV4vagcUTwniHMvH/3AASSmkFJx/K2uaHJceVx9pxPJ/rLBT9NXM5nYp7t2VJmq0VZYpNApBZJ4LIIQ4yEPMZZSvvlFFpOm2VWuszWFDmLMf/ZpcxcGjwLCXtBZiy4jwVH/+EYZHmmF9T9AmNeTtKYr0fTHKiNjEx88EhHQVG6kqCDDObVKE0jnbDl9zyIV7Dey5Yf0hgjooeUslvcoENcxwnSbpZ2sVd/zZOUnv5t2ZmWlvgytjf5qK/rimkaJXVHSQZDjFHozt1AZQ1vvvmaZy9eMAPvHh4YJ/GNVe2eKUhMtHUSZnI+Xyi0ZOIJcMgz+4kf/eiHKKW4f3vPfieg19P1yuRnjJ+5Xq6kzJC5Xq8rfVnGInrdjZcTEnK2udH4EPFmFsW8Kxj6nsN2x/EokrWolKA18jD48fFx/fVut6Nt2w/ismG72RGz0TmEQGEcm+0z/AwxQF2XPH/5nGfPD2y2G7QucK5mHOacllRzPN+jioTCcj17ykJxe9NSAd1x5C/+/Becz5eMiIigEmVV5swKhzWGt9++Fp1pShROUCER6YLjvZTeKnsDPyinl7zB8+WCVxrfdWvpt/ys0zhRFBXBy1y372SsI3I2qZyWBtqy0D7sRC+HRVEUK8OmWTD2+YAAVlhVm5tqy3ip73uUzp1n71FWqharbT7JrYgZlDhJjBEcZFGWaPc9uyEWAXTKk3Oddxu5p8iuYbRe5yIhLpnqOdcbvnvDUwiqIsuRnHVYa9BaQVh2NrH2x5gonPzQxzcjr37jR+vff3tzwzdffsEPPvmIL776mrePJ2y7od3fUGx3RJ/LCSP1ej8EUI6qbpjGmS8+/5LNtqFuSr786kuctdS24vh4pJ9G5hAIJEJW+ZgPUOnLBy0Y+CoDetI6s1oetpAlWXMeys/jiM3t+q++/JLb21tGP6/zSskhnNi0G4wxNE0rw/YYSTrjNSJM88w8RcqiQkhjBSShR9/cHnjx8hnbQ8HNruBQaKxOpOjwXmGdZrxtmSxMvuBYz/g40tQaF+DkJ7795g3OimB7mHqUkplYCpF3b98yT2Idil7y2ENKxCX92Br8NIsXU+kV3DTn8YHSAvIqC/l85+wIWZpaAPvdgRQ12mj6XrqS89wTY6BqivWkW2asy+JbRk4fKpTKsmQaR3xekNZa6Y4r8Z0mndYFWZWldEdDoBtGfAhiw4LVE1nm/IllM1kOpXEc83Xqe16AXgPOEIjSEVKeSc1EFYjTBCrhSocuHNvPPhHvWT9ilMUebrkGQxgGwnBFR9Bo4sJQSQoVM08kJgptKTK2nBTYtBtpEXc9ZV1Rqtz+NYbj/QO103z79i1v395TtnvKcos2BdMceH73kvP5gi1Kur5DKc1hf8McAqYUBufjdeA6TYx9z3bTUrqJ+/sHQghs97scqulIKqLzhuOcE7aJDhSuwDrD6EcMwpXsxgFrLHMIbDftCuWVQX/gk48/5utvvqFpW65dt94v66ahv3a0TZvHPLIDd/1IwGGionSWbpgxpqHZlHTjSL1p0KbEGct2U/Ls2Y5Xz3c0tWLXGmodIM3SbS1A60BVGMakiaWlspFzFyl0RHvDV59/yeV8wpVCnS6MZZwn/Ox5/fpbaYwonQfjGT25iDNy+Rd1kp8tRrRWaCsi+RlPiuAqR50qwjBgk5EuuPcMPuSu6oArC5LS9FNHmeWCfp5oWrlyiCTRkGJaS8l5EiNAjFMecyV22y1x9HKfjAHbFFhXMvmZiDj361IUNPM4sdvtJLcemJYSdppFG5o1psnPhBRJRhPmCaMKXObbDNfx+12AIZ9U3k8YBSaLY5VRvD9KyON/7x/+AyEpv3wBZcH98czeNfyP/if/mGQsl7ev+ZP/6r/i4ZuvSVFGEyGKU7x0Trqgee4TU8y6OkN3vXC5dlhnMAk2dc0QI9e+x59OqLrgzft7jKkBx7WbuTtUPH/1Co2lqKQU0VbCOK6DnDK2qrHNltJqUpioMRwOd3LPy8r6BTE3jRPBe6wWfejSEY4hkgx0fU9MUaR0MVEUpczjkvgDT8cj567LXJWJ8/mcxeR73r59K366IGCgFBObbcPpdKEsDfOcUNqJAN05fEwoW1HWe8rNjppIu2sYR0XlLNtacTg0PD80ODXjlEymUGmtQEKS4E2bDElFyiIQlYEYGPvEz/7y5ySiJN1aibm2xq5m7BhDFtFrCSnNv9awdsSVFRXSdehp6gqnEhgluAklvsfgR6xSoBXKWBFUG5u1z4nRT8QQQItLpigMZVFzvVxWOdqidJHhtxKdLLJJzuNM4QwpCAKxP4/oQuMnD0ayF60zWCQqPeVu8+l4ZL/b0b0bqSvZ2GxR8Pj+PdvNhnmUhTfNM4lEmUvjcRqprePXDEf6WyxA5Yh56J6CwaoCHTXKSHLPOI7si5JSafzjibJtaG9vqY3hd370I87XjuM88f7ZHY9fffXUSVUQ/EyKEWNUxpoPWGvWOt57SUwyRtT5x+MRs98zzROH3Y7L+7fMIdIrSMWGVz/+jI9+9BnKKMKUs8MztHcpT5ayZbfZYFKA5FHBr+70RUnz4QV/nmeSfmJ+LuqWEAPaGozOROg5iMnUyv3XaEvXDRLxFqEsK+7vH3jx8iVv3r7jcr0+8Sa3O4FPjZ7gI1XVCinbSdkUlcFrTbFrqTc7dje36EJTVCX9xbNtKgo9sm1LrAkU2mMN+KjWu/n6xufJSsgbnzGO/jrz+a9e8+XX36Lrlu1+S3c5cj4faWppnpDNuYvLZFECLe/RMkJZ6NsSn8Y6Zoh5sWy3W/okXr0QAoXNZZ6zWC2WNqcKtE6gNJu2xWgZ6i93uOUzWu6XlTZiMfKiTfXzhNUi7A8h5XFXTuOKEWfEzd7WTVZFSQm8lrU+oEygKSsKK1Ct6/VKWVbgDNutMIemaabdbmn2O2YfiOF7XoC+LEnREo3hEiMdilEbbH4gX758yR/9l/9Ptq7kZrcXxLnWtO0GZwq692/56uc/581XX2CU2DryDZCUAlUl4SjzPFPnvPZxnMQpkbtV5KyAZ2VJQBF84O3796hxxBuD3VS8/OwzPvvJT/AKjNWoCE0l44FFoGutXXWfhbOkeUJjwU/ZpSCbw5KJvsySQghSQn2AIl9kXybKCCT4yDhMWCvhNVpbjo+nrFPdrHfmqmoYR88wzIyjxJK9evmK8+Ui4uKYfYfG5vQdCdL0UaGKkmrb8vKT52x3WxJigm6cFfBw0twcKqz2aCWmY9S/+qNWOspCRDaQOQz8yZ//BdubG4ZZgFELUaCuK/HF8dSmX3H+WV2yaG+BdZZXlZXIt6KmcBXJCODYT4Gm3hCTkpAdpSRleDHG5vlxVdVi8DaGwjrCNAsBPKW1kljGY2P2U6pM31bK4Oco2tdxRBnp1BfOEoIwVZ3Ltibv1y73IlXc73ZcR0k8vuTZYVnX1E2DbWpsjmJ7fHzEq8R2s6EfJ5h/vRX46y/AFNluN5yOj/yzP/sTQpjZ3+4Jw5XgPbv9jvePj7y79vximmnKmv/kx/9zYvT87/93/we++uprhvOZNPU4JcqapGVTNgpuD3vapkbrpw9R7hZP9CyTW9LXzOcPC39SKfbPXtDcvWL3/AVzUjhj6M8XiRLOu6M0NJr1wSnLkug9ChiHgdrZdUF1uSvXdR2fffYZh8OBY9MQ/XJxDwLkbRqKQvAFKcI4zNkPB/0wUhYJnSLbzZ55ErH46fiW29tb+n6kHydiRrPPPvL6zTtePH+OMZrLpaNqNvg5UJgCrQw+JprS8dGrWz79+Iay0KiUtYlzxBlP5Rx1hZScShH/RhSBOE6MVqhoCEHx9TfvGeaEqxvO/SPTPLDfHzgehQBts2hhmbUtGYCLGGMZPX1YZYhcEPwccFWJ4GAT0xQYpx6f/LqhlWUp0XMhUJYViUBVFBIJl0vcaRioNy0+z1GVUiuafppnQpDRkESN5CAcH1e2rMkWo6p0TONAWxaM3cDicVRKCXUvJcI8U1nLNI5UdU1Vi4/S5IW3wIvvbm+4nC9y/bAirfteF+D1i1/xm3/4h/zu7/0u2hl0oenHkeF05N2vfkE3ThKXpRXaavp5pGxqDrc3vH//ltPjAzrjKrwAsOQZUMslecN+v10DWRY50bKzamMwRq87b8z3R6U1RV0zkHjx7Bmu3WCsgxAoke5bzEGMdV2vPj4RQ0+4jCOwznLtrpxOJ67X6zpmAPH4vX37VsYhfb+mtC4PmM/Iiq7rmWcvzZcpsN3suDkceP3NVyLObmrO5wt11fDm9Ru0FS1nXWeuyuQpy1oG6f1ADDG33ivKsqYfRoqy4gcvn/Ppiz13G0VVIKKDCBIWl9BGoZToF+estchGo3/pKyWxHKWkOZ8H/uRP/4Kiajif76nrCu+ntZVvjNjFirJgiZTbbDY0OZJtET4vc7ulI1mWJWESB8rUDWsZr1GgjYCkjObS9Uyzp93sMl7eMU2SuhRmjzeWYZaRx9D3YMwqehD6gCfGnr6fMcZme5ts2kMGJUcCSotcMMyBm92WcRgAsXUtm7NSOY5MKb755ltu7m7l79lumWNAGS0NuXHGFgqjFJuy4nq+gNHCj/k+F+DrP/nv+Cs/Y/7O73J4+YzgNN3pyNvX33D/7p3g+5TCkzB5ID+ME9oZoVgpMgdTTj55YBYEhZK6P2PdVIwZfGPW0YXWkid3PJ15HEde/eZv4soSu9lSb7c0rz7i8OIFGM35fKIIiW3p6GNaRdPiRLfM8xMuvnAFx/OJ6/lEfzrh54mu6+n7QXLorGPoZf50Op0hBnQnXcqirKQzW5Zcu15kc9aSopJS+dlzumvH4+ORtpXX0PcDIQbKqpFmwzxzvnZsNi3jPFM1DeMsmQObzQZQ1E0rnknjePHiGZ++vOOwqWhcpDQJkzW5Md/lQoKIXk8/lbKWlySnc/61UgmlYv7EtOQleHm/iqpjHiesgnnqs/hZMfuRxJPMC6SZ8mFoybIpfegQsdYyKbnrowUboWKSxaeFHG7HSRizMTJ7n7PkPc4Y+EA9FGMkzpG6LKjrKmuha4IPjMMEyVMVJSAnnlIKbTTBz0zTTFWJg0UlaTIpZAartOb4eJTxSFUK7S87W5rNhkLJoVM1jbyVQZAUlZONeuiuWKMZxpHyX6MA+7dagD/+g9+muw78N//sn/I//Mf/mPv37/nVT/+cWkPoe4HixoTGYsKMjRC7UQhekpOB808lpRK5CyoqAdUqTXROavIUkVtPJBqDdpaBhE+WWUsApakr9BwobIttd7jtLXOI2DSQ5pmA4jzM3D2/RRuJodpsWo6PJ1J2gVdVTd9P9N3E0HmMrTgdz4CmLGuaZktVVhhrOJ3OuLJgTokpJWxMlMpiyorrOBK1dCj76xWnDO225eaw50//uz/BGMvusKcfe0xh8WOg2e6IUVOUiXl8j7MV58sJV8gpVuaobGU0za7FR0WKmruXdzx/uaUqNJoEUQpMpRLSm5Z7k1nW27rJRVTSSBpQQukAOgilPCpO54EvfvUWRU3XjySt6P1M9J4U5HvUpRVBchLvpnWCE1z8lbDoQ6QTPM9LqpU4ECYv8rzalUQjsrPucsEZQ0ohW660hNNk/qxRorbyyYPVTNETDWA0c5zRBurSCb5CJ0oLqjJsGys9J62IROYpEJJY5FCGOWhcYel9T4ozFVqYOaUDo5mIvDs+4gpLs2l5OF8w48ROGapqQ10WqDgxjD3D5AgxEE1kihNBB/rxex9DJJpNS7j0lHVN4SUFiBjXUMeY2+jEhEURpkkATsaQgpxqMav+F2aGSWBCIs4zThkGZ7mEJMmlzlI1LcY5DodbbDCYFKl2DbqsiPHCOAdUP/NR1TBdrkxIUk1dVWy2G8ZpJCUoi5r7+wdICmclhGWYRmKY0VZw4t3lRD+IVnG729Nuttl3plHLYDUzYdCaYZxQKkjredPk7lnBbrNjUzeMs6esW1pjSElR1Q1zCLjSUVc7jHZczheqsqZttrn5IwEnxia6YUQbzTNrGbqBjz/5lE8+fs6mKSHK8Jus2F8sYIsccPlaLM5Pf+LJCJZQglmPmq+/fo0yDm0iMUXaTcswTowxYrColETnGCI6KbprJ8wXYxjyCKWuKmYC0zjmkRLZHFtyuVylbDWL80V2B1eUOCcu9mHyuSH1NMiOQYBW1s6r9akoK4ZpWL2bz+/uGIYeYuKw87CTU6iqa3z0uXqwaJMoikqaTbN0r8u6QpuEmhNNXWGLgvP1CtrIWMkVfPbDH/P127ecrldiCjw+PsB2Q+E0xjruHx8pq4pAIiaFdSWVq77fBbjg40OM+cjXGcHmmadpZV4qG0g+W5byMe2+owyXJvCHYtVJYmVQzlLc3KJ8ZNO2NHUtBGkvg9vr6YgKnuP1xF1VZ7juTGks1/cPXPuOu+fPubu7k51PiSRKJXh8fMAYy3azEwfBOK7VWFGWEAKXs5Qfm+2W/X5Pl3EGS9OgHwa2OxHsBh8Yw4gxTqjhOTvAaJs5KjU+GtrdLdFP2NIyh4mqabCm4vmzj0U3CRS1WIOsK7MtaqBtFEGN3Nze0jQtZeH4watbbrcVKgqpS+Umyq/3lZeiWjwnkjUYULy7v/Dt23tsWVBGjdaK4/FBlC1JWviVsziniXHGaEOcEk5Zoo8YTCaBR0KKxCx0B7lGbLZbGTUkhcIw+UhdN4QYKIyl685SvdiSYfBM40xVIim9l5nj8SxezEYSgsX1ryQ7cvbCgg1J2D5lidZG8t7z61faoaKiaYWBEwJo7XCFoSgdSgUUYgKOMdFutnKVUOBswbbdUO12PJweuV7O+LmHWJKUy1JfYfQoK/LMuqzQ8ddzxP/6XVA/E40hftAc0cagogBJQ5DOSjKGZCIhJoZpRCOeKW1FreBjZFAJVTrqsmS33XL74gUXFYlNxSeffIrySYS9xyPT5InzzNj3hHlGpUiqCg7eE7yiu/ZQgLIWV5aghA1pnMXmsUb0AWtLDocD8+Qz/UryH4wRtEXSirppcIVlmiYezyeWTAhyGVwVDZutpKIa7VBZCmWMEQ8YQiTr+4mXLz7jcu4oSnAt9GPH/vaAsZb9/o7CbZhDZA4e4yzBey7XnhAVRdHmLm3D3fNXxAiffPSSH7zcs6sUWsvdY3FQLirbv/kjl4SqlDe/kBQpKcByGQJ/+tMvOA+eqAz1pkGhOJ5O+c8mvJfcdDG/FmilcZWRvITZi10siC0o6YSxBmMlpnq5W7WbDcfTRTAOyzORS9lu7Jm84O7LomIYRqZ+pKlqabh5wT2GEPGzcFCNlZQiDZyOF5w1aFdIQGZp0F4LxtE4Zh+pyg0gd1cR4VuM02gbqSrH3PXEmBj8mbqSjIwE2KLAx0TdNjS7BpUi5/t37NsWU8gpqXXi3fsH6mZD07aoGInTr+cH/PVL0BCZk5dQivikPF+SjGIM2RmsSEbq6aptwVmCVlA4XFVys99z8/ErXnz6EZu6pioKhmliDPLfT6cj48OJ7nJBJQjjRFtVTONASoKwn+eJy+mErfdMoyc2FlVX4EQK148DtW2Yh4FdU9NPM2EceHh4EN1kkg+HZYic3ddV23A5zfQZ8PTs2TNxUBvNbr8nBM/5fGK73eLnSFWWDIN0CUtTUpYV8xwwpcEWDeiAqxxGBxyJVx99inEFZbVh6D3bww1KR5SSO+rxfIXBk5Ls3nXbUpQNh5tbPn51x+22wGpRXqgPl5siL6i/YfmlTDAgkXQiRUXE4r3mi6/e8dU3j5TbHcZZjHMMXY9xQlQjiegipEiaI0oVRCUjIJ8RIe1mQ1SaZCzGCZA5kbBFAUYTgbJusE4iB9CG2cfVpZCUyeUbWOuoS+lQzv2EMwWX4YLShuCjKFesxVghZJssApjnQFs5YgJtDUVdCTc0iT+1rDYorXjx/DltsyFFuHRnlAkMwxVjChJywhqbLWHZhkR27FdlQWkddz/6AaWGdlNw7a68uN2SvIR6brc7LqcL2n7PXVDgA2XIk71GQV4UeZZjLAHZpYbgOQ0drz77AZ/96Df49NlLqs0WWxaYGJi6jnev33C+nHm228G1491XXzJfBHQbo4R8TtNEIOCW1q8SCVGygbKqKXc7dh+/pCpLCX00LrMlJ3whqoxpnLDW0fc9ZVFDEpd5BFIMzNl6MowjIUbqphE/orVsdzvu7+/RSgazKYlY2s8x21xiLscjRdGy3d0w+0S92RNDZBpPfPTJD7h99kLuwMkw+5nttqWupBR8fDhm5f+FlDRNU/HixUfs9jc8f/Gc3bbCqRmrPCEtNztZfeIg+TfUokmBFjN10uB94nwd+eXnrymbA8pYtHXYwhEvV7QS9unQzyinCeOI9wlrHYFIUIlAwitDUAZVVsRxhBSI3uOD58WLF3I1sWJA3h1uSY+PaG3RViw/c4iUVU3sOqwr0FaRdGBK0sApypJiFuLAnBVGRSF2rHEamEKksC2FE7ygNZbrtcMWZW4SaZq2ZbPdU1Uld3fPICqsFVaPLYRFcH58yN3SbLbNrp7SWpFGKrkbL/fam01N0yh2rXgUDZGb2+dcryO/OJ24nK/f7wKUB2zOWQa5t6Z1JnRZ0dwpTdKRw8cv+a3f/h1GXfCrb97z6qPPeN5uuSlrhugZ54nTu3f8F/+X/yuPDw9sdzt+9MMfUigtia9G4YOUNpFEP00Yu7jqDUpbClPgyortpy/Y390yTJ5p8hjAGYnbUgm6bPaUrmAkJvB4aldRuIIwT7LbThPExDCMGYtuKZxju9nIkDdGtLUYDNdO5lJlWzGHjNorHF3fUzdb9jd7TGEpbEXf9WzKPbfPn2MLK549NEXQKKvYHg5oxOT65s1biromGsvhxR0f/eBTnj3bc9g7rPHEFHKp+dcW4L9h8SVEq6lI8oEn6GbFF98+YmxFrTz9NBAJDH7Ehwk0mJhoiwKcYlCK4K0sQDVjTCDMETN5mc9aUEkQE0kriqKk70WVok3JRy8+RlNkUp7OUrUiy80MYwb6llWN1545giprXFGxP9Ty2q24DVKMaBxGwfV6piykPHTOEBT4eSAGhzUVtlB88slLDtsbnC0BwxwUtqg53Fq8P0MauV4ECGyLQpDz3uNjYB4HSB5TOLQV0FRVOtqqxBViTSt1yeE3f8yzFx/xL/7kT7nZ15zevvt+FyApEX2EIKCaSJT7QZBBrkoJmwCj+e3f+U1+8ru/TfCGy2WmsQ168PSn9yinOZ4e+eKXv+L9u/eya40jATClqAv8JGH3dVMSZp+5MYrRC/g1YXHa8fzZC1K7wRjHfL1KFnw/EIzBamlnx9FAiDTGEOaZsq5JOqFJGMgxz5NInGbJ4PPzzN3dHV3XrbKzoigojGPuZ6Z+ZrPbYqzBp0BRVkwhkIxhs99T1pUMra1CG/jok1cUpUCnalcyjjOlM0Sj8GhMFF3i3bM7rlNA9SOf/vA3ePbiGTdbRVVMWKvAaHzS/4oF969fgFFJ88WRMCRSUnzz7RtevztiXUHbVOhLlHAZV+CcZZ4Ds59IWlB7d7e3WFuTkiHhqUqN7wPX45k4D8DEPA6YYiMnY0oEZVGuotnega6wpkQpOamqWstdzmjGIWKVwxhH1W4Z3CSclf0NbbPFWcPp8QHnpBScp4miFPua9yOutJjSklTClBo1R6wu0Kbm7uWBH/3oU1yyECw+Gc6dR5kKFYM8y3EGjZS3KuGUk+bMvKDvLSrH5cUIhXXUzmIKI/a1oqatGtI88Opmw/F1on/8nhdgioITD/kOqK3o/+aUJA0007sIgXeff8Ef/u7v8Zu//3u8Ph35q1/+Fcf39/jHR94/vudnX3zJ2/dv1+iq5Z/iMEgZ8SB8zYViJeh3RUzSciicpSwd13mku14xSXLZNHDtrmxyzHEcJwpjuJxOFNs9tXV4BWGemMSUKGocI6Vg09SUhfA/q6paJWzGGM7HE03ZSFlUVVy7jqIs8T4yJvjok0/Z3T2jKCuMkiaBbRuapkYb0aYGH4mzYRoi/dSB9uAj58cr4yBojp/8+Ed53OBoaiXDdrOI19WKcvzbfKn8/ymBj56mcvjpik+eGEpC1BjXEFYHv2HQgc2+5Td/80fc3d7IJjhMmASFNsxT4ovPv+Xd+3su3QVvt6SQ6MYLRelotjc0my3RFLx9ONENE66oSClIp9jKkPzSe7xRlFWFbRvunt1RXq989NHHVGWdY+YElT+FCVc5mrZkGnvuyh2uMLhCWkwhRYpqjzU7qnrPi5evqOsNta4ZB0/yAcXMNFyJceDx4YFpvnzAiGV15w/DgE6R2c8r+7RwkimfUk1FyTR69K4iOoO/XNgCnM55nvxv/vpboOkBZAwRYyAlvUKDXFGIG2HoYZr5+he/5L/8z/9PvP3iG57/5Md8+9Xn/Nkf/VOmt/eSx6cg4NEJnFZoJQGdVVmgFatm83Q6r80e72Unts6xO9xSWI1JHqsUXskwOIUkdnASXX8R9TwRZyzPP36FBvpeNINF3TKTO6AKIOBsyen0QP/Yrc5pgdTWnE4nmrYVxQ8qlygJE6UBsrt7xuH5Kw63zyhNiUkKP3pudjtxxEfPw/2RoZuZ+oSfFOiZqjUkr+inyHWYuLm54cXzG262Bdta40ygsCJ1ktGaLKK/zfpTQGZJAiIDe/7swD/4g5J/8d/+nK4LTCGRlME6Q6GFBPY7v/Exv/u7P2G7KagKIwGjs6M0BSlqhhnGoeM89FzmiG0LTscTutxQ1JrbZ7fc3L1gmhXvv33LMAWqdkdKQYQbLqftFj3JBKrdgfZww/6wZx8Cr16+QseSLz7/HKgoqpbaaxRRwlvKPcPYEWeFppR7+aRx5ZayvGGzu2G7vxFBtpfRg1YRoyIxeGKYiMHjXLEayRcnzDzPWd424aPMuQtrRfjgNMY5nCpRVhpXHkFyugDHt49clft+F6A2GnzIkcNyE0lJLqbWOvrYoaxFJ4gh8sUv/ooffPoJ//5v/Ef8k3/+T3h3/44qiA1EHPVPz5CKouioinLlwEiE2GI1kSduu91jneNyObOZR6IfsUWBIjBkHPs0iO1nU9cSMVaJfOnN/Vu0UlgkhXV3uGGIkZQCSidSTDw+PlDXkhU45oH8goWo61reB6uZfWQaRpQyxGQIAZ49f8V+d4crGpyxxDmQtCdquPQdl+uJrusxylG3W9y2QekJ5xLXq6dqWqq2oaoUz59vxETrIs4mrBbOpM4i77/l4SddUJTM/rJczZrIi7uaf/gPfof/5o/+FJ/vkn4cqUvF3/nNj/nsBy8pSw3MGOXRNsOZ8YwJrDV89NGO89BR1DWnywzKUJiJm4Pld37yCVWz4919x9Rt8cPMtbtijJJGStbhNtsb0IbD3S27mwPPnt9hrcKZmofXA9Eb7g4vgMiLuy3TONBzlcwLVdDm0cluUzDVE8Fo9oeXJBLBgE8BQkAlCwnubvaMw5U/++nPufZnqqYErVad8SIoDyHkTnmR1UWC2iwKQU36lGh3WyyCHimT4leff8Mvv3nPR3/n7/5an83fggkjn3rIw3erKqGKpRxBrDVu05L6gTDNKB8ZxivDeMGnQDCKOX+vBLnxsPyGqM6Lps4RYYrz+YrWZLuLY7tt8THxcP+AcQUqBZyG2Y+cTieGIbDdbNjtdyJt8oHr9QKxJKrEFCNFIQm1yigJWNQZWZcis5/Y7TcUzvHw/rg6MhbnwxLegtGE2ZOUJB3dP5z45NPPOGz+/+2dy49cRxXGf/W+j37Nw844OA5WLMEChQVCicQG/nTEGhaREAuCgghObI89noe7+76qisWpnlkAkp1Ems39NtPTmpZGul33nqrznd93RGMrLKZks0eGaUCNPVM3oYzh+PQY7wMaR44aqzLWwK6TyRLrFNYMrNeeyie8zVidMJRQyKy5w1p9iAp1NKvb6GSjEprI8crwxW9/yVd/+4aXr97y6PSIz3/xc45bh7cSrqL1wT5xMHZHggGdE0drw7OnD3lzOfLq/AajJjZLw5NHLY8ftvgQaIMlGIdKlunlS7RRQm/TcnawWnuWqxUPHhyzaKRVNQw7tjfXeK/57OkjUhzZ796xWa/IKfH2quPV+VsyidMHJ6Q4Ubc1w9gzAYvVMcO4p14FXIrEMTINEecNVbC8+v6codsS48i+S1RNfRvichhtmqYJX3mMMzR1gyspuPvtliuv0McbVpVBTx1qu+dmF/njn//KVa748jdfvNeV+QAmTDlNK4OQOvlS2shUgHFW0kuNZC2gkOgsb9HeMOUk0WXIo08rxeHrdCCFVVUleL132zK9Xdgh3nK93TEWE4BCmIzLZcvNxRs2qyV548uM2cD1zTVOG6rgmVIkKkhG05en6cZ78S46TypmX2MNTgvvUxuxRukynuK9x5UTsCmWTHhj2HcToar55PETVs0Spyw5ZmKCKSW5SypoFy3eG5zXtw3lOE6oVPIkaof1Fc4rnNGEAN5mnC3PrZzFx/mjVIJUswKVUCqhSSibWS0Mn//qM65vOs5ONjSqpzIRZcSCOOQIaJJSQgrIEVdaGm2l0EbCPk1KLFvHk0cbzo4NwUX6cSA3jv2y4V9coZzHe0fT1sQ04axlZT1tu2CzWlB5xdTtsTrzs7MjvFPl2VzRd8Jsdc6yebdGt8U3WwVQCR88fvR0Q8YGiw4B5zVqnMoe3ND3Hd9+83e2N5fFH5vQxpfvuLpNUr4lascBZWRIWJKfoW0btDVMJhP1hNrtUfs9//j6O75+8YZff/l7Tpv1e12VD8ASTuQs/rlU6M9KybR3ShNOaypjGFGQFSZFxn2Hiol13WCzovaeRBSEtzUMKaLiRKUMtXWYOqCcOBeSPKIYyWwHKTXrozWr1ZqTk1OqUFM3Sx7bwKvLt7y+eot2Nf0woYzctRJZAmPK3tFaSxPECDzEibaqJTK6NN4xFlcv6IdJ2B9Izyn4ipQ1CcNEpvGOcYKX3Ts+ffqM45Nj6uBu8eFaG1QcaYJh0xqaJmNslqBSlRlUJCWB/QYXaNVIHSA4yBFqY3AmldLxbuFlMoVj9cE6IBLUoYbNxTadwOfEcVCcVA1aS8smochJmve6eG5M+R8kB0/g6xZoTELXE/5ME8IRrQsELXy0UWe0koDMqBRV21IFz2LR4pzgGXWwOG8wDKTYc7RuOFkvsCqVoWLk7r+sy/haIjiFijXbQbGPI9WyYRoUWtVYn0lxoPEWnwxMlv245/z8e87fnDP0HRDBWbyuUFqz33UyRrfb0yxqfJDT2jpYqsqjVcJZhVYR0siqbllpJWyjAbavt/zpL18xHm948uwZrW3e67q8/x6whGfKcKsUkweiFDnhrUNlwc9nJYcG0ygcleCD/N6PTP2EsWL3mjS4XLgIKeGrwOQMo9W44LHOsaxqHnz0UII4gxCrhWg94Y3jxesX9N2Wyjliznjj8M6j8kRlDZujDVELf6YfBrFLjSNu4bgudGup+yUtNVQ1SY2oHDE5UjsPGPrdQDLlzoqWwFCjefjoEaGStkNEZhQpGL46OJZNRRUkz0BYloDWKCs4D68V3mja2mCVTI0HczcveUBHHF7+IP2XOfvwSp4u9m4vULyld71Fdfvz8LFDEVzeL5Q875SMWGVw6WC8l+pIR0tMA9Yb1vVS8jiaGmc1TV3Rx4Fp6qg9nK43LCtDsAlLvKuSbudH5aZQe3h41PCu11x2e2xl2E+RiGI4/HlKxGEidiMXFxf8+/m3pCztlrquQInH1yB7W2us2OGCF4dXuVmpsgXQWuGsZrls2e+3NLbwSYHvXrzku4sLnv7uD/hFQzf+xFa0DEJF1pppnG6bwEJKtuWLLL0dGcaUNkXXdaSyh8p9X8pVR55GMRNDmf8aWRiLWy/5eLXmyePHglcozfnddsvFmwuur6+5vLzmwYOPMMgQ5Gq9YDdFujEDlmW7xKlMHDt2fU+fImNppHvn78BBpSd1QMyDoP6qKrB7dy0skTix2+7Y70dc02J8wDqL0gNnZ2es12t8OawR5oiEOmoVWSwX0i6xEaONJL0W3IKzsh/VRIKzBJvROWKtRpBEP3S1fZj+b2rVB3zeGqk2hIxWntr5Dksk72fWxw2r5UJ8mxq8tcJsYeD0ZMmqcQQ9UZuIzmI4z/8T3i7HScEpEoY+KbTJZAf7fiROxaqnFJdXV2wvrnj98lz28OpQajpiksOWfuiJSTysh0pJsPMVIVjIUm5P40gy0iqrq8B+GPBZAmH++fw5YbHg408/IWrFLr7fAlT5fdPkZ82a9ZPrx+7sZ82a9SM0L8BZs+5R8wKcNeseNS/AWbPuUfMCnDXrHjUvwFmz7lHzApw16x41L8BZs+5R8wKcNese9R/32+iq/32FkAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "predict_animal(\"/content/test_set/test_set/cats/cat.4536.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "2BBrwmV_dGxJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 230 + }, + "outputId": "3a698eb0-9303-4f81-9a9b-94b99be68550" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAADECAYAAAAGYxrSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+jUlEQVR4nOz9abBtV3bXC/5ms7rdnf7cXrrqUkrJmUop3WCXwR2QzrIxFdg4XFWPMjx4YSLdBFQEXyACTAX+AA4IwIEzKojADhz1oooyH8oOTIENfuD+pW1sZ6YylZKuutuedrerm119mGvtc66yuzIyPGVpKq7uufvsZu21xhpzjP/4j/8QIYTAe+u99S5b8r/3Aby33lt/mPWe4b633pXrPcN9b70r13uG+956V673DPe99a5c7xnue+tdud4z3PfWu3K9Z7jvrXfles9w31vvyvWe4b633pXrK8Zwf/qnfxohBL/927+9fuwXfuEX+NEf/dEv+HwhBD/90z/93+bg/hutn/zJn/yK+05fbH3FGO4XWr/wC7/A3/27f/e/92H8N1vvGe576731v/H1FWu4f/Ev/kX+2T/7Z0AMC/o/X2wtFgv+2l/7a1y/fp0sy9jf3+dP/ak/xe/+7u9+yc95/fXX+djHPsaTTz5JURTs7Ozw5//8n+e11157oOP03vNP/sk/4QMf+AB5nrO3t8e3f/u33xfy/NRP/RTf+q3fyv7+PlmW8fTTT/Pxj3/8vve5fv06n/70p/lP/+k/rb/rN3/zNz/QMbwbl/7vfQB/VOsHfuAHuH37Nr/4i7/Iz/zMz3zZ5//Vv/pX+dmf/Vl+6Id+iKeffprj42N+9Vd/lc985jM8//zzX/R1n/jEJ/j1X/91vu/7vo+rV6/y2muv8fGPf5xv/uZv5oUXXmAwGHzJz/3Lf/kv89M//dN89KMf5a/8lb+CtZZf+ZVf4Td/8zf56q/+agA+/vGP88wzz/Bd3/VdaK35+Z//eT72sY/hvecHf/AHAfjH//gf88M//MOMRiP+1t/6WwBcuHDhQU/Xu2+Fr5D1Uz/1UwEIn/jEJ9aP/eAP/mB40K+4sbERfvAHf/Btf25Zlp/32G/8xm8EIPzLf/kvv+Rr/+N//I8BCD/yIz/yeb/z3n/Jz/jIRz4SHn300fsee+aZZ8I3fdM3PeCRv7vXV2yo8HbX5uYmv/Vbv8Xt27ff1uuKolj/bIzh+PiYxx9/nM3NzS8bZvzrf/2vEULwd/7O3/m8350Pa85/xmw24+joiG/6pm/ixo0bzGazt3W8XynrPcPt1j/4B/+AT33qU1y7do2v/dqv5Ud/9Ee5cePGl31dVVX87b/9t7l27RpZlrG7u8ve3h7T6fTLGtUrr7zC5cuX2d7e/pLP+7Vf+zX+5J/8kwyHQzY3N9nb2+Nv/s2/CfCe4f7/+/re7/1ebty4wU/8xE9w+fJlfvzHf5xnnnmGf/tv/+2XfN0P//AP82M/9mN87/d+L//qX/0r/v2///f84i/+Ijs7O3jv/6uP65VXXuHbvu3bODo64h/9o3/Ev/k3/4Zf/MVf5K//9b8O8I58xrtxfcUmZ8CXRBG+0Lp06RIf+9jH+NjHPsbBwQHPP/88P/ZjP8ZHP/rRL/qan/3Zn+X7v//7+Yf/8B+uH6vrmul0+mU/77HHHuPf/bt/x8nJyRf1uj//8z9P0zT83M/9HA899ND68V/+5V/+vOe+3e/7bl5f0R53OBwCfFkjcs593pa7v7/P5cuXaZrmS75WKUV4S7/pT/zET+Cc+7LH993f/d2EEL5gkaR/T6XUff+GGB781E/91Oe9ZjgcfsHvaozhs5/9LHfu3Pmyx/RuWV/RHvfDH/4wAD/yIz/CRz7yEZRSfN/3fd/nPW+xWHD16lW+53u+h2effZbRaMQv/dIv8YlPfOI+T/qF1nd+53fyMz/zM2xsbPD000/zG7/xG/zSL/0SOzs7X/b4vuVbvoW/8Bf+Av/0n/5TXnrpJb79278d7z2/8iu/wrd8y7fwQz/0Q/zpP/2nSdOUP/Nn/gw/8AM/wHK55J//83/O/v7+5xnihz/8YT7+8Y/z9/7e3+Pxxx9nf3+fb/3Wb+XWrVu8//3v5/u///u/cipr/31BjXdufSE4zFobfviHfzjs7e0FIcQXhcaapgl/42/8jfDss8+G8XgchsNhePbZZ8NP/uRPftnPPT09DX/pL/2lsLu7G0ajUfjIRz4SPvvZz4aHH344fP/3f/+Xfb21Nvz4j/94eOqpp0KapmFvby989KMfDb/zO7+zfs7P/dzPhQ9+8IMhz/Nw/fr18Pf//t8P/+Jf/IsAhFdffXX9vLt374bv+I7vCOPxOABraOzVV18NwAMdz7tliRDe01V4b7371ld0jPve+spd7xnue+tdud4z3PfWu3K9Z7jvrXfles9w31vvyvWe4b633pXrPcN9b70r1wNXzv4vP/lPSQZj1GiD3/7kZzg6mbKzNSHUJbkKNM2ULFcE65kdnXJhe4d2VXFy75h6VVKaGmNaMu/JUo0eF+w+eo3LD19jfnzEa5+7wf7la2xduYjIElaLGaGtadqaUCSkGyOGgxG+ajHTJSdv3OHg1Vu4lUF4WM1LcjHi8sY1PvJ1H+H/8E1/js1kG28ljYMmOESQaM7V8zsEO4RIVmm9xwaJQIIH4QMKR5IItA4gAK+AgBMeB4QM8guK3acETFpwAYVCS4kUEkJAAlIIpODsT3cIApDdWwvAEzBf4jqEIPAI1uC7CBBiSdh7jwueoBR37p3wm5/4LyyXLd4K8AIVPCLAwbLhxdff5Ph0jkpSPAIPBG8xpsUGTxAS7wPBOYLzCCEIziFCACGwnH0u3iNCQEmJaQ2CwHis2ZgMGRYFqZYoAYmEVCmUUggpzi7AufV//7/9Xx/IHh/YcAuZU68a7t59jeXBIaI1HJ4eI9qSrXGBThymDsxPZ9x98zYH4gYJAm88WiiyJEE2gVA1OG2QQRLmLcev3uHmqzeYHh2hbSDVApGnHN69izSG8XhEIjRKGczshPnRKbM7h5zePiSULSka0zpSJNv7ezzy6BO4RLL0LbnwBClpArQedAjIc2Qq0f9PRAMQdBciBHCBEAJKRSMJiPg0KZBSoKTECTDC433AWYF0AUlsmwnRygghrC9PQNDfNwHO30LnnvOlVxCB8ywIsX6VR4r45ZwHJSQyCLzz+CAR0L3OI4VDYykSUKmicR7rAxaBkAp8vJG98whAKQnB40UgeB+PXQicd2e/9/FglI7P5VxdSyC6c3GOcxHCfScgdOfqQdcDG25oA21Zszo6RZY1Qzyz6TE0JdKPSEcZranx8yUbOkH4gDcOZxxZqkmDoG497arBBk/btJR1AwJMWZHKQHN4yO22wicJZlVRCMXscI5LEtSwgLpmdTpneTLDLCs0mjZInA/sX7zMk08/xWOPPsHQTiDTGC3wAUwIuBBQAhDiPoPpGVVSShSBVAmC7wzPA7I31nhhej/hfMAGaIUjNB5vMhKhEZ0HPH8xghDnLlh8k/OXyIvodR/ssgWciM88u+f82oMrBAJBrhO0VNEhh4Dvbz/hKXLFhe0Ro0LjUczKhtmqwfvOgK2Lz423GnTePN7oghD8+rsJQCLw3WNayuj5ncU5h/MeHwQi2i5d3f3sRP4h1wMb7qJsKas2ehTb0tYrZFPh6iVVaBFhiHUWYSxFmqGkwhlLqyyr5YpFe4pyFrCgBBawzQprHbI1FHmC9BLXtNSrClpPbQJN3bI0hnQwRBuDbw3BWHJSBsWIS1eucvX6Izzx5FM8/vT7efz6k4zCmDBPaY4tEkkSAiKAgmiA55aUIAQQBCIIROc5nI9G713ASQg20LMGhQgI2b0GQbDgTUB4ER/v1tqLdsYrCL1j6q5bfEMRQn+PfHmPCzjihZf0Bh+694zeXgZBlqSkKkHEAyV0XjngSJXn4s6IstIs65YQJE0baG00Puc8iRYoJXHGYtoWAWil1ufAOYcUAiUEPjh8cAgfCEpB8FhrsbYzXhkdA+qcZw1nliuEwHv/R+Nxax9YNA1Oepq2ZD49IvGGpq6Q3iFSiVAS192pUklQGcVgSOkdjV2SqRahPF4KfKFJxjnSWlg5jDX4ViK1xQuFaVuaVUtbtVghkMqxMRxz4cou+7u7PHTtYZ548kkef+r97F++xHAyJheCxEJz4li2DZnQSHy8eFqBFHgfvWU8SQJE6HxRIPiA9NG1+i6OEBK8hyAFSgoCMWbtvYeku7i1QzgVY861gcf3iPGtiBfUezyg+seIW3h/Gb/spRMgOv8JsvNgQJAoISGGnEipyPIC70+RUhG8Q0oILuBNQ72cc+vm6xyfTmkcJMNt8iSntZ5ES7SC4D0+WMAhhYyv9x7vLFKKuLv4GCrJ7pt459Ey7irGGJSUMVR4S1iAj+fpD8shfvBQAU/blixnxzTlHFMvcdaCA60zdLdNaiFxAVwIjMZjRpMNKmMwZkaqAR9wSpJtbDK5uI/ygvLeEdNb9zB1lwjlKYNCMxpodjZ3eOixR7n26KO87+FHuP7QQ2xvbDIej8mKgjZ45nXNvZMD2sMDjl67y/R2zfW993Nt5/F4Qp0HD05JfLdthxDWhrW2CRGQIhq0FwIvo2fw9z3r3D9C5+cChM7jhvv2wLfuh6J7JJx7z7Pf93Hv+Yv5Vi8kQoxf48Od7xYyJlg+3iwOgZMSdIKQEudc9IzWcHp0SLmccXhwlzffuIGzlsY6hlsrhjuX0dHt4KyPnGLvUVKhOu+KiOfGceY1BQHRxfKyi2WdtRhjYoeGlmdfsPe4oj8bdNfiS8sHvHU9sOFe2RwzEZa7ZonRAq011nqk0uQ+ITUe4RzCBYwLeGcIuqaVCRhLJlNyoREKfJIi9IhCT9gYjPFhxMQW7Oxc4PqT7+P6Y49ycWubSxubXNrbY3N/FzUoyFRKpjX4gJSCpjW8/vprfObll3jtzTeoTw4pj1eIdkiR7LGzeY20QwmUkGuvGkJMYuLJOm8VILpgs3Ma9LlcCDHuFTJeL9m7xxB/Z40nuC7JP/ee/cUIPmbm6zcmbtxd6Lw22rcmbW9dAmLSiyAEEZGNANZB3cYnSBXwSiC0RuoE4Rq0CKzKFaf37nD73j1OTo8pl0uCq1Fa0y6PSfOcIt8keI8TMp4PJddxrgieQMwVnO9uvRCgi29l71m9w3m3DhVAR4PlC4cK58/Tg64HNtznn3iC1199CXd8B5sXjIeWRhiCUxFmqiqEtAgP3joCsCxrpgcnrKqKhIBKEoq8ICkm6NEml/cf44NPvp8n9i+zleVsb22xfekC+WhAoQRjpdAi0IpAC0jinY+M118ryeXtLeRjj/LwpQs07Yqm8viqYCu7QpApbS0RDqTvM36QQq5P1NqwuN8LSHEW0543JtE/5yxQRQTwtjPcPnoNXSzcZSXRSEX/BmvUwdPZcjhDLtYJ9/rz7/fasrszXBCEAMYGKgPTRU1AUAwSlATjfWdg0FYVs8Mj5ifHnByfcDydokKDwqBVYLU4waLY3E/IkiGNl8g+9nQuHmuIsFd3t3bHF71tF5+sd5Q+DLovQeUccnAObRHndsEHXQ9suFubuxzom6jGMhaQaY3JJNZojBUYazCtwXiPdS7GhEqhpGLv8lUuXLrII49e5/r16+zuXWBnf4/t3V22J5tsFgW5lOggCCLejCqmwwQkSgRS+u/r43kTAqkkF/b22NvdxTqHCx4pJN5qqhM4fL3FtBIbLzNaCBSqM5z4n5QgpQAXL4gPLsZxShJ83P5lkMgA0ncIgAIpYpyppcRLgW0cvvYUAwlBIQkIPD5uqjghMQSC7ZIq4dHSRzsOfW4u6ILrCD508bLvsNOI0nmCEBgvaGzAOMHp3LFctZRlzXg8IJEVMpE0yzlJcDSmZnp0h3v33uDw8Caz6Ql1uSJRnlQLyrJFJhltvQC7JMsHNC6GCNba6N+FR4nodYX3WMD7iN0GGeN0T7+TxVs9hIAPAe983Kr6GzEEhLxfXagPF95xw22VQg4GeK3wUpEVBWmmODmtmNUVUnjyfMDmeMyFixfZ3dvj4qWLXH3oIa5cu8bO3g6jjRGDokAJiRICLWQM3jvsVL0l4xdS9qcCRYybhRD3uz8iuJ8ogaYzQiUQA0h0RC9EF5f5EKJ3691Zd4cHAsgONvJd0iVBqW5L9kRss0vIvACl4vt4QoyfW4dtPNIr7o8IAkHEkKN3VoLOo4ewvsiCmFgJ0cWJdDdph81G25UIIal9YFk7jqctNqQcHi24e++A8XhM2TSUWcP2ZETbtATvWExPefON17j1xqtMT+9RrlbUVY1VIAdRs8GZFik0i9kpu6MdlEhw3iOF6nYFhQsuYta+S9K8X8es5/FqCF3yJu67Xuef47vvKsJZCCH+KDxuKzwUCb7IYFDgrGU0mDC6WPBEMeHaxR0effgqV65e4dLFi4xGY7IsJU1SlJSdUcYtRHZXQiJQXZLhhcB+gRvu/B35pde5O5dowEoDwiOEituRDx10dBYmhA4eiK9RBBdDCSXjs2znZXtMPe6K0RilkEgBAUXwCm9FBP8lBNmHJOfiaaLBauLNJvq4uzsi0W29XnTxMDHEcAEEEmOgbh2rIDk6bTk4WeJJuHn3gIODAxYvvYR3Le9/4iqjZ3YYTra5c+seb7zxJrdu3uTo8B6rxSmlaQlCIqWmbSJ+G4REtB7rBJOdmjTNqFtDohRt6/BC4YPGBhmhL5pzSa54y/U55xS6QoaXAsk5Iw8dfNi99u222T84qmAaRoOCr/var2V3PGRUFIyGY0bjbUajDYpMMS4yUq3xzqOkQPdGCjGh6kPD3nuce//+d+e//tuNe/q4MXpQ1RluxFyFh+A7MDd0SVZ8QfRmMmKyfbLlu63uPsC8vx6d4YruvYIXeCuwZo3yxO8tOnC+88AqCJQIqO5O8aIv3wokcv39fXezGhdoWof3Eq0ks2nNnXszSqM5ms2xQpAPR1y4coXt/R3quuLWm2+ytX+NdDBEpQWn0xn37t7h9OSIslxhrcE5h5BgjUHoWIINQtK0LflQENqSrcmIVsYkq/YOS6B1EtfFs8YYnLMkSYLWOuK0/RIRsuuvyfnYdm24Pt7c4pwhv531wIb7yM42o6uX2BjmTIocLWR3sBIf+isVL4jWEtm5/j6H8d0F6b+IOI8YratZZ1n+W7/Ig3ytzm91BYJAkkqQjhAC1vkI1of7PVzoPrMH74UE2zqcO/u36jxhLEoE8C4al5L4ziqDFxgTsDFHuS/xkF1oIqRA+oASAoug9eClwLiw3oGsgFYIjA1YJ1kuHNPpkq2Nbe7eqXnzjSmz2ZKqbbjyyDWy4ZBskLKRFSi5hZIClaS0LlCWJffu3GJ6cshyPqMuSxCePMtJkhQpAsFb8B4XAhJFsA5Xz7g83gcSjLGUTaC2nmXjmQVHZeO2olQa8xil1h6zhxmV0shznjj4gO8A8Bi6nZ2jQEz83s56YMN9+uplUiUjuOxjiVEEsTZK28Vy9BBPH0t2R+dFLJHSPySi2+sPXgIJ4Yta6Fu98ZdeAWRAJWKd4PSl1vjrczhBn/j0kL4UiC5+1SomRNZ4nHe9pSNVQOp4PEqDVDHo9T6WlruQeA139d9PEKtzPgQMgqXxLFuD0BpnHKvFknw8plWa+aJCJwmNUfzBSzcZDlaYVjJdttx45QZHp4fUoiXbSBls7mKDZ3Y6JwRLlkhOD4945cVPce/mDZrVDFyDkAGpEpCKtm3AWbSKSXRwHiEVpmkx1YrEVwyLlIaWcaIo20CqoocUIbBqFaLTlJDyDKWx1iKkJHiPDQ5jDKQaqfqwKj4nqLVHWCefb2c9sOEOVKz0CCK00ceFgoDq/g7njQOiQXQHG9wZSN398gwWot9O3taxf97qoRhEQCnQSYxzvYglR+H7bSmGA/06n9FKFWNQ0WX1zlm8sISOsJOkGUoLEtllXCL0dQjatsFYiUbFixTWX3MNqQkpcE7QeJiXjruzVSS3hMDJ0QFb247x9g7OB4QP6EQjEsHR6SFNHahWNWWzYHt/A5lYHBWDoaCtLQTDIE8IpuTVl1/k5Rd+j2Z5DLaMxJoO1/VdXqGTBCl6HkLcDZ2zrFY1B8cLdjaHLGYnZFmOlzkyRP5DIiVShmigneH6LlkLHYrQv2/Er+XZDtrHtMETwll49EcWKggVqyUxwYnuVBLWf1R3CL7Dln13ML47ME0EzqH7HdGb9VuGeKuz/UJxz9qNf7GD7JOzCHOlmUKnGtPtBGcxq1gbq5Syg2Y6xEYAJsJ7zjqatsI7TzHIGY0LmlbivMN7Ayi8191OE+M+a1MI6uyCcEZhXDMGBDQ2UFpwMme2XFFXJYt5STGesKsC6ShDSoF1nsv7Y8qBYbGomYuWh77xa9i9tEPQnv1L2yRpNNw80yyWS1bNirtvvsLR3Tdw7RIZDFoKvNCgkq5kK8mzBCkFVVUihSTLciyS2sDBzJAONadLhypL8kFCI1JapzHe4XHIc5js2WXrg8HuXAoihyUIVKLQxO3Mh8g0W+O9D2qI3Xpgw3X4Dq4RXewSP8whcN3dKkNnlD5uk6GHnQRrfHb9BXlLrEu3ZXD/cx54if4z49mSEnQOxUjQLAxaaUKPlXZ4qVAx3ImRehcJCIfHAJYsV2xubaJ1LJe1Nu4s+Mg5IIR1AUh4hTA5rBRhBI2IsW7iBAkd+UZ5HAIjBKerFbeP5ywdHJ2cMD0+oF7O2d0dsapHFKlmPMixLVzZ3uKlk5vsbGywublNNk65dHkPawzGGlaVZTqvaKZLZOOpZnMODg+o2praGlrXgvIkQhGkJziPdRZjIEk0QmkSqUkSjRYKZKBqaoTOKK2iaQ0jKTDCs2oayibi9OcpX0oKJAIpIxxoXB2pj7bBGIlONd4HbFfYEcjztI4OXXrw9cCGa6xFIUiVJlgb3b8ALyRegPHRCHp4aZ1odZm1EyGSj7/I+oJbxRfwrl/M3wYCrg9LOuxQpZAPIUkD2ilM2xFs+m2gc4ciBIKKDzjhIDi0VhR5jpIiMsScx9l4ZwoEUui4A+HxAZSVSDShFNBCq+livVi4kEl8bhCyg7gMq3LKS2/e5vU33mB7Y4xvSn7vk7/HC58r+Kon38eHn3mcRCs2iiGmajk4vodXigvZHt5aEgGf/cwNhltbJCrh5mu3SJqW1fKQu3cPqVpLZS2ttaQKhsMMlSQ4E2iblqYxGOcRUlMMRwgZjTRBgmvwzuGEZroqcYlDJhHpiJcmcpIJITosG6tr0vuYaHkPCry1eG/xXuI6Np0S8iwhDj1680cUKmid4Z1bx0d4j5eS0FdJeos6l/OsidNvAaf79c6qC/ZRWo8udEWERKFTj7OR1O58BGYDqjPaMxuOF0ODigRs0zqaNbehjyUkUp6dbN8lK6FDLEzjcVZ3zw/r3cb7ruwbPNoJBkoxVArRNDTLJS/evs1qOWNvb5/RcMSH3v80wccgo1yVBDxVuWRlDBvbA07vnZAryfzomLqu2NnZRoWGN268yPHpAcdHBzR1RdM09Ey4Pjzr43xjDQhJXhQkaYqQGusi26teNSxmKwb5iMZO0cYihaP1ARNCLKG7eG5EiBXEIEJXoAhYHxEl6zzOBYxz3W4tO6ZaJOTHTohYWn47yMIDG25jPVpKrA9oKRBBIroA3AnoI7ney9KRUtYxeeiZV1/E7N4BI+7AsBh7dcchJAgtCJJ4k3WP98Yazv0cv0Us1lrXduXOqJgopexCje59e87BOVXGEEKE0mzXICT7sImucAG5EIy0Yn80Ijx0lel0zmdfeIGmrFguSqbTV3ju2ecYDkZYC9YFlmXN5tYmpbH4Zcm9O4eE2qCDwznDZHOEcSVXru3y5ou/z2J2gm1qbNti6gbpLSYIqqpGCIkxDtMYnPekeYpUGqkSkiTBWI8zDmsCZdkymGzhHRjnkT62FTkZCyh9HoMP+I6f672PxuojQu2cxzmPsTGuVl2IhRBILVCho5H6aPQPuh7YcG/evseVyxdJhMB6SLrKUjRSjw2R6d6vvuQH9LySz1u+Z0zBl6W1PUjWGWv+HkQ486QiVqK8cARxLgbuQ10fiNUJCI51Ja+3OqkUWuseCeO8UxCdAQvObjzvAs6GSA8MHr/OAQQunJWdCyXZHw14+pGHuXf3af7gxZdwQaKk4tmvepbJeJO69syncxpj0ImkbpYY22JcxudefQ0tHE466nuBnZ0J27vbZJsZwbd42+JN2/WCCbTSEbuVmhBajHEolaCTDJAkSUqa5ZS1iV5UKHzXvuS8pzUtaZYjlEJ58M5gg424bCB2W3RJsVZgffTEzhq8MwidRvZwxyTzwYCPJHQpJT54vP/y0qz9emDDffGlV1E65fLedgSQQzROLcQ60HahA5q9x9uwhoKk7KnPZ5n8+UrKg5d1v8QK52+O3s0DEhwWKyAIuS44rL2siDFxT2rpuQNxmw9o3TVHutC1S5wPSs5KnusSrQXTxK3UdxdPovBEYozGo4VHKkkmJNcv7fNdH/mTDMZbfOKTn8EYw8nhCS997lV2Njc5OjygqitW9ZIsl7hVzco57t69SbANMhPs6F2GWznHy1O8CrRtRXA2Vum6HGMwGJIVA1rjaE2FcT1kmDAcjdBJRpJmDEdjVn6Fd56AJ9GKPNU42yJci3DRO2olu2povEG1SrtmymjUCosIAdO02FQQFHgVizhCRDqmlJBojZKSqm3QnRbwg6wHNtw7B8do/Spt2bKzMWR7c3zOlXokMnYGCEGQZy0eMdYN9wXgrot34H5P+4cx3PX70AX7PbosoreVSoAMOBxIhVQqQlKuy826r+BjBLimTErVISiqM+S1q5Wf9/k9CwoRsMbhjMe7zosQmWHOgwUqAlJ4EilQEnIBRZJwae8C164sOTmdUq8qjg+Pca3j5GSGD4bhJMeFltXqBJFvcfnCLjffuMG9O0eMtwes5jMObxzw+suvUM7neNOcVS9ljN1Na1ksV6xWFVJphFQkOmM4GJNmRReLx2toXUtZrdhPBFkiKJsabbNISBfE72kdiVIxRGjbSDlFIHyD8A7vLNYaVr4iNDmMB4g0jecMSZCBqvEopdjb2+O555574Ov+4KhCgLsHR6wWcx65cpnR8HGyrkvKE2IVLZwZUazV9zzLDht6C1D9h6W0fbEVo6U+YQzryhYqUu58D8XIntgRjXWdYImAkB4hZezulaD0WZk6QMcs/3zYru8O9tZ3W2wfSkiEj57aBRHpmHiCh1SqjjrpGeQF+7sXePT6E+xNCl5//U1+7/c/xcVLF9ja2eTk9C6f/NRvo9OEb3z2axDGwvwYX83IjGH65i3q42PcdIlvW0xTY9oWQiBJMpRSVK3FutDF8A4d6HYRiU4TjHW01tLaFiED1huEjP1nYVmhXBbPs1IsTUuwBh8SlFKYxlJbg7OWuq7xoce1DVJAmijGkxGDPI8nTSVkxYCdnR2e+8Dz/PE/8cd59JFHHvhaP7DhWg+VsYwGOSrVCCWQqqu/h1h46EOD9aXtkiTR47hEo1Gik5/vOkd78vV9OO4XiHnvQybCmbc796I1RujpauZJpCDiXYxlfPSosUhyDh0gdsC67n2QETbzAfAQvFgfQQiBIH0ErmXsyUKAlIEktejMkaoEUIiOQRYLNrKjQnpsIHbnKkWaSy5d3OG0arhz94B2lXI6n/Hiyy/TOseiXPDyyy/w0osv8r73PQF1zaDIubS/DdSkEpYHR7AqYVmBbZF4CLHLdjQaMRiOCKKibS02MxhrEVqCUrTOkfro+bQUCHyMz72lbRqCN7i2plqc4K1FaknrHYSor1AZQ9u0OOfwISZkPgRciDurUpLagzttqJOEPM/Y3t3nj33t83zbt30bjz/+OFsbG380yVmLRGvFlYev8dCj19CJ7EDn6EmcCJ2n+8Krz+BF16qshOgC+mjsLniM92vj7Fnz6wye+3/2PraRrI27T8a6OyTG0p4kkaSJwBlHMB7lfOz9lzHJFB2m2N84rQMtIATZNQvSkYViLIeyoAI6FagMRBqQqSQdSNJckRUZSaYQGoyTOCIDTABJAOFl18XhcT7ghEUoxfZ2xuVyzL2DNzlZLNm7fIGv+Yavoyobjo5PmZ+WbI72ScWAz738CkE4bt1+nUGuKVAMlKRsWtpVNFwRLN470iwjCMl8saAsy47GaGKiKgVCK6ROoENMUqUoEkXT2kik8wEpJNY2lMsSGdxZmbiD1lQIaBfDBisChtgNkkoBShJUbKRVSjPemPD1X/u1fOd3fifPP/8cg2KAUpGor/QfQYw7LHKKVHHhwh55ltILkXSONnq/txruW/4p3vJnXXXqTps+R43z8HkDQEKngBLx1rcMDRFdEYKzN44dvTEC90ESMCAtUuQooSPpHAFedjQ7BSG+RxAeoQ0ytyjtkCqgtCAfFMhEkmQCnQlkSvyjY0ytOuKIjRYfk1aIYQSsiyRrcCJEko5yMMkzTLXi+GRGlhd81Vc9zWKx4tabb2CbJRujRxkOCk7LFat6wdHJKZvjHB1c1JwoS1oXq2lt2+K9ZzgckqYpIUS2mLU2Cnl0rC6lEgbDAXlW4K0hTROsSTtS0VkOYozBBYsWHhFiL/ea+0HvKKIzCt5FfFZKhNaRSZYkbIwnfN2HP8zH/upf5fpDD6GVIvhY0Tsj+D/YevAChAiMhgWjYb6WEcJ3cV9H3TsvtXE/I/7sInU2tv7n2QbMuics/gxa6a5+Ed+r7eLInsfw1vf3qr8l4nKhazNXmqAsDocPsW4e+/xld/P1UawnSI9OJVkmSXLFaEORFYq8kOhUoZVEqniAYU2wia+PUFfHA5NhzaRSnfF6AQ2ya3Ds+BIhlgZ0EGwNMh6/do2qabn5xmusViWPXH+Uhx9+CFMvSURsi7rx+uucnByxuzPm+sPXMeWCo6NjTmcnzFfLjisbb/oewTEmCjv5EDDGksgEQuwW9g6apiXYFmPiHyFiQ6xzlqqqsNZi6hW4liJLUJ3oS+88kjyPzLgeQlS68+YaoRQ6TXnqfe/jL/+lv8RjD19HCSJkKCU9Qn4/Q/vL2OODPnFzY8jVS3sMMt1B9B0VMJwrPLxlnX/oCwURIYTIaw19/bq7mESAW6set+pi6F4OqTPa8xxQBGu8tKdreYjVsUQgko4l5hReBLx2CGVButjkqTwqE+SjjMFQMhxJ8kKT5rGIIVXXd6XiNwt4QhfD9cejhCSIGPtJETnr0AvixO/gRE9S74zXAz7CTqMs5Wuf+yoefvxxTmZL3rx1wMZkwnKxIM8yvG2wbcN4vIl1hjxP2dvZ4dQ0lMsFi+Wcqi3xpl132LZti9aatm3X5907UCIh0RlFNkCrBOcM/fbXti3Oe3RH1VyVK9pOFMQYQ6YVQrjufo3ssCzLqE2LCz6y0IKMHj1JUEnCU08+yf/0P/6PPPnE+7rev/i9dUdeFv32LR/MeB/YcK9ducjDVy5EPm5w6ypSEF1c6cN9SNFbP74LI6OhiTPoq8dTBZzz2mF9/D0JW/YNeaIvfHRes/O+sf5vu2SqN97YH6VTSDKP0wLhdUQYVEs2EKSFJx8LilFKWih0kXQc1TNkJPZCRb/QBy+xXV113AU6wQ9Bn6hBjOMJZ02WPoCmZ4j1kFD3OS7+Hazl6O4h02XFMB8wHMQ/WsBnXvgDqqphd2eXIksYJB5fNxzfucPiNDZAtk2NNxFNyLIOTahi6beua+qmgaAJXiKFJkkyRCdwZ9oW7x060ciOjmjalraNHlx1OUXd1EirY89gF0o456L3Dj0tNFLtkiThQ889x1/4H/4HPvzsh0hFxP4JsdHy7Px+4SLVF1sPbLgXdrcYDjIIvis6dOoT/Y0C3B/i3n8Ya8hedPFdR23z3kd4ivhvIWLIENbvINbxtBCdnsH6N30C1xc4NL2sURRcDGgJYizhUk5VCGwNQgbGGynFSJAOIB+B0B6HIQjb7Sax0iVjTBCLawFa1999EQoUXSVMdjdUUGek9C7w7n6KXibtjtASQQ7rIXJ3Ij3U2cD8eE5jPJeuXCAYgU41As3GZIfBYMLW7j62XmFWJ9x+/UVWJycI0yK9XVfL0ixCVyGEbst3OOewxiKEQqAYjzYYDSd479Z0RKlk19EQfzbW0raR75CkCTJYRHCITo1SdS3pArrPIUJtShGc48qVK/yf/4//J776uedJhCCVMlbexP1OqK90PqjxPjgc1lRoMe7ChN6Dnr8wX/pDxbmKFeIchVFEcQlPBL5FgESI9c2wDv45M9ez9+xi5M7Zy0AsO3feVkoXIaqRpkgz7C7rGwDoeAwxEQshtuPY0Dd09qT5EPFf2Rtu1yMm1nsOSoSYzK3r92892jOOQ0LMwhshuvJzbIaMqEtAKc2F3YvMVy1KJLRtYLFYcHjvlNFgg83NCZtbWwRTcfOVkuNbd2lmC4SxCBsNt2+lSZKE0WiElHIdKiitEGiKfMhoOCHLcsqqpK4b6mqJMxWmqcnzgvFoRBCa/f19tjfG5ImkqZY400SiewDZaTfEBO086uMohiO+4zu+gw996EOR9xxCbFoOEdE4r6PW17LeccPNkqSTrnTnsNfegMI6qz/78PNe54zi2P/eec/dw0Nu3r7NfLEgCMFwMubShQtsb2yRJRq0RoXOm517O9ElVF2ItQ4XEKHzyPGxvmNDCE9IJSKxBOkQaLzv4steAcF1vXNCEkSE90TweNHjtIEQJE6k0aQ7FY9zxV8gxtk9VS7G7H3DaJ/A+i4ZizTMPtGNnxm7ncejEVJbkrygkIIs16zmI0xTkkjJydERx3fe5OUX/gvL02NUsCgiMXt99kMgTVOklJRlyWKxACDRCYGEwXBIkqbdUXZxuvd4F5UadaKRiSZJBzzx1FMkUpBrSTB1p2gjaJuWarmgqiqMc9S2ZdU0a9LVBz/wAb7tm76ZXOvYONvxHvrOiXDGsD+33uEYd1KMERbSREcsjygtKUVs+7YInPAkdDGO95zliwIXXEfekAQhOTw85P/1r/4Vn3nxJebLFcZYsizh6tWrfOjZD/FVzzzD5cuXGBQFidZ47yk6Hdaow8BaIFmEDkuRkRvcG4oIChFiiiQJIDrjJLaJowRnpdwusesFOYgdA94HAiqGNYEOjjsnnRS6EnJPMApnt3VPRlOdcYoAVoAVHiFCJ4ASf9kiMCFq7qYjRR1aRGLIk5Q007TbA4JTjEcDXnvjJm+89jnu3XoFZ2YIYZBa0HiPVUkn9BfjztVqxXK5RGvNYDCgNQbjU2SeovMEGxxlU611vqyx6ERH1liWIgYFqUo6JaBAlg1RCILKkULQNjXOtnjhabzBBI+TkGYJ3/Et38JDO3sMuoZaIyVO9mdbrHfvbuP6ggn8f7XhplpHhcHuY22nsOaFwEmorGO2WrGYlwgPo6Jgf3tCIgSZ6r2k6Ag6nhc/9yK//qu/xtHxKdYHVmVJkibcuX2HFz79AtevX+f555/n+eef58qVKwyLAiNYUyM7JIueNANnTYprz9956rN7ODaC37fO3eCSGD70CaMCvD7jsXq6ShqxH6z7kf6+6beVdT9bl4RGP3gW8qhYgYnbp+0YZSHGur2lOzzWGIJQaKXY2NhE46JuV10yOznEtTXeGnAGa0xUjPFh/d51XeOcI0mS9Wzhw6MjEKBTTZZnKK0JxLgUIgSWJorRcEhRFPgkIUmHEECFgGtbmqalriqUlKSJIqgkqth0JKQ0VVy6vM/7n3mmKyqcXYeYmNMbxH3G+keC4+aJWivNxLgPKmtovWVZNfz+pz/LJ198hXvHJVUd2N/d5U//ia/jQ++7hJKRWhdFNQTeOm69eYvVfIltW5bLFc57jG2pm4rVasFsPuXlV17id373t/mar/4aPvShZ7l88TIbk3Gs5LhzoUB3jF51ltSdl3VnLeub+vPW+bJybOE5SyJj9NFhtV1Mtobjwpme6/mY1sFZSBTgjL6zpv+sj0uL2D7UIWKRWRcEQUuckljjEY7IaTUBISTOtdSLGfX8lNC22MZQl3Nm0zm2rsm0jtyC7vgGgwGXL1/GOcedO3dom4ZsFIsSqqNspmmK1hrvI59ECEjShDRJqD00beyvC1KhVUbINCrtRgREPdII9+GwwaGzhMsPPcTexQuxtyz4TkMChI/UUS/DWRGmuw6BB7fcB49xdX/poz8z3nHn8IiD2YKXXnuTX/m1T3AwbTBqQmVT3jg9RKafZn9vk2w3JUNifKQ4tg5OTqaUqxXNqiQYS8BjXOwctU3LYjZnkWXMTk556cXP8b/+1m/xwQ89x4c//DzXH77OaDCIUEzvUc/yxDW84rvt6EFXv63TfVMvOp2ZLvtVrCOJjiLZJZaBNWnHirckHd3r1t1uISaRHRyMEpDqKBEaHLREbFxIse7ramqDrw2tNTSrGWY5I/EOFTymbVktSpyxJErhOi6GD1AUBYPBAOccx8fHnJ6e0hpDGoiJ23CESjOqqqLMMoL0OBWTWtM0lKslMpvEypnzMXEN3QQKGfvMnDERQQC8UAQh0NmARx99jCwvIERCTx9urUMsHwnp6+S+z2Me0HYf2HDPlGaiK5JasbWzS6szqhdvsCgbjAM9GBJQrIzj9YND3rh3xN7GhU5vNtb/kQIXwBgXu4adxTqLk2cFhRACzraYtqZczTk5PuLl117jky98mm/8+m/gj33d17G3t0uiFFrErVyeM7rQnaQzfuXnn5QvzEi739DFWx5XdJBeiDcGQkXP3IkGmE5cgxBwNhqTUgrdhRNKKlzwEWrroBPj6HjDoRMXgSSJZVqlIpeVRHF6esjpvZtUy1OUcATvKMuKsmlxvgtwgseY0JHfY5w7n88py7Kb6xDlP5VSDIYDfBAdAqFJ0iHVylLXDcZanHXkQ0VtDdY4QqddJ2N2jQ0BLWJiG4SksRaShPFowrUrVzruYMB38zLcucQx9BBof3o7PJwHpCs8eHt6vwXTMbo8DNKUrfEG+9u77GxtEWTN9sVtrqQjBILLe2Maa/jkSze4evkiWV6QKo2pGyobJdYdAdupZUdthtiX772D4AneYk2Ec2yAqqyYHh2zXCz4k9/6rVy+eBFHINHy3LGegVA9ytDfdOFLGW9njIJzXIK1Ynm8CLITenZEMn0fm4YAxhKTLBul5OtytRZFHhY5SapjKCAEWgqUANt226gSlMZTu0BrAtYY8BHNKWRCkI7jdsHp8W1mJ3dp6yVVU7KqKpAKZyMzSyrZcTBYY7f363MJsixlMBhgjGFVRe2w0WgErmUxO46tNsZRLleMxztM8ow8cXgCrWtxfWdFDxu6uAPprp/vyt4uO6MxqYiKRp7YKGs6g1Nd9dBxH/Z0X+jw5dYDG26HO61jSt39NFAJu+NNvur9T3L78IQrD13hqac/wGCQ46xlfnrIH3zuFU5WsaGvSFLmpycs6gYvFa13GGdRWqz7mHpbWgtMeB+HoaxKgg/cqGvKxYL58Qn/+49+lIcfeohEpusqTu9p+22pDycs90+siV/rzMP6Dso6M9SzileM1UCIvtwccEHSuoDp5kVUjWVeLlnMF9R1xXK+oCpXHB8dI4Gt7W2GW1ts7u5SlyXeWhCR39p6x7KuqBvD6eGM0WjCo488gtUykm9ki3dz2vqY5fKU+XLKbLEgSBmHjahIELLOdfTJrv/LWtq2Zblc0rYt4/GYhx56mP39faqq4vDgCCklm5MR5SISczwClCbLC7bGI3SaYL3t4nGNdSnKSxKpET6SylvraKzHhMDl3W0maUpKDIWMD5gQwyDfxfY+9CMEupssxL61SKB+Bw03SnyGCLUgIiSCIBMQ6tjfdOXiFtcvjNlMa0y9YjlfcHQypbae127d4ebdu6zmMxYnkQyS5jnVaoFOU5xrI7dXCOiohj74NZ8zdogGvDEsmgbbtPyH8hdZzGZ8z3d/N0++74lY2eEsrDkf//Z/nSeUnRdjiw+IriIWjdd3+LTzXVtSiJtbIBJ4rI9Ga338uWosp9MlR0fHmLbFGYNpLDdv3eWzL3yGtm0Y7OywsbfH0eEhrm1RSpIPCsqmpjY2Vg3Llqfe/342h0NSPIlNWc0OWc4OMfWC2fyUZbmitS1pnhOUwhqLlwLtJcF1OsHes1qtsNau+/tiB0gsatS16c6HYLVcMjs9jS07Id6sSZIyKAqkhLY1eG8QwqBEIEk0gyxDiTgDw3uBQ+KF4qEL++QyUhVFh8YY76mDRxOvZ/AeL6IiDiHal30bio1vw3Al0keRNBEsSmucSCIulWruHNykrpfY03vcejFnXlcsWkNZtbRlTdtWtG1NXZc0q5LdrS22N0ZUsxNaK3AuJjpSijUND1jrUkXaXCxdNqbGuAYvHf/5N3+FRbPku/7sn+X5Z59jmOddFa1T2BEBQuxAdUFhw1lIETpFbwjdTdPr8YbOOKNumO9OfoRzXGfUIkpzCkGSCKQDn0kmwxHOOKSAPJF423JxZ8wzj19lenpCZQRBpTx+4QKCyNoyxpDmGVIp8I6NImcymRAWByzdkmxrk9XpMc2yZjWvWC1LlvMlzlisb6OyjA+Y1uC9I9N6bay91+0JSVVVcefgNnWAJB0yGW2RZzmmLun5WVIElqsljbUczlcY4wnOkCaCRAI+YLXDVnOCbxgMU7I0R5GATKOX9jFoNQEWdcuN23c5WqwYjCZMxhNGRcLs9ITBYMDGxhilE4J88ADgwZ/ZjULSOkEgI5COoAEoBlTAmzdvcfLmLVKhcImiDt2JW1XUTUUbDIvZnKauUeoxJlsbHB7ltM7Eyo9pu4gkdqVCpAoqqdbJStSiisZVtzVhHvit3/kE82rFfFXxjV//DRRZSqYV3se4L5EKT5xNYcO55sYOe40TFLvItUsaonGClxGX7TEV3w1/iIJ/sisFC4SGoUoBxcZkyMnREaZZUS6mVKsp0jfkOqBxjIYDsizHmJaqgrK0FIXEWktjGzCOw1vHKCmZphnzyYTgPaaqOLp3yGpR4l3EeWMnUdTo6mdbOOvWfNzzc9x015hoWsNsNiNLHbkegAss5ycs51Nss0ClkiIdcHBwF5XkJNmQVCfkOkXKgDctzgU2JiMSnZOmUTivbjxpqkkTDcGjlMaHyDZ78/U3+OyNVzFoBqMRw1xRLmYMBgO2t7cZj8d457j+v/u6d9ZwE9HvuCLqSwVBGQRTAyYdELIxCxObBaWpcApaHGmiKZSgGObk6ZikKFBScv2JJ8A7Xrt1E1eVtKZFd96197a2uwBCCLLMkSZJ5Il28EtwjrqukVLywqdfYDmvqFYNf+Ibv4HJeMQg1bGrtDc8GQsQ1rqOrxqxUei1EwQuRAhsXcyVPfraZcNCdQhFRBF6FXMpI0qynB4xPT3hzddfY3p6RKIgOIO3LdYaBolmpFuEN7i2IguWJPNoWVO5CqkkznnaeskgyymXFcvZMVsbG0hvOD054PTkhNa0tMZELw3QlXhDCNhOBOR8UqaUIk1TkjQlSzOCC13rVBw0Y9qKtl1CKHF1YLla0bjA/v4+w9EApQNOOpw3ONcySDQetxYBETKKVKe5RiWCREtEcCgEu1sTnn36SQ4PD/jcq69x91ZDvZqRJ5rRaMiNLn+YzaZ8zzttuD011oXYxrOwjtPG8+ZJyc2jOZt7V9i5cJfm4IBBIbhw9QKT7Q32tibsTcaMJxOyyYQ8yxgPR4xGIz77mc/w+7/7Xzg9OkYrhSLK+ljrMK3tLkinImhdVFDpxDmE6IzMe5qmwXnPKzdu8P/4n/9nXnv9Nb7h6/4Y73v8UcbDIXmWEHzA+EBtY9WnruvILc0yNjY2EKILVVSf0sUVu4HDunrmzmtH9NVAPOWy5ubNm7xx43PMZidoKRllEiUDIuhYsQsZMniUiIbUBEtwLalOEMKTyECRpZzMl2wMM6QQVG2Dt5amimysItXgfWz7dhblfeS8dpJYddPGeboiekFjzJoh1hcaIqwlGQ8njAcjmmZF25QsV1NwS9rWsFpZBqMJ0jdoabHesao7PkRwCAxh1qCkQ6uIGeskx4Vo3N6bOM8YiQ6Baxd3+bY//vXsbk148eWXuOdKvDO4pkQIQdu23Lv1xoOa49uZcxaFeY0LGCFYNY57x0sWpeH23TuMRyOee/ZDiNmMJx6+xpNPP8F4c0ieKgZCRjG1c9BTCIF6/yLXdvc5fONNKutQaUrbGkCcY/BHtWspI0lFS0WWpmvw33ZkaWssTeN401h+7v9zwMufe5Fv+GNfz9d/3R/jwoV96qrm5u1b3Lx1k9l8TlWWKK3ZmEx4uuNFJElUL4wRbq/9EL2W6wbRRdRDgo+aud56jg4PuPXmm7z++mvkOlBoyDJNlnR6BAiaJhqQ1BmlCQjjMCQ0zkZ82wVsULhOMShLEoL3KBEhO9s0FFnGhb1dZrMZIUSvGG8uh06iEo01BndOr7aPc7XWJElCluWobMRwssv1648xHI548+ZrTGczFssFIpTgwblAliZ414JrsNYRZKyeRYXVgFBR3NvaluWiQmWeJK9ZlEsC+5H8JDyqY/s9fGmfQZ5QLaeUs2OslRRFgTGGPNHs72y/84a7ci1l2UT+qEwom5bFYsbR0QnjDJ556lEe3t1g5APDNEFoiVcBLSCnUyzsvFX03IHLW9t86Kn388ZLL3PiAq0PKOVJ05S6ru+Hqpzv5IxsHMWpFULrOIlbCKq6xjYtwRlMXfL7v/s73H7jDT75+3/A9YevMxgMmE5PmE6nawC+KAru3rzF4d17XLp0iWvXrpEPcpz3TDY2AUFro6RQmmVonSATTZom4D1NVXHzjTd47ZWXsaZlkifd+CUVlV5wZGkaBVE6jX1rJY3rOkhkhsw1jYk9YlImaMdanh6gGAwILhqzlJJLFy8hpCJ9/XXu3rsX+bLWQNc5kqcZ1sRxpCGENY4rOlJ3nK/ruLS1zWA8JiCxLsJc2zsXSVWLFJLheBvTNti2JRGB1llsnG6N8R6dgLU6oi4GjGlRBpReMJ0vcHRcZs7Ue6RUXNja4qs/+EEO7t3h8PgYrROU0kwm4wc22rdluCd1yUsvvcJiVbF/+QqD8SabowwtN5lMxly+sM1EKwofjTUIIimm+5C+EHC+LjUcj3nmgx/gP//6rzEvV7RVi9a957Bdq3MkPwfvIne2Iz2n6YgizxBKxVDBOQg1wdQ4Z1i2sRNgMZ/x2Rc+zZUrV9ncmJCnKZnSeO8o53MA2rzgzVdf5fabb5CkKZ7AxmSzS9AkTdNiXeSXTrY2uLC/B95z784tjg/uooAiz0ikjULQXlA3TddB3IU2StM0hqZtIKi1R9RSYjuWnZKStqlRMjb7SCmQKiEIH3W3pKIYDtnc2ODShQsIYLFcYr1fd5VIGcnfvpvTAKyraNZamrZFiow2eEpjMa1DJAVPvv+DNKsTmuqU7d1tLl+5RtuUaBkbZUVQlK3DWEFwAUOgJnYCO+OwLpASWCxKjk+m1K1HpDritB1fIbZjaR6+eo0PfeBZfvU3fpOe0x0cjIeTd95wZZ7jtOLWwQGDzS2uPXSNve0NJJAogcKT48iVQHhPkHpNcOnLpPZc0uNFvHOvPPYo1554nLsnJzh/Js1UFAO89zE7dh5jTYSmZHy9kpLRaESapljvyYuc+fSYxXyGNy3eC0rnsMbQ1g1VuWJva5srly4zGAyQSqIROO+ZHR8DkOUZeRE9bjlbkhcFy7KOAh8ChDji9dcdn8sSijQhUYIiSdgYDVEyUFcVQSmaxmCdJ8tSghC01qJ1itQwVCo2TzpHVVX4EMikQElH21S0dYNOc4SIFUqtYreCQ1CuKqpVRZqmbEwmNG0kjVvvYwm1C2nGGxvcvXOHw6OjCLWlKUVRUFUVi8WSQT7BiRCx48ohdc54skEYj7DNNoNxzmCyxcXhRRbTYybDMYPMczJbcXiyxLiYg/jEkQgNnQCK6TSADw+OWZR1VDL3nkTJ+BwfbyytNE8++X6mi5LXXn8d07ZRqOStZc13wnBHScbDl69xcPeYpqyRAQaJQAdPKjpl8tCFsV07R9JhSH2AEKttnUq5j+XT/d09PvTB5/jsp1+kKc16e1NakycalUisM3g0VVuhgiAPgqYpWUw9g8GIdDDomP6xClUuS5qmoTVtxEnbBtOUuLbG2IbBYECe5+u/pc4jnGMaVJp0M2yj+FtTVgDkWU7TNAgVkNIzGGTkeU7azUFoW0tZ1aT5ALwgSzKyJMW1cfq4EYbRaBQnPjY1fRWyaWqgI5kQGA4KUAolZawkiUi8hsCqXrGqV6RaE5RAZynDyYjWWJSOqMFwNIqoiTEsFgtcpzhZNw3z5ZKqqdjJMxQS7wJSagbDMeNBxtbkEria5WpK21qOm4rF6QlZkkR5UBxS+tg3F4hFFlqcifMjBB4ZPK/evMXpasnm1saaCht6hIOASDTbO1t87dd8Nc4abt++jVKKtirfecPNgmBvY5PrVx7idD7DW4tKNSkhVs+C6ESL6Wh9Z2qOIZwxpQidkmLokhyV8NwHPsj/+uu/xXy6oGn62vkQpQUuxFIjDnyiozE5y2w2pVxoTvUpMs1RSRKrQkGhkgxpHG1bo4TENDXBRjkgi6MoC5IkYXNzk6tXrzLcGJFozel0zul8Rp5mjIZDRAhkiaKpG0xdMhzkIAKjQcGoKPDed+3f0BqHtQGaFiElqYiZPiKwrGvqugbvUErhXFQozIoBLkBd12RpSpLJbp6CixisEjRNhPuUUqRZgvM5zjkG4zFV22KcZTIYkKYpeZ4zGo1ompYL+/vUdc3p6SmL1YrD4yOapmE4HqOVpm1qGAW2NrciVTHYOLSvXWKd5fTohKZasLM1JhBVadI8YTzJqesGQWyktNYRiELYSZ4SkoTTxYLa1JHb0d10EtbUxiAliRRsb0z4wNPvZzWfUVVV7Hp5pw03BE+qFZcvXaBqmygYXGSEjhh+Rljrnn/utaKrtfb1f0ecwOMF2BC4ePkSH3r+OV5+5UbXwx/xWZ0onLORKxoCjY/jSq3zBB+ovYk4q6qhu7hJkkRoTWvyPF/zcp2N+gChY0z1iUqSJBRFsYbEsjxjd3uHJNEsZnOUkigdh1gXRb4G+Xuc1FrbZesZbdvStm2MNYW4j/PaNA1VVZHnOUVRrPHVnnaolCLLso7RFZMr3VXAtNYURbHW6V0ul9R1zWQyYXNzcx0v97uV957d3V3ovNxiubzvOL23EDxZqhF4jo/u4kxDngS8WeFcw+n0GBEM41wh7BgfPE1Z440j64oZJJqmaqhsbOdJpUAlCYMiJ0vSc84qGkFX74lckhCLItevX8cYw6c+9akvwtb7rzVcZ0EljIY5eZbRtCbGqkF0PUZf6EX3/+D7UioB11d0tEKT8fQHvoqLv/JrnJ6e4n2M/5SRCBkoioK8KJBNQls3mLrBtbZjaxGFSYJb0yFFmpIlSayzAzhPWUYmVVmVOB8Ntq5rrI1GcunSJeqmIU0zNsZDisEGg0Ees+okdiFoHfmuPZLRG0qkH6p1QnS+aqW1XmOoUsoI/eT5+mdgja9G49JrD9t2MWx/kyilyPMcay2DwYDhcBhhxa7TwXY3Z9tGXYV+YnsP+21tb1MMh+jBhKJIKVLFnTuvMz2ZoaUgTcCZFUJ4TFORqMDJ4T2axUmsunUC0AhFnqVxfoRt0XiKLCFLE4IMXNzeYns8Xg8m8YQon9+5txg6SIROCAQee/RRqrLksy+++M4b7i//x//AV33oecY7O2R5hmlNnKcgBSH0A6Pux2nPw1lBho6YzTqcsK4D/IXk2tVrfM3XfA2Hh4ccHh7gnAXC+sIrrRGJptEZNnFY42iqmrapEN6T5pqii3WLPO8gqUiIbuvmTJklBNq2XRtNf8EXiwVplkX4yTseuf4I4+GQpNOzUj02aiDPc/I8j02CHdegN7SejdW//2AwWBcA+r6u/liWyyXL5ZKiKBiNRszn8w5zjfGqMYbBYBBbaDo8VikVy6Nd4eU8C2yxWLBaraiqiuPjE2bzOVJK9vf2sMGjk2T9nQmOxfyEk4NbKKEgCBZlScCQ5wnHJ4dkWhBGOdOjFTJEBRwpE9I8p8gz8iwn1QnFYIikYDzIyMdjnnriMSbDQRTJ7lqtAr1aTVw2RF6KQKDynCefeILFbPbOG+7P/r//nwzGY57d2WYyHjKbL6PhKhnbccL9fMqeddT9K9IC6djcXdwrVSyfKiHYGI95/vnn+eQnP8nJyQmxHHt2UYqioBgOaAee4DXewunJKafHB3jfIAJkacp4PGY4GJB1HnVm7HoL7zsZ+hiz93qLRexUzbIMlWhOj4+wxvDQ1atsb23FuNPFb9dv523bMp/PO5ZVvW6T6fHX/n37UaHOuTWZuyxLQgj3NTKORiOW3ZY+HA7WN4ZSip2dnbWX7hVq+t+dEZDkOvyQna5aj+XGalncDbQQJNAVDU5IlcfUFcZZhJKMRgNUIhlOhhSJQKtAqnKE97S1oGks5XLG9KSJVTQvkEozmkwYbe1w7bHH+KZv+WYSqWLxhLOWJzhj7CXiTFxFCMHGZIP3PfHEO2+4kkCaKLSUFHnO4dEJTWvItcL6KMzxVlLamb8Vn/eLnna4fkgIrl27xgc+8AFef/01miZu6SEEkiSJHsg7tM7Iswla5+gkkqGr5SnO1h3cEzPptKs89QmUUipSM2FttMB6W+/lRttVy2oxZ7VaslrOeeThhxmPxgyKAiElmczw3rNYLDg6OmK5jFpdUsp1zNwvay3L5XJ9Ay4Wi7VX7vW9+mT05ORk/T5NU5OmKavVKirHdPFsPzNXa73ezdI0Xd+Ug8GAsiw5Pj5mOp2ubxTn46iDXr9CDzxtU6GSlPEwoRGWROfkwwFSa4KGoC3Nak5jSgZaorykGOQUg5jLWB93M+88Td2yLJcczqYYGUD42K4UWI8J60lKa0sI96stCSG4fPHSg5rjgxvuBz7wNA9fu4bqyq/eB1arikmRd8QUQbjvFeeNNXQoQziz5nAWpPd/bUxGPPfcc7zwwqdZrhasVkukYr0NOwJaZyRpTpaPCWiaqmSVwHx2QFVVkUAuxFnLjI5Jj+vGJq1bcLrYsY9Re2E47x2Ns9RHJfPZKUcH97hy+TKXL19mf29/Xezot+TFYoG1lizL1jvD+VEB/U3RNA3z+Zymae7jx56PT/tYdrlc0CskrjsVVqt1kjYcDsnzfH1TSynXYUv/3v13M8YgpCRJE1THea3rOnZxqMgj0AFGwxFJntD6wHA8otgquPtmw+J4GnXAQkC4gJAaKRRBBPJhbF2PPYhxzOtDjzzE7u5OLPOGDv9GrJU5e8u431ZYV/YedD2w4X7DN34Tuzu7qAAJkYa7rFbYsHHWAHfuiHqjPDNfAZwNZbuv+7b7ggCXr17iykNXefXN16nbluAsTdnQigaRaigSfDCEYBgMMvYuXmA8zgkCqmpB2xjqqmaQ5/jgcQRUlpBQ4OsGcS6ZeqvhBh/pgb3g23y2YDVfcuvWHba2XuHhh66ztbkFnVEtl8uoeiMETV2TphkLu1hfhDRN18bae9dVWa6JL6ZtKatq3blw1nWbdOGJQwhJ27S0TYuUkiRJ2NreYmtri9Fo3CEb0UCbplkbge9QHOdip1cio85XW5bU8ymmziDPGGQZTsBiOWekJMVoRJZnbF3cIh9l/M5vn7IqlwyURCER3iJkLMujBB6PQtFaQzEYcmlvj8lwuNaRcD223zsqzjzvfcYb3k6P79sw3OtPPEWiUnQITJKEjfGQedtSh0BKL2R2rrM1sDboKAjSqylyX2NjH++GEIfWNbYmGaRsXdhjVdVU8wXCOfCO1rSotMWYJUI4lEoZDAcUgyEiGbI4OSCRAWNKTk5OaUxDVmSkWYrTIFON8nrNDuu9Vb+VBx+65s2AsbEcWhpDVRvKqqEsG8aTScRMszj3jRBIVQe90cXt5ziwTdOwWq1omoambaPH9ZFLW9X1OlToiTB5ltF2o5WC9zStiVpgOvIXkjRBJwlFMYjcie4znPPdVB1FkqYdTBlojIHuRknTFOED0hhc29I6FxVmpMJLy4DQdZt4RpsT5O4YdfAah7fehCRlIDTWOIaTCfmoIFMJvjEsT2cYJ1A+4rmplt3OJ9cyWt0ddd9GfJ/ChRD3kbDeMcMd9/CGB60Vw8GAo9USax1Zkq7vmDV2x/0xTZxCKdbG6kMMG4Qgzl7owOrbt2+zWCy4dvUqqdTc+OzLmFBhTVRZaeuGuZ+SDxzj0SYijSPmL1y4wN7WFlcuXeT3fu93eP3NW4DtxiM1OG/RQqPkGWzVJzaq47T64NYc2x4P7X9njGGxXNJ2CEKaplEkRUq0VOtYWWdpdx3EWiWx97rxPHTT07sky3u/9vrWWmpAtO16sHMvJph28W1RFHFOQ9ty9erV9c7Rw3Bt9710R0BKkmQNk/VwmoA4TrVtWa3i5B2V6DOtsVGGGyTocc5X/+lvjrxi4xglGYtlRTEccnF/l2q+4NbrN6mzhHa6RGUDzCCnTVI8n9+w+3Y86pdbD9664+P0cITsunBjrNS0DaM0jYJm4vN1Dtbbgbg/GO8aHdZVNu8Di9WKz37mM5wcH7OxscXe9g7L/RmHd+/RmgbXDY/zKmBbQ1PXJEnKeFRQDEa4NrCsLEcnS4QaoYRFoNFIEhEnHhpvOmJ6VDPs2VN9snZ+fH3/O91JQPVJUJ7HRtDW+xjzJzFBOp1O0WlyBuF1Ep99UiY6r+K67L832D4mBWiaZk2K8c6tHUHTGV7TtiR1uk7e+gJE27bUdU3Zxd79d1m3+neke4ikG3pvrGSnIRa/s3WWPBnQSo8eJly+/ggb1T6iaVE+sKNT6qZlc2eXcHxM0tRsj0Y8pHJGOme8tUer5Ocl6u/0enBFcqUja15E1eke9ilXJbvjcWxTPhen9Abb92opBEl3cc5Pc+zngxkBxjmWZYm3jsV0yjAfcuXKFUzTdi1AHi01Wmpsa6hYoaQkS7OILpSezc1dHnnsKYrRhOODO0gaMi1RKBpjMLZdx6B9dt/jsILIoTif9Scdz1V1yV5vcN57Uq0jFyCcMbMa054/besbvE++4lCPeB76m+X8c8/ayDvYjggXOufiDdTxj2ezGYeHh+vqXF3XtG0bsdyqWlfjeonRnlTuvWeQ5zFGFQK6RLJtW2bzeSz0TDLcbEqxkbKaWm7du43wjslwzN6lKzSm4Wg1Y9VWiDzl8t5Fru5cRJWWgUhIZdIX/P/I1tvQVeg0uqTAt3HMZZqmLJYLrN0jVWKt63U+SUN0OgJdUhdC19rd4SGxq8BhnefWndtMp1Octdi6hdYzmWxy+crlKBjSXXBnDD50DP+2ZT47ZVVWFPkmw9E1huOHQcVq1eL0ANsu1jKhfftP0v3dy296H9lYwfkzLkGWxXaX7rnnvfIaN3UOi4lIRpLE2Ljbrs+HHM65dbJkOkPqwxC434jPV8rowhrVde1aZ5FBr2Gv8XjMzs4Oo9FoDZtVTXMfetEfa18cCd6zubERq3CdE8rzPNIq2xbbNIg6w1cNK1vSrkomgwG50gyzHLUhka7FZSlsTtjb3mVjMCZP4H0XH2Ik07cli/+HWQ/OaqDzjgGUkgwGUd6nWpZ4H9lcvaKOXwe6Z9U0S6e3RYzzDF33bCC207Qtdw8OuHX7NsFYbGNY2gVZVrCzu4txDryI7da+E7oI0LY1rYnZ+qgYImlJ8ozt3V10otFKUC80wq7wLGnbM4L6542j6rxmb0Q9obtP3oQQFEWB6HgIoZtfC+IMihJn7/XWeW5t12JkO0M+f0P0f59PFqPotYwhWjjzyNZamqZhOp1y9+5dRqMROzs762KD7RCG8zfN+Y5f27ZIIZhsbETuQudxkzSNFbjZkuEkQ5YNNodBVnBhe4+tjS0ymVKMcqyraI0l1Rlb29ukTpNa2B1vkHe7b59svRMz7N663obhBnq3pZRCIxgNR8ynszisOU3WSaEk8hE8ZwFvHTxOxHaTZVXipeR4esqbd25HNRbrufnyDQgBby31qozZfduyvbfLxUuXEBZOTk44nZ6yaBqk6mRERUBJUNS09RSpNWmeUPgJE9swGmSU80Ma2yBEE2PUc9jp2pBh3TzZe+XeuODMkNdG2ce4iHMVrJh8nW8P741nfSbfEtee78btf99DdkqIWEgxZy3moTPipmmYzWYcHBwwHA7XcFkfPpzHhs/fkCEEqqpCKsVmth3pllojpCTPcza2txGjMel4g8HOCBcMRZIyGm1iXGA2X9KEFSvTIIMmZAmJKNgocoaDUXcO/zficXupe+gIEl1YsCorGuvWurQ939YFvyaOEwSNt5S24Xdf/AP+86//GofTU6yAqm7QScLlrT3mr91mOZ+DsTRVRZqkJInCW0twjvF4BIHYaxVir5XKM3Sicd5hg2GxmlF7iRMFUqcMRmPSccGwSAFDfa/EmLa7oHQUwq4kHUIczCEFqT5T8+4NTCmNtQZBN+ugi3l1F5boJCEATdusWWLny9bOuYgqdIa6Ns5zpVtgXcU7741D/EXcsbwnhFhqb9uW09NT9vb2mEzG5EVOlmdrRlqfAJ5/7z7vaIyhaVqyPCfN8o7LINBJSjIcY5ViUVdxHoYLLJcrjmdL5rahcjPqumFjuMm0XJLlKZcnY0T3Huvi0hew33UU+cBm+vnrbUgwCdoupluUNXpQIIWmDYKbszmD4YCUgBdxeEfjDSfzGYdHp6xWNYcHN7l17w1++zN/wKdufA45yHn6Ax/k4cceIZUp5miOb2qq5QI8LJYzNicbCBE4ObxL2xoSnZFkGucMbdtgrCHp+AVKJzQkrLwgdY4QakLTkEiJTDQbW3s4X2FdzWx2TNuUgCNJBVXrooySc2AMWZZSDDPGG0NCJzHUG1am1TnjCQQZZ3gVwyFJmsRkzxqSJLkPo+296PrmPxfH9okuRGgqTgdySKlw1q4RmNBtegiHC3FyTj+UZLVakBcJxlYIebZbNF28ex76c0rQEiebJ3VFNhiwXQwohkOKwYBhmmOt4biccWxbQrPikcEmwyCoW0eFwJOTSEmzqqnLmlLUtN6hhSSxRA7159V5O1P6rzRaeDvt6d3WX1Y1hwcH7F65TF7kqCzlxRuvUJYrvK0ROrCqF9w7uMurr73K5z73MienU6YnhxhfU2FpE5gMxtS+JR1kFKrg6OU3ccaipMKYlizLoppg520TKcEHju7eZbmYY0yDkLBcBozNSLIUKVKCd3HipUqwbUAqjQ2CIi3Y2LqEkILxZJPT4wPm81NM62lFbAIMQiO9ibzcLGMyGce2GevX7expmpKlKVVV3RdO5N2M2vPNifddrC48sD6OC31rebP3rErH7ofQDa9zcIZoOIdzliRNCD4iPUpF1XTThxKCNc5cluX65/4GkkqhQheDhkBb193ulrAxmXQqigGVKHyIJaOtjU0KlUWoLM+Z1w1FPiDJMoSxVGXJ3CvK4W4kUn0Zq3wngogHh8O6RGoyyKk3N6PAHIHBoOD3PvsCv/Sffpl7B7eR2rOqZpxMD6irFW3dRGkja3FYauERRYZaLXnl5ZcJlePSzkUW0ylutcK2huA9w8GAyXiM97FRMk0yJqNNVvM5n5mdUtclUgvqag4yKmyPN7bZl5IKST6Q5MUGeT4EHyjbltmsZTGzBKsJZASvwAWk6zXDO30tqdbGmCY51riILuiE0aBgtVoxHA7vE0ZOkqTr1JX3ZfLrwkNfVn7Ltt3DXL03lFIi14ozLfg4Vkkp1SVdMc6N/IMMgaSqak5OpwxGRWyp6ZK3ntDT49DGxHMren6sd/jWUC0WLJcLRlsThEpYtCXt3FE6MDaATiINMVfs7+ySWMNscUw5nTEphigpWK6WzMsFre/a2M9Xos6tL/Lw214Pzg4LES5SQrK7tUErJS4EijwD5/m9P/h9Xnv9BmkKWlsCLVp1I5BC7E8SUpGkkRgzP3BUckZeBvS0QaxshNmsJ09zxqMxWZJQrZaxdr61wWQwIXvsMT716T/g+PiAIGN7iwsO6y1t3bI52WI02sZbR9sa0kxSDEcEWTMv73Dz9hRTzxF2iWtqbGPxxuGDx4bozZIkklnG4zGj4QZ1VeO9Z3NzC9c2a0+b5/kaH5Vd82Zf2Ojpi3BmtN53MzO6OLeH3fq/1xe3K3oEH+fl0sfEXSXPeUsIHtNamsaQJJqjwyPSLCHLEuqqvk/srr+h+j/eR60DISUET1NX3L13m1AoNvZ3cSRUracWgSIfMUpzhsWIPBlE7ThrMFXFsMjJ0thOlReDqPWLx3B2c56r7J9jhp0rAf9RG67oy2GAlh026zyTQcH2eMh2UXDXe6Sxcd6WK9GJRErw1pHagA8Ob12nLGMQPrCoDvHJNmM9pBEtXiZoqdicTEhUHEayuTFhZ3sTbwRZnnDt2lUOj+4xX87jWHkV8WARAsE6XGNomwpfCxor2dMFKsm5cPkhgg/cufkKofWMigTbpDRNhXeWVV1GKU0fMeqdnR3SpCBNUopi0MF/C7Isi5m4UiyXy3W/V1/2HY/Hay7EecE53xVoXMdL6C+uc259E7xVOikqx0S9XNcJfwwHIw4PjqnqJSJIjPMIJZnNF2xubcTq3DkB5/MTOJMkQRHjeS2jyF7rWk5nJ7ijBDNOuTLaY7BZMBrljHc2uHhhn0Kl4KGxjlwKVPBMiiGXLlxgtliRqpysyKlsjdEaEWTX9cB9f96p9eCowrl5Tb0aovaeneGQD73//bzy/qe4e+NztMZRr0q0jh7a2misSSdMGvWaJUJLbGuRI00qC2zjyZIcZyybG5ukOmE8KtjZ3WY8GkQOAQJvPRcuXWD39kUskdQiu61wa2MLIVKa1uG6TtxEJ5TlkkRriiLjwsULOLOgnEEqWlyuyJqMpq1pvcW6lizL2dzcZDKZIIVmOBh2Qz3STlk8esy8q0D1vWRZFrP5noLY95P15d515ayDqXpPfb6BEhU9oqMrO1u7pggaY2iNoWwbGmMRImK20lqQcHR6ikoTqqpedzEnSbKOb+s6cpad6GWtDAQPSlLaBuka9oYZYpwx2duMA0+EQNqA68Ko/d1tVJqgtEc4x2hUoHTC6cmCu0f3uKhH7O4N4lQmAupc18N5A34rrfGPzHCt6MoJXWeDAjIp2RkOGT/xBOW3fStv3niRF178NE0j0bprEwmS1sUOCS0FTkjqxuLqgEqH7D/8BHsPPc7iziFiMSdPc7a3thgNC/b3dxgNc4xpkErSOosTns29HXSWMxxvcfnyVZyHclWhpCBNR1y4eBWZjbA+8ghCCMhgkUiU8uxsb5CKinJxRJASLwRNN/lGKslkMmZ7e5s0zajKhqZuGI/HMUnSmqosz1qBzhFk8jxHa73u+2qa5r4tuh/h2sey53HevtomUVFC6dy5911CZ62lLEtcRWTEBQ0+hjfOWbwLbEw2GA9HLBdLkiRhPB5jjOHk5CT2sGlFYz1OysgWCxbnWoxw6PGAwf4mDFJQko3xmGAD88WCyhjyomCY52zlKRujIW1VYuoGaz1JnpLrAWVT0VpD1unwng8VIprw9lhg/9WG63sCtmCtftiz3IWUPPfsB/nuP/897P7qLi+/+jJBwXyx4vade1hbQeh0voREDIfkwzGXrz3Kh//EtzJKRyxnJWK5pMgLpJBrIkhZlXEkUQgsyxVIzXA0Zmt7B50MuP7I+zidLhmNW7yzTDY3aY1HCoNHYZoGrSRJolBCkygo8gS9vcmwkMznJ9SmoTEO6wPDImMy2YhhQVVxenJKmuadPkMUzIveN2G5XMaT2GGmPXtrMpkw7/q9pDozWiElofO2cJac9XitsQbhHYkQXY9b542NwXfVLwChFEIomtYwGk1IEk1ZrdBJRhASa2qUkmxtbaGU4ujomIPDA1bLZVSDRGGtQ4goh++EIB+PuXDtCjsXL7Cxt0uSKKxxbBQjsiyn9o7FKrY4KSkirbNtmE2nkKQUgwnDbIgiiTtXiIpGvquirU1YnO8l+Hy/+6Achwdnh1UlaT5AiKiqYqzHWEeWKRICG0XBN3/DN3D10kWU1uzs7TNfrvg3v/D/5V/+zM8wmy0wXrB76REuPvEkg+1drl9/lMfe9xSzu/eQSpAUKVmiEErEWbRSYrumySTRjPIRQiZIlfHYI09gHGzv75KOTzg8OqIqLaerY1YHt1BJRpIW0YiVYjgYMhkNKbKUgKdu2yjOLDUWgQ0WFzwEySAfkuoMU7c0VUUwjmBMN7guj9tvCBhnaY1hPo8idDJRbI02sRRkp7E0umpSEpMSGkHoujg6IS2C81gX8FiCDMgMVEdQUVIhVZzG40L0piJEp6GFxrQ2irCIiBAoobGN540bN2mrEy5dvkSWZEwXJdN5ibUeKR22XRJEDlbTGkvrHIxzHnns/Tz99HM8dOka6WTAyjUkOtIT0zSLWmnG4FRCFQSJj0O4QxAxnxCSQmiaTHHazkmThMwn5EKuRxV5BV74yNM8N33z/HrLFLr/esOtmoakGEUx526SZGUMlXeMBxlJgEuTLXa/6nkcAotgdzPw7DPPce3Kr9GYG+xdu8I3/KmPMr50jVndsr2xyWQ8ws1PyBPBYGPEeDBASoFOEoyxWNuSjsdUdUO1aliuTknSgslogheCwSCjMhlJJqhXLW25ZDWb0RoLQkaFFaloRmNMuUGiU/IswbQ1J8eH1NWSulwi8CRarUXYjLW0VU1VVhjZIEYjjGlZ1dW6xl/WVczau47e1rSsqhWNaRhvjGnaltbYTo83rIsLAUiSjCKPPF7jGpx3GNvipUfJFOd8N0dMk4Wo0+C9RzYtPnRjCENguZozHIxQSrBcLjk+PqIYplwfbZMOxuRWcvHCZUaTEacnBxwe3cXaTo2mQzjS4ZDHnnmG6+97gr3dTablHGc9SZoxGo87rQuD0gknszkueBIRSETAO8vR7IQkXyK2AuOxpNYFlWmRSpKq5Kzi1zvB4M+EsUUfPjyoJb5Nw7WJpiEOnGiFYNU0vP7Gm0zGQ4qHrpIBColSUHtBZSw3bt7htbsnfO/3/08s2ik+C+w9/AihGNI4yIQkI4At0dIxHo8ZZBlt20QWlIjAe1mWnJwcM5suMdaTJAXFcIwXgqPTI2oTJyymOFxw5MLhbEljDVJJPIGVm4MtCUETnKU1NaatsabBmxpsi4gTBDvZ0lidWywWpD3RJgR0nnF6ekqWZff1fGVZhnWO6XSGEES5UJ2Q5wVpsqLRBq0TdJqwtbUNSNom4q1VvaRuVlHcT0mcjuQarVSEz7SORu89ZV1ivY18BRewtiKKxUjm8zkIxZXHnmKweZnj0zl3b75JVS6prcGrDJdsYM0cFbomUQHDrRHX3vcIowtbkURuFlSLmpPZNHYb1zWos+NprSdNFZubE7xtOZieRJ62D7SNxY86dU0ZwwEbYjKfhD52Pxc6hK4vLbw9431ww3WeqjUkaTcSXghGozHj0XDdNeBFlNcvjeNgUfLq4Ql6e4/3ffBZdNHSMMclKad1Q+o8mQ2oxQpTzUhkDAfWLCuXMNyYsCqXa3J0axqUSlFasbW1iU5Tpospt+4uWUxPaeclwTrybBChJ1PHUZ0ioHQAWlIlqE1DWy/jDFpnUXhSJXDdzK8eknId1uq6bgYfArZcrdED2XF4x+Nx7B9bLlEdrhl8lNUs8oLNzW2yrODk5BQk5HmBswElkrWcUZJkSNlN9pEy8geSBNF7WxdVfJZVbAOyLnZrWOc4nR5HvoULbG7ucOXqQzRNy6d+57dZHt8hOMvKWGySQ1owzhKkqWhdi08U2TgnGWfUyjGbHXI6P0ElCWlRcDKbYpqWrd0dBlmKCZ4iBLY2J2yPR3hvaEKUiM11AUKSpjlpkqGlxiMw1iK9RyhNoiSyG9YX3tr2G7i/2+CdMNwXPvkCjXE8/sRTpFnU2rqyu0eWaLQL2K4gYYRg7j0LAePLl9GXJTcXM1jO2dyWLJsl07KkqVtGKMaNZ3p4j9C0rGwUdEvTlM3NzXUNP03jXC6dpOTFCKUSOuSIzfEYY7cZ5AnLYcvx0SmreoVIBHk2wProdaWO/U/eGrxroqidMwRnca3BdSQYnWRrEY/FYhHhJs618xA5u7KT3k+TlDCIiWdd1djSkqQpk/EGw+GIIh/StrdYrUrqumE2n3Nw74iiGHLxwmWkiOqOUofYFqRj/JzlOVmarkXrlFJsbG+xqksMLdIY6rpBSnCOrrKXsru7w+zkgJuvvkq7OCYJBoTDCovCkqaSzXGOrz1N2+Bx5MOc6XLGyWsVs8UJWiou7l2ibGpW8zm2aUmLnI0sVgiDtZRVQ6YUw0HOeGOT4+ksSmMlsbCRqATvwbpAa2LPYJIlUXK2m/fpoOuYORtV8KBB7gMb7n/4X/4XprMF3/VnB2xt7pImKZPhCJ8nGAnJaEBDYNG2zEzLqqlpneHNe/dYNjW7OxmrOSxNTW1bysWS1bJmtmhYHE1JRKxAJSoqjqtO9zb0HFJr45yI1GBaS5rk1FWFVLC7uUGeKAQNxivsVFDNZsS5nQpU5LQ61yBx60xfiKit4n3c2gOxLWc4HOK8pypjJ0EbAsPhMLahp2k0WiHI8wKI/VvDwSDKNemEy1eukmc5q7KirheUZU1dNTRVS1VWCCmZjLfY3t7GOcfR8QGubREy6r1YH4fh6SQh63kG1qKlYmt7m8a3hFDGZMsYBsUwhiEqIdGa6cFN6uVJHBAsUtq2ZjCckBQFMlG01RJvLFJEzV3vPNPTKaulY1XNmEw2mK1W3L17D1vXJFKR5jlCSorxiCSEqJIT4iBFYxxCatrGofKENC2QSJyP3TJojTOBxsaZIPJc06TvGgu8j1NGBzp9Zw33I3/uz1HWLS989mXal26QqoRHHnqIySBna2PCpt2hslEWflkuODy4B1nC1Y0CK3LAspwtqNoKKyxHdw9oDqfkS0uzMuRJDl24gIhEj6ZpWK5WTE9PqeoKoRSbWztsbmzj4+AxpALrDMM8I2wKBoOENLEEX2GsjZKnfTlVBNqOtG58HETXOo/zIGSKUpHPaoyhrqrYotRt1z3cBXTaEjFecy6qjocQ2NnZ4cKlSyAVx8cn3Lp1i8ODIw4PjpjN5kynM5ACpTTbWzskOqVcVdRVg0oEWskOpuo4wVJGvV7rWMznCCHY3NqOurZlixSaLNVk6WANnZnGUq0WOC9ATbAqRRWKypYdLAjz2WmX1UtEEHEWcGPZ3tpkb2uDtMgZbmxx6eJFcqU5uH2HLMuQKn7ntmkJQXBycspyPkcPMorBkEU5j4mf7ISkjaVpIyHHd6FXT890PkJlvmuVil1ED4opvA3D3Xj4KuZ4xrH9DMenp8ggsVnCINUMjzK2igNSlVDWJQ8/+jAffOQRTIiynqtqxbS0mJBQz464c3rA6fSUzEBbGryJY5kQkezSE1h6snQ/EXFre4s0LWjqmr3dfcrViratKVdL6qYELKMsZZk0KLeI/Wlpvm5ZaXycgBg5NXGElPUCj0QnmixNSJLYBRC7lCRKd/FliGSXHoPtyegQ1XDyPGd/f58AnJ6e8Pobr/Paq68zPZ1FKc4QYaXWtjRNy3Q26+LaeLO0tkZIiVIxVJBaoRJFmmWoomvx6UrFu8bGUar+GO8CWVZEtphOCEGyWFZ4VTDcvIbWG6gkpSmP2NlPaZd38UiCD+vGv2qxYnEyJZsM2LqwhUgSyroC79m/cpXxcMhkNKYsy6iOg2BQDONkF2eQUpFnBfMwi53QzqITRWlrFosFSI0SIHXSkfVjOSII4gzkLvEN/sHraQ9suH/wyqucTOeE4QAdQMuEl4+OwFgeffhh0oHm4HiKBIaHc7LZilu3XmV7Z8Ljj18nk57JOOXa7gZ3DvdYzpe0q5bXX3yFWdYgs5RyMWVjEis93pp1GfTixYtRwbGs0CohS3Pqasl8MaNtaqq6pCxXFJlCA7ascKt4gkNmEVojZEB4TzfqPGrlWgMiGolU0VDWHRhtS+gUzYGOqRbWipNl13qepClD4MLFiyRZyspXtKqhokYNUi6OrzAcbIBXnJ5OWS5OWMxOuXfvNnfv3UZqRWmWSOlBaqRU4GL8nSgZdQqSBBjRtg14YmFBxhlip6dTfBCkeYaQsfxdBYdpKvzihOFYMxln7Fx6iFSV3Dh6FS905PfGkUJUszkHr73B9oVtLuxdRG8UnNZLbN1wNDsi13nsD3SBQTEkSXJmq5o0G3J8eoAOFhs8TVXCMMeKOOQGAtPplCQtGOQp63nQIXas+BAxbZ0orHdvq8HygQ13XksWjWTv2hPsSY0xlrZsqVcl87blTtmCShgXQ6ZeMb91wGJWMtre4nRR8uobN/iDT/8+H3jmOa7uXcFORmQ7Od/wvg9y69ZNZifHzI6PWMxmURVGa5yzbG1tMZ/NODi4x8bGZpwQ6QzzusTaFqVjtUprTaoVWZIgwgGmtrFx0Xp0EceGigCJFHitsG0cgqyVxOGQCnSi1wosTdPSNg2rxYJBUeBag3EOL0WM90SU7xQiFkuEjNt8vTK0K9gc7nHhyYcY5EOydEC5qjnID5mPBhxqRZDHzBZzvGkQCoQSxBFqUUnR26iIrju1SCEFWScxmiYJRV7QOsuqqrDWR+hPejZ2tnno0UdYLko2x9s8fOUaO9vbzGaHvHTjBovFDKV0FGgJMUWyZYkvK4ZJnBA5GExI8zwS632gWtWUy4bgPDUN44nAVA13Dm9zMj/i4qU9lPdsDgtCcFR1QxiDTuJ0pLqpyTONdQ4fJMiu+ZZeoiD04+TeecOtzQAvFCrbJ8kyEhfY2IizyaZHJ6SpY1ikJCq2rzhjqJuK16Yln7t7gDAV+1sPsz2+gDCa3/jl/8Tu1iZPPf4YeWuZ7O7ytc99iMV8zsHBPcrFgrt3b3H79i2aumZra4utre11v1TPfuobB0MI2DRuRX1rTNu2eGvQ1qKyFCEjLpxnGU1dr7ct0T2WpSlZmiBVVEVclSVN20YxuaqKGhBdq/r5iY0hhIihBsHRrTmnJ3M2NzdJBoKDe7dYrOYcHR9FPFRIvJBsTHaRKqU1Nda1KCUQMtC0cWqjD4JEx1kPxlisiwMK1WBAW1ZY57l29Qpt23Lz5m2quibNciaTMVs7G1SrhlTmVPWKFz59i+VqStUs1jMjCJ3YiJAIGcuyro29fkmWsTHeJMjA8fEx0sbYcz5bsFgs2d4tMa7l6Og2LhhcPaFmxVDlzE6mHG0c8vBoD51phNbcvHMbra6QakmeqgjlSUkQstM2jpCffhschgenNYYBezt7BKGwJn5hHxRFmrG3lxOSBucNJ9M5KgjGuxcZ7eyBa5hOj2lmU0RrOTy1HN95mSuXH2WUKbbGE37rU7/H3Xt3eearP8z21hZpkpBsbsTtxNmu779ZM7DKsuTw8DC2sruz0faTyRjrPTpN1q3g1kUl88RZ0iwjzwuU1qQ6oaFeiyRPRuPYTyYlddOwWC4p69gZEIDGGvCeYC1JJw3aM7+SJCGEwGw6ZXU6o65q8kHDG3eOOJoe4/CsqpLFaoU1BVm2ydXLF9naSKnrFdYZpI6Ztlgt8T4WF9IsR+s0cpSzDEJge3OTNs1YLFdIpXj0+nXmszlt0yCCJ0s0xbAAB/fuHNJWhrZpAAPE0a9t28T5DyImmtZYXn/lBpMLe2xe2Gc+LxlPStI8YzqbIhKJxzOtFxjRMmsXNG3JslmwWiw5OTxib2OXSTZCWcmbxR0e33+YXKXUto07WqKpjeGktCSSbodMkB1hK+mGybzjhvv/a++/ny3LrjtP7LPN8dc8m74MUECBINhNssl2FJtNalrShEaamF8V0uhf1A8d0aFfZ4bUsHuoIGiaJFAw5bIy89lrj91GP6xz7nuZVQSyekDFMKJ24CHrmfvevfess/baa33NPLU8OFsyROicw/sgAiC+QXlP6zoCgTwt6JuezaohNZo8zVguHtLnxwQXqJZLbHlKffUKpx1/8md/Bgq+/b3v0Pc9L1684E/+5I/557/zOzx+dM67771H8P6gHXtQ0BlP+RNzQOzqI2meM1uI7VCMIu3kOiEuBhfIrNiCGqVERytCnqRURcFuHw5yqU3XyoBBKcE1TIaBxrBer1/To51YtS8vXrLefkFepjSrLa9uV2ByfDDsY85gE7QuWG87jpuB9999zGZ9zXp9y+BEW4KYEFSk60XEqGk6mlr8J4wW4760Ulhr6AdPURZ8d//tQwdmu1mj9GQ9VbPZbPHDgE0U3rf0nUwFYwhoK46XqdY0+4brV5fU6x1JWfHy9hVo6MPAEAaihtvtLT56VKvYbzY025pEJWgPTeu5uXhBu6l5+cUVj8oj/smHv858MWOSN1xttzjXYa1iMZvz4PgERkCRAaLnV9/HzbQD15JYjY8dBE+WWrSNqBC5eXlF0/acLM+Z2UxGr0Y8xXxwqKpi7wbWToFJ2KH5H/6nP6a+fcm3np3zG2fHFEXBz376E549ewYx8tGPP+Kzzz/l5PiYBw/O8d6zXq9Zr9cHMY0p24YgfVibJuSjlu3EosU5US/XPWVRkGcZySgwF2MksdJbLKuS3g1Cfen7w/fbviO40Xik71Fte6DDJElyEGjebneopGA/wPp6z+nZdwhqAWoG1jPTGUeLhJef/R036w3vhgc8efyIo+WclxdXrDd7sjwDHWgaKRmMERpPkefMykKgpdaQk2KsCLM8fPgA5zw3q1uSxLLbbNmsN3Rtg3MdITgYIsPQjtSoifkbBbnlRSvj1edf8KO/+hs+LBKaNHC7vmW+nKOsZrvd8cWrL0jShPligY6a3BZYb+jrliF0JNEyPz3nO+9/i+XxEjV6pNXrHX3bju70iqvbNW7wnB0dY40R5kQAAmRvGY9vfzjbb9CZISkyOtez3W2pypwiTSizjNOTBUMfMMrgu8CsnJEnGTEGdDCQGuZlwe52Rd/UrHdbblZrCmt5dXXN7j/+JzEIyTJmVXkQsdhsNpyenNA07YhZuDnQXfq+Z7/f34m5GY3zHptYiqpkt9lI+2pkEhRFISYmdY3RmqPlEuc9pycnLJZLmq7l+cUrbla3dKOurAb8IL7CEQ4csmmqd592c3x8QlrM+OC7P+BP/vSHaJY8efp9el9y+qAkyWZYcw2qpt1ckOYJi8WMB+cn2CTFcyGDkuBo+4b1asPJ0RFFUcgQwFpxd/cerRKU9vRxIEssz54+5sGDcy6vbvjs8xfsd3uM0VgLTd/hByFaRh9GAYEIUXZNjSJVBtf2XH7xkvynC9LzObfXVxgX2dc1LnhmPuXs+JxFscAkUBznLJKK42LB49MHPH3ymGpekiSWSlmMV6TzGW7fs6xmNF1H7wZ2dYsOIncVIwwe3OB48cVLfvODd361gRvTnCYqtnXD5c01l1cXFFmCUZFZkWNQFPkMq3NyOyMtM9QIv8MkItcee+haciWTLRvBNS0+UXTBU5UlaSoS+H/7t3/Lxx//lKdPn7BarWiamv2+ZrPZjM4xgiOY/BDElDrQ9h0qRs7Ozul2e25WKxJryawlK2TS1YyY2tlsRpUkPHjwgLIs2dV7Pr94Sd0I7SYyiv1x57AzAcfhjgkBwgoWpkRKGDr+6A9+j48+/oJ9f0k+P6csM243zzG+4+zhOcffesi3n55wVKU8//xzZvMZs9mezkWariZGRd129F2PSjX7/Z4yT5nNSrwXqlLsIt3o2Bi8Q2tFYjRlXrDbbGm7Fq1B4emH7qCOqUIUeOEUwD4QfSBPMxazBYu0orIzjk5LwhAYNg3vPXjGe++8w9PHz5jPKpazggfLU2a2IAuGXIGxGq/dqA2nhTlN4HS5pMgKdrs9wXvSNCOGyHa7P3D0Xrx8yd/87d/+6gO37TvILEFHujCQlWJ7pFzA6oTEJJT5nDQpUMESxzcnTkDpAMb5ETjiaXdb6u2KwgImIfoJWBxxQ89+t8Uay3olDfwsz2jqmtkYqHg/+utabm9vSZKEUhliiHjnOTs/xyiF+9nPWG/k8NJ3HXlZ4EKkboSJe3p6Kj3i/Q6tIA6inWWMEAmNMQSEw9WNOrNh1AHTRsRDdAwUSUKSp5RlwdX1c47p+Zf/8kPK5THLswdc3q55/oXn/OhdkgC71RVlElku57x6ecmjR3P2refvPvoIFz2To4YymsF5lNUMEULU2KQkhkgSDXHfCUbaR7Z7cT4vq5yyyomxZ7urGYWxRNI1BFSIWKUw0swdOWqOWPcUJufDZ9/h4eNHPH30mCorsNqynC2oihKtDak15Cpg0NioSJTIF4hMlGz9XonUFtagCvHNWC5mhF2kyktwAz/5+cf44PE+8Pnzz982FL9e4BJadDQkNuH8uML7HO1g2HYkTnMyP2G5OEYjjWpFJLoe7XogUlhLNCUqDuyaLcPQkhUZOjiargdlsF1DnBUEJyPc9PycoBRZVTI4x3y5POh7pXl+MKBbb7dUVUXZtMRBnBzzNOPpO+9ydX0jqKwQyfOEh+fH9B4+f/6Sm5tbIhGtAlZFBjfQ7jZEN6B1PmrrRjGWUxqdZEQ3iCqHVsRJhSZJwVpa52k3YjJY9wMueB4+fEhpIo+LguWjJVevvqCuOwiR9dbR7BqKakHT9bz77AmrzQ0vry+oijnVrEJZ6T9jNZt9g7Ipx/OKwQ+EaLFpSWh62s7RtQNN04JRFGXGbudxbiAQRoVNTYgeE0BHhbJI4FghpYbBY2PCb3zwA37w/e+xKEt0gFQLoJ0xGDWRLExESCk87lBdBhUgVXKjeBUhF5utRVKRZmLlNXihIf30pz+lbVu0tTz+h/CA0HhU9MQAZZYw9IoQPEmeUdiCNFGE0GCMFU5PiCgdiLoTTYVepkIqDLiuwfUdYXCUVUGZGrzvQIU7q6WR0YrRuGHAjJjUSUFmUuJer9fMZjOOjo4gxoPao14sefjgAaenp7x6+ZK+0+JmUxRkyjKf71mtN6xXGwgeHUUwqu97GAU9gncExEDaWiMBOzbKD6o0SgmCa+xBWmOISUKz3/PZJ59we33Nj//u72RwkKbEQej3y6PjsStQUZYzNusNxyfHPHr0iJvNLXmaslzMKbKMvhPchdGyowxOau5+GCiKQhwjq0pcgHY7GWYoRZYXlGVPPRI0BQ9gUYn0T4MS4ZGgFdqmPHr6jPlsRlfXKBfItSL4gAlgR0RXRA7+Wr0+55K3YiKEBqL2hx7xlN2VVuQ2IzNLnB9IH59zuqi4uLykGwYhZ/6qA7dpBrphQ5In5EVOYiypzrC56KEOXU/XNZR5gbWiumKNJk0VKk0wJsEPnqEZ6Oo9m9UtKgSO5hWZUay3LTHEgwymVqI5NAwDLkbKUbp+cnCc2mJlWR6+5oaBzXqN957TszPmiwWPnz7lk08+EVyBUgyD5+jkhLPzSN31tE1Ld9GA70myhGG0LZ2W+EGMgwoiWFGYmaCkh35u2+KdwxrDfr8nhkC5XFIWBXXd4IaBZBJU7jqur6+pm4aTs/NxoiTaDvPZjEcPHsLY7RD1RU23rykzmWa1Y1djUsOZ2MRisyUY3TRNmc8Xo/HJjghjuy3KiNUFnBLAj1fwzrP3+L/93/97/vXv/T4nR0csiwLtxX85Ha/FwaBG3fl3jGF7kEqY3rNgRtPPiWoWAxaDNpDmFoUlqsjs8QPeeXjGrm1IsrftKXyNwH36+Nvsa3HBwUfiAGlekdmCtu7wfqBuWryTuX6a5KTJaDsdgmRfL2PJNBFJ0kVVMS9LAXX3HSYXhuzudkWWJMzmcxyRJMvIs4yhaw8uNX3fH1RkJvcaMYk2qChym70bKGcV1XxOPwxUswJtxT/h8ZMZPsB2u6Fr92xXNwzOEYiEEEnT0QttRF2BJFwfHGFssyVGIIHZ1EiPSPuvl1o4+kDfdmRJQjE6/9Rdw3azRRtLUc2AwH6/Jc0L0iyl8gUPHzzAKEVZlOQjJT740SkSDvaqE27Yj31uEEXJvuuIEYpqxny8mQfnCMMAymBsgldOZJ7SjJPjU/7Z7/4LPvj2B7zz+DFVnpNpqV0TA3hRpZwy7qRldgjbg76HvHc+BBgVcmNUIzeOUUFHFC1VDGiFlDAakrIkviWI/GsFbjQpNi2pygwVPWEIEAx12xPRJPmM0qRYq/FRE5RMSrxzMs6zDmUGTApZnpJlORCkoW2gnOUkeYbre3a7HYtHj8jyHOXdwfvWjjXl5P9VVRVir7STLKzAedmSBTsgoO5qNuN2taJ3XsSJFwsChuW+Yb5Y0DY7ghvo+hoVA2FEKYmB4J1HhDKWuhu75GqkWYeAjxGTZSRGQDrpSFG/urgAEHzv6LrT9/3YQjNErViv1+RFQVFVlGVBJDAfKjGltpah7wl+IE9TEmOkB8udRD7I2HnSB5uCpRscUSmyoqSczXHe002CJELPQKcZJ6cP+de//wf8d//tf8cPvv9rzLJMPHnVJEWAaLEpgCiHLnk3XouP6e2YAnkIUTC5RGI/iPD3COYX5J1kba3VnU3qW4ft1wjc1bAi+A7fJaRa4fqBNMmJSYK2GdpaFmlB0+zpowCu+35g161J04R5mtDt9yzyBcoqoS9YQ+t6mv2Gtt1zlCYCtFbqsP1NkEQVPOmomF3XNcfHxwd/hWEYcF4QXdvdjllV0Q0DddvihgGbpRSV9BePj08piorORU5OzyiKnK7e0TU1L19+jopB2BMTmxcN2kj7KUZ0kuD6XqhBo5gHIUjGVZrEWhbj5G4y3avr+vBafHCkaYa1CberG3zwPHz4BG2g6xqM1syqSkxRjGEyvTZK4YaBVd1SVHPyEVg01ZVlWXJ6ekrdNDRuTTcMGBPIspRqJtSiiGTu4MWQOikq/s3v/1v+z/+X/5Zf//DXOJ3NKYwiKvFaVshkUU90+i8lRHUIWglYxQSpbRpPNJFEa3zvcVZ0jAcFikCu9T1swmic+A8RuJt4SVQ9be+pkoQ0S2lVTe8UZbpktjijKBLCztC2HX2yZ4gNfbKnjwFXK0I3oJVmiB6bpWR5Shg27Jodbuho24bdfnfISkmaEnzg+vqarCg4GqWNvPesVquDqJuIakg9PPHE6rah6TpWNzccHR1htB4ztaauW9Ki4vT0nDxP2Sh4+PARzvW0fT1yylJ8CAxeTE+0VigfpQU2ZlbZph2ZTaRFNoLKrZWpe9s01PdAQSEEklEAu+s7CiuHPlGe1ORFRtuI8bQ4+XS4oSV6h9ZCGdrt9/ROAO73BfPKsjwwjm/3jegaJJkciLKcbGRrhCCQR2Us5+cP+KN/+7/nt37jt6SLE8F6EeD2VnrFk5auUlNT7asyo+Brp562c57LqzWtG6jKQviJRU5QBq0iVovKTarBKoWKglf4GpXC2wfuTf05KniU76nTBIMhy2condL3HdYpdluNJqCKSO23bOpb9s1GpPY9LLMFXgXSMiMrMgqtqFdbulaM+Jq6QStFVZUUeQ5aOgFZWeBDOKixiNmI5ujoiP1+PyrB9AxDT2LNQXDu8vKC1e0t33r/fYqyoK0blNKif1vkKGMOrIfTszO8H2jaPdbKzbffN1htiNEL1jWC9oHEWGKYBDrU4TDZNA1l21HOZzx48ABjDBcXFwdDvoMXb/AjK9YLUkohzuOTRpgLmEThB8fFxRVD35DnohbZNg0myQhBSg/vxpp7VJhcLJYUWSY3+DCg4qjnG8FawcS6Xpx9njx9xne+8wFFlpAbyLQwtaMezQqJhLFboA8HMw68xvshPHkdJ1ZT5Bknizk32x0vnn9B17XMF3NOT06oZjOMVpRWU2UJmTXYOJYPqLcWuXn7Gjc0xOiJOnDb7gkBmssXWFNANFwfX7FcHDGfV6joWa9vqfcbqionyxOsSnn54oq2HjBdxKYyZmwd5DGn6Xpa9hzN5+RHS7I0oXcO74bDtp/ZHNd3Yle0PKIoSvb7elTedhA8ITjaoWN9CxevOoFCqgA6kpXlOMxIqcpspI0MpJllcEL600rT1jVDPVClBb0XgPOgwPVOnIO0FiENROsixEjfdWzXa7Q1uBh48uTJYdo2ueE457DG4kcJ/jzNyBIhfu52a/qho2sGrM4Z7MB2v+X65gZUoFrMSLIUryJpagi+p20G8qzEGovrHalJyW3K8axic3PFdrs+SKBmxopt6TCgTY7Thl5F0sJSJlAphVHgVBTMcRxDdcq09wNKvUYwR40BO3UaikTz+Djn8WnFtx4e8erqhhevrnj+2ReU1YLl0TGuMmBFRcfESGYMKZC/ZTy+deAeLxfU9Z5XFy+p6x197wgONqs9fRc4PTrlW9/6Fov5HGs09W6LIvLw7AGvXr3CdZGbl7cMy4huA7e7HS2KzvXs3EAAzk9OWM5muF68a7f7Pd3Q42IkoOj2G9q2Yzo1TEExlQxJYnHNQIiByyuxUrLW8PLVS05OTkhszmKxYDab0XXtazwyrTVFWTK0LfvNliLPyYuC241c/BhkAphoPZ6aEWSTMSiETyUukjXz5fIA/inL8iDnNInfTTaqk35u1vcj/X4gswVFlhGJFFlGkWfkueBysxEzbJSmbVt5PjYd7bL6O3jnfE4MgXa0WzWT7sMIHuqdIxDo+p7BCcPjzq5UUupBqOONNSbcL31HbGqmNllEWsWOMre8/+wxjx4+oG47blZ7bte3bPaeup9zcnRMkaV4hCH+Kw/cLz59Tp5nbG/XNE1NkqQ0dUe925GnFVli2G1WtPstGnGJOT854/pixZ//p79kOTvhvSfvU2YV3vfs6w6VGLyBTnnKKicZlQ81HLxrrbV0bcvgA0aJrVGaJRSF6BR0nWjBplmCcx6tLfVuJweW5YwYFNvNnqqcQ2rIUgHu7Ha7Qx90EmKuyoqh69hst9jxIiQ2EbG9sUernCeO/VAZB4+Nn5FR0DQNV1dXBxnSpmkOgiFt2x40GybL0+AcOjKqSRbkeYVVUu5k2YwQHhIJByMS5zwmEcG8sqwOuI0J9KOUYjabsVgsWK/XtG17kEFtGinFvHPs2prb29vx5lVf60g/Be/033fWt3cfRkGihM/niZjUkNqcRVVwuqz47PIVl1e3rNY7To5HIJG1nM6Lt3oObx24Lz55wcNHDyiSkmYrPgO+HSjTnFlVcX56Qpok1Pua7a6lKiqsStBO8933PmSWzrDeUpHhEBXwut6T2sjJ0RIdxShPj0j/LMvERTFJmKcpaZrRNgPbzfZg/5mmCV2XsFjMWa1X5JkIUQQ/Ehqzgs16O4K8N5SliD2XZclsNju4ixdFwWw2YzINccOA7wfWt7fSQRgvTm4tg/MisWrMaPYBJkZ8L0ImfVNjR6DQ5PoOHOxJCVLrTpL5aZJIj9TJwa4qctq6YzeOsc9OT+j6jvX6Fj8SK+/UH5XI5WuL1vZwUBXBlGMuLi64vb2lLMvDzpKmKb1zmBhYrVZcXV3Bdz68d6UFMaLi66J0b1oDTJ99lYQogIp+zNpxxEYY6duqSLYsWMzep+56tvtaEG0/+xgXAr/2B//qreLxrQN3UZxyMn/AVq0IlYxmc5NTzmYURYXrHDpo8qRE54a+Hoh9YLFYcvqtU47zGVnUFDaj37f8+M8MrfPMs5TrtiEvZFvP81z8CZxse2maMITAvt6zvtlyeXnF8mgxqmxDUeYcHx/x6PFjEisKirvdHqUQGKP31HVN1/UiGzp6NwzDwHK5ZLFYHASV+2Gg6TrJnG1DO7rWaKPJbAJK4aJMyJQRY5E0y+QQpDXKWsJIJ3r16pVcWC2qiVVViY1q24mUkTFkSSolyThg6RrBy7q+p61biiwhOJG8N2NWN6OS5USjb+qO+WwByCh8v99TzApOTk44PT09dDSur68PDpNlVbEb+oMEgLTUpmAV3I34K3/1ejO7ftWHuKxECWwtOdqou4IiVVDlOad5xpPlkn3ziKvV6m3D8e0DN1UVtxc7Ts5OKdIZ+3qLObXstjWb1Y4n333Ko0ePuL68IqaB8lFJkRUQI2WRcXSyYJkX0Ac2vufs/IjGRrTrSbX4pgUfaAahRZsoAwBjLJ1rD9vrYrFguVwKDtdKwF1cXJAXGcvFEUmSkmWOtm1ZrzejsHFEKelKTBO209NTHj58eIAqWmtx3tF7R9t37FuZ0o1DeFACnbRKC7vAO5zn0MS87+y13+9F3CRJODs74/z8XGCSIXD58tVBn0zlOUeLJWVVoYFmvz8I2nV9R92koKSMKMsKM9pSBRUOmmpd10HcUlXzw0Qx8xnL5ZJnz55hreXq6orNZiP+wiNofrFcslwuOT8/H8fZvLb//7LDvQSo+nLQjgXwlyzJo8zctLo3gBh1w6zRZFXBovgHGPmeHz0mzSx5lrDub7AxY1EuSFXJ6eIh7z/9gNOTU0pb4cd2VZ6mo29sgks8t+zYbja4vqV6sGS9uSFTGp0k1H1LZQuSJKGta9zgBFiTSX1W2YTE5Fy8ujiAtychiRAC+33N9dUtXSuHDXHDsTR1d/DrVSpSzWSK9eTJk4Og8iSy3PU9PgT6MWvGGGUrt5bBe7q2k9JhLDEGxJc3G02cFTKnn2TvgQMQKMsyhkmJvG2JCCBnv9vRdi1ZnlM3Dc71ZLlIjXrfoVUlLcKygCh6uw55zU3TstvtGVKHtWJMvTxakoyEz9PTU7z3h0ENyE2gjGFmNU+fPuXRw4eHw5ZMv0ZMhvqqo9nd+spMO7a1iMjg5t466ISN/wYd0VGJeqUKUn79Q4x83330PkpH6nbDojji0ekjtFas9ZZZNWeWL+ibAbwizwqyzJKmlsRq2qHh9maDTxRD14N3+CpFzQtsVHSXr6gqkfFUIbJYLMQW1Yt5nifQdD1N03J+fs5mu2a1WglI+fSYGCPXN9f0naPIy4Nd0zC4wzADIC9yjo+PWSwWY9BLyTC5jZs0IU0SqqoiNxZfiUZa27bs61qGDFpjghxwBu/xY3ALV22sDwW9Tdf3XF1f03Xd4XA0DIOoPo5j4bptQSnyshi1syLOS03vxnJJGykP2lb0JrQVAQ2tpTMhAxNDURQ452j6BgYZNT98+PAQuNNBcXF0xLDdsJgvKPJ83NrHgBxHt29gv14/vKkpWO/Gwq83YEeg+72fP3xh/Lkwtt7kvwVRpv8hAjfBMCsrluWcer+Rv68iujAYZajrhqzMUIlB5YZkltK5hjoMRO3pwp7V1QbnIVUpyekMdZmxv9mjdUKVLxh0Q1mkFKllfXtD7wYpj0yKMgad9LjoWG+2FFVF3/e8vLikHxq6vqHI50QVaboGF5z4sKWGRI2ySl1HVIrZYoG2Fh8PJBac9/hexronJyeCmVhv0EqRlgXlfMarFy/ZO8fQD0TnRyUXPfZGDUPwRDw2NYKV8IG+bRhcT5ZmAktUSrS0lKLvWty4ezRdOwr7WbyHet+yXITRzTLStluKvBTDQD9SiWJkPp8zn8+xNjm0B1er1diVyKiqinfffZfNZsOLFy9GIHxgUcxob7fcvLrkrFrQKQHVaB8xhoOO7yEQ74dlhC+PIDj0fMcnd/f1+GV5pXjv6KfQY2fm7Vsbb8/y1Zq5tWRFzg5FXe8Fn3A0o6xKKCGYwHrj8AyIkPhA1+/o+hbnBrq2JcvLsYXjsGnCxe0NRZJhdYLOIc0sMQiwxiQJLoALYLS0i4becXp2Rt87ttsvxO7edVhryLJUDhYx0nYtaSbj12laNRl5tPfIjm0rMkFKKeaLxUG1cXDuIG7Xti3bzYbtbos2ktlECLihdzLBKmaViBXbBO/DWGakmEQ4a03bkhgrZUkMeOcPyK4J5WaM4G3btsMYQ1FI96PvB0KQS22tgYhMCZOE4AVhdf/QOfQDPoiTj7TNSj744APJ9iEwm1WcnJ1zu1nzx//jH/Otd98lyUS8w2jRyovm789+U8jeb4ndfX382i8pNYjqzSR97zf98vXWgVsZsH4gNkDfkypDmuZkWY42lmA8JEGcCocGTYFJFCZolIM8LZjNRMInswVKefzyiGulyXMZd6KkNo2DNPO7YWDwAW1yjk6O0EomZdakXHe3YiaiLWVRYqzCOY8b/GEoUdc18/lcAg0ZWHz++efsdjveeeedw2m7aRoePHiA1pqyLDFaGvwHJ0ZjmM/nPH74CBUjV1dXvLh4hSfi20aQa9qQJqmY6mkxJ7EjJ01pTfQi9hFGXPA0VQtBcAfTR4hh3DYtShvQAvJRRlgEIYq32yRKUu/bkRgp3sMREZtWXh3sqoZhYD6f893vfperqyvOHz6gnFX46PjhD/+//O9+/1/xg+99DxciSmkJyfh6lr2fDBXxdVgjb+bkL7fP4ldm068BTnhjvX1XIbMYq+ldh8lShn6gc4FgPEZpXBdo9i1NrwkhZRgsKJFE0rGgWOTMZh2r2zW3V5eclUtmac7D01P8psF1woCwxuC9Hg8znixLcF5UaYyY1tB1A37wJDbj5CSj7fcMQ8e+rhn6O9dy4NBPnTCsAqzev3YoK4piFPUIZFlBlkoAhixn6HuqqoIoerntvqb34q97yG4K1HbLbD4nseK2rqLwu2LgnoixHttM8eDaMz3PSdjEx4gLAW0iN6s1i6MTsixHaYsxiZiUiKDl4UbbrLc4J5mVKDfo4AbpisDBQ22xWMjfcD3BJywWJS9eveLP//zPeP/dZyzKSoI23DtM8eUdfALb/MK4+yXb/v9af/W3Dtx9jIRWsqCyIq1jEou3iiF6jJY39/zBAje0ED1VldN3DT7ucfueIrUElZGYgYXNefbe+zRfXLJqBnrnmM9m2CSh3W9HoLhB2YQ0zwjAarVms9my39a0reiGybjX07Y9CnXoNiTjEONgMzpCIoFDaTCbzeQglufUdc3R8dEB7ytAdAFoZ5kQNSc8bdO27EbnRu89PgTa8ZBW5RWJSVFaja2qCGMtrUZc61SOGK1RRiSJBufonRPPhyxnPl+Q5yXeB0KAJBFFm5cvXxFjz7vvviPQTxdwg7z+yS19cDKgmRjR99+H09NT1qtrwiCDmKos+eEPf8hv//Zv8esf/houiMTA6zVpPGCUD4Fnvl7gTUrvh984jr3fzMxvu946cPtgsYnFaGEWmOixygCe4Bzbq5rBBU6Pj7Be0+xrhgHyxFLlS4rMc7JIyR6l6AB5kqFcoH51zV/crg8tJu/NQXpTG8O2bsDBZtcSg8OaRLx2rWRI5wJxhB0ak46eCPog1xRGYWg/0n6mLXbycNjv94fvVbMKtCIZg+n29pa6rtnvdge2wcXVFev1+jCwmHTLgvc0Zk8SDdVRgTKGvh9QKmCSBEbIoR8EDwuRgHgB65Fb142TQ20S4bml6ch3S1FKc3V9weeff0EIDcPQ88EHH1AWMvG7b8RXFuVoOOJeGzVPNqsGzW69o0KT2JTnz1/wH//0f+HZk3dYzoQZou6frd5MnuqOCfHW640gPdTF4wj86wbw27unxwztFdoF0qAwBMoYqNIEWxbUndBC5mVCmVVYvSBRmiwxWKPIRBNECvLxnRii53vf/ZCffvRTVrcr5pn0Q+u6xo7qhN3gqTthUaR5iRs8yXEmra6hw616+j4yDB6t7rb9aWI20XomszqZxqWHDDS1iaqqwn/uubq5ZjGb4Z3j5uoaN9bKQ99zu1qJErcxwnMbBnEnH4XwUmMJLnB9Jfhhkds36MSigrT0nBcT6BhHFRnGTHzYGSxRaZpWUHAxKjkAtjXPv3jBar2BKC44R0dH6DPLarUiz8sDtiNLhA5e1/WhTJh8hcVNPWPoHUPnxBDQRf6H//GP+d6H3+df/O7vko6Dndfj7l5gKe45jX7V+grErn6z5kUmpLxR/75lAL994DpFpg2zrKDISqrcUmaGqrBYqzGpeCLgo3CIFJg40TKkhxfdWDgpqZG01pwsjzg+OeEnH31EldqDyZ2KQbbnvoMouABrLd4FtNHkJkfczqVOnWpLwSCINNF8Ph+32sBiseD999+X+q8fWG/WbDYbOQSO9a+6URSl1LhaKVzXsx0BOf1oGOKI5FZoMkfHx5RlQZHlUg6EgMZydXnN4LbMF0uR7VdaRIyVPoxX/egWeZ/HlWYZRsnvMUYA4oNzFIUcENu2GaGRUh9vt1uKvBoPesPhMcGLntl6vWa328kh1txt/65zEDXeQZrnlMWM1XrNv//3/4Fvvfc+jx48RKvXCTr3S4dfHLTyqPhm7/f+L2OscdXrFKSvk3XfOnC/996CNE3IU02WIMGp5V89deViFNXBKK7pWmu5q6JoE8RRIj5EcDESlShwPzh7IF5dVrZobS3Nbks7+Yw5QFt8mtC0LXlWUJYFAU81W2BsIqLH0ZOYhERHUpPK4cm1FGmBHyJN3dN2HS9efIHWCjf043OF0PdErXCpoeta0bTyAkj3zlEUktFCaimKnOVySZJYjNL0veCBVdRom5DOci5fvaQfaubzJbP5EqMMGQlWi+DcgGidpdqglMb7CFGTJhmJSWiahvV6Pd58IyWqb5nNC4LvyIuC7W5H5BVpkqL9IDW+kd8VhoDvPet2g4qaxXwBVjH4nr4bpLbue3wjWTmsbviPf/af+H/9+3f4f/73/w/KXG5GHYVzdsDljhF4mJJxlySn9q6IDb4JynkTgRbGG+DeLyLytgSetw7cJ2fZ+ATkVGyNQNe0ElvU+1ORiecRQXRQo9Bfmq4TwQo1aRUkpGnCw/MHlEUJUag3g3PYJCGPCOkvetre0XQNNklI0oQQPXrc9ryD3a7FGmia9oB7FZPoTEaj+y2rzd/x4OEjCRKUdCD8IK6ViwWewLat6duWsihxw8DR8TFt01AWMhxQeT4OCWQQEoIMEOzIpHAEbJGiE81mc0v0AwbFcnmGTzNqV8ttLm0BuaBhuuhiWjdJSikY5fsDzveE6EBFsZuaambviNaQJMLa0MGgVII1YoLd972wE2IkS1J2/Z66bvBIL7jtW/IqxxpN1zX8x//lT/l3/8d/x9OnzzBAbuxhl7gPKJ9YC2qirt8P5K86tt2Pj/HT1w5rX5Whf8F668DNrQyaVVQQ1YFurL9UuY9rLLin8TQIsMImFlAC67MiGPHo0QOOlktWt5cHLVg/KFKb0HQdm21N3fT0fqAYuVVpkY1bo8a7tYw665pk9E2IIbDb1SISF6GazdjXLX0/cP7gIbe316KYrTVZllCUFbt6B1HcdLa7HXmSkSYJQ9exWMy5vLqiSjPc4FndroSdm4k6ufcerTKiVpSFESGSVnqs3inyYiYYgtbglcEaKwgqpVHaShArNb6eIHWvNiRJyqya07aCAvM+UM1y8iw9ZLbgPNksgwhFXpBkOdYmVPOc7UYwCsoE0B7UyCrpeno30HYtzvXSl3We5598yieffMyzd9/Bahl2+CDgmAPc8YA5uBeIExZJyWDhlw3BDoXIf2FP7K2JlQmQjHC0VMvnFiG66a9m0MmaAlgpsixhMa+YVSVZKkASN3jyLGO+mEt2iFKfpYkARUZQEcmonzBhDCZ86wSSPlouefToMSen5ygl2rHOR/K8IstLQIKgbhqS0ROsKEvSXAYoovKYcrQ8xrtI1w7EEFmthD7+6tUrGV1G8c3VKmFWLkmTEu81ihRrCpyLDIOT31+UoBT7esfFxSu6vsNkiSijJyk2zUDJAU5FRRjCyLsyuN7TtwJbDAHmsyXvv/ctnj19Ju+F1sI3C55ZVbGYzThaLFjOKk5Pljx75xEffPAeDx6eUM0yjInEODCb5ZydHpEnCcqLBlt0jkRrrNa8fP6cP/mf/pjtdgdKERVoo+4OkzFKrfflywxIFg2jyvibH/fXVHaE+PrH266vgVV4469yt719+UXI1wQpJD88AUJCnGghjAMFhdGKs5Njfj4W63VdQ/Dst1vaVsbFdTOIUfOYmYCxvWVZ3W5kNp/nGGvoB4cPEWMTun7g8vKSLMvwMaC1YbdvWB6fsNuIH0KWJsTgmc8WOB+ody3LhSa6QfhcztH3HVU1F51cbcjTHKsTXAgEr8XxRiXE0OIGD0ip0jUNfd+wXq9Is4L58RwXPX4EV6txqOJDlFHxZNgcIk3Tsl6tOTs9k2mY0iI6l6bMqpJ6v8cqxcnxMVVe0IZIoqRsmVUF3mf0pycUuYgDDoP0vC2Oze324CHX9S1zramKgqsY+fnPf87tZsNysRgRb1HwwEoxHmHGax/vZVq54l89IRvj5bWZ8FcoKXyN7Pv2UvpjWQ6KSeRPkuEYpPegl/L5WPtMn9/DY8YoGdhHcf9WMXK0FFyqCgOphv12Q98LRFGA09AO7WF8W9f1ocV1fCJ1bd3uUVpxenbGZrNhs16z3W0pypLjoyN65xm85/r6hvl779EPntmsZLvdCP1cC6ClyCqMNjT1TkibvciS1vWethWBPmUMaZaL7H1U2DTHJhnDdkX0IioXwt2N5vzAanOLrTKiMQxDj2B8NUpZrAJrEpl8jdyxtm25uromSVKWy4W49uz2zI9y0S0DHpyekWhNs9thlKIqCpIkHZ3WI0eLBSdHRwcB6rbtWLEny3Iio91A9Ky2G9Fmi5FPP/+clxcXvPP0CZm1KCcaunrEPgbia9lxCsipVHhzfdXkzR10eu8iDJDt/C3WWwduCJJFpmCNUd/j2IvyyR3h7s3Z9OFR8sKU/J4Qo4CIs5SzsxOqqqLerkaAScHQdbR9j/cB54axWS2Hl6FvmY/O3kSYzWYCANpvubq6kTo4K3hczalmMxn3bnekJiHPc7QxLI+O6LsWbSZ9A48bIt5HtDIELyAYNQpJr9crjElAaZIsJysKnIckLTEj2qzrBqwKxCADFaK07wD6vmW321HM5yibSG0bwRorH+NgRWkLSm7Y3XbHZ8PnuCePydJMBFOs5+zkGFtVgizb1yjvhWjaykh+v9uTJgmL+YKz0zPatqWtW1QEm2a03jHEgCPSDAOudSyWC3SSsN5u2Oy20v3xgVwJg1dzx5SYMux/yVJIey38/wOrcDctUaIXG4V5O+XU6CNG301BprpmOqDdoYWmx4xf1wprNedn5zx8+JCfrK5Z7bd0TS2Wp1qTpgkmyfCEEe014AYhPZ6fn3N0dERZlqy3W3rnyH0cqT3CmBC2RMrxyQn7usYYTdv1zOcLVs5RlpVoHPReatMsZ7tb09QNwRvm84qm3hNjIISBGOU1rNY3+GhYHln2zQ5jU/K8QHmh3oQQxEhEa/rBMXjHerOGNBOWb3DooFBBiVK4tsQo491JE2272eF9zW63Jz8tKMqStt0xOMfRXFiy66trurbjtu0oioI2RhbqmJPjM46Pjjk9Peev//qv+au/+s/sdjuiyXl1dUndtnTDQDv05HlGVpWwWeFGvEQcu0MY5FAOh/IA7uPDfnEgf2V7NqrXvvGLSoyvWm/vnn4vS4YYpvzJFIiaAAHhXo1lwlTjTkEb1KSOEu/q3Si1nVLg+p4YoCgqhm5Aa8GdBnq0NaMngkYrgzEyttValCFDCOzqmhcXF+OgwhF8oCgqkiRju92y2cmo1iaJAM7pWB6d8urVC0GoKUfvW9recX17Sec6bJ5jM0taZLBVIvoHoAJ9WzMETVHMRhCMpyxT+lYM65RNxk67mEv7IEqURgl3bDpVT+1CazXBe5Qy2ANCzeOGjtXtDdZqlos5dSOETYIYSW/rPTF4VnVD2nfkKMqTMwKGL15e8OLlBf+f//lP+ev//J+FUlTktH1P2zW09R6Q8ojgqOstNgaRbPKiODRBRe/jl988SOl7SWwylb6/3gxepd7oDHw9OO7XCNypTIgBHzxaTR65EnyJ1pjDs4tfGvH58eNuUqRQ5o4jqpQSlms1R4dAkojyYzsMFLMZgTtjCwnWyG63I00ziryibdfcrtcEFCZJiWjmi4rBB+p9TVN3JNYwDC0EGXM2fqBrB7K84vr6FTZRoCL7ekcz1MyP5xR5Sl6WDG4QNfOhFYdJ7/BDAJXQ1nustng10LsdznV0fsAphfMBnYpXxma1xoVIv69J04w8L0c4p5wbOjdgu5aTrCRPU7q2QcVAkhhCdAyuw5iCZVFilaatG7Zr2daHccQdlSbd1ayalo9++jN2qzXr1YrLqyvWuy2eSOIaYhjo25bQd0Sg3xuaekvf1lSLBSfLJVZPnDLpf4U4WdfyJftSP57YpnbY/RVfo0PcW28Acr9O4fD2I9/p6Y/WPlPPUV5S/IUwtbGYGO+o+xQ7Di9WyIqezWbNLMtZzBeC9a33tH1P03UHKOJ8tmS9EuTTBAe01vLuu++S5BneedarDbe3K5Q2HJ+c8vBBwnpzzWZ7S1mI5P9qtebq6pJHj885e/AQ7wdub67ZbmqqcsHjR49IEpET7duBNC0ILuCDYxgE2miTSNfXhK3H2ISoxQ1StHA9fnAkRjoBSZrS1TIRK4qSLMspq0p+V5DBQjWbyYAjeJx3KA1Hx0fMZhU+eNqmJrMK1wl/bbPZ4GJg8F7MQfoBs69Z3VyhnBejxKahaVuavmcIHpqAJuL6nqGVwG36jjiCi/IiZz6fk1hL8HEMYCUmgkp2zLfD2/793/+lQPNfsr4GyGZ6soqg1CH8Dk/krX7LVFzow3YTw6jUpybZSZHMtKO0pxmlmHrnaEeqtbWW+VxMkfu+Z7k44vzBA2ye0fQdz59/QdOKMcbjR0+o65q27UiygjJ46n3DZrNnfbumqipiVJydPWRf73j54oIkKXj08ClKa+kMJCmL5SneweXwiqEXvTK0IsaAUoF+2BP6eHA8z7NcGvhaLtjgAybNyAIMbsD5gbatmc0qMiXsA+cGbm6uqdM9NhEUW1VVWGtYLhckiWXoWwgCOopIS7DdbWnalnq/F8LlICrwwTkYJaRcFBJoUPLfRin8MIzdDdncw4gzLopS2MQxghoNq6eOwTh8eL2mjV9rm/9VrK/hLHnXNVDj4WTKm/dBx9P68h0YD2p8E7teK4jjZCsd/cn6vmcXdxTjyb+va1QiT3NS/95sNiRWVG/i2D4qihLnB25vrrh49YL9vuX09Jy6adjXLUpp1tsalNTnu+2W6B1GK1wIXFzfsljMqWZL0qzg+OSMm+sryjKnrASnEaNmtdpB3RHjgFEaHzyZEtXGtq0xNsUajdMGRkt7rQ1JaslyQ5Jm7HYbQojUTc1muyExCUqZkc4j5xbthQafk+KcwQ8952fH7DaR3VYA4j4ITb1rO1GGrGtuVrc0uzXB9RAiqTYUZYnJUoLyDCHgIyiTiLIlUmsmaSL4keBZHh+Rj1gFpcH7MJaGIygo3u3yrwO71KGn++bX3yRC3j+8x7G3/3W6FG+fcdVdKa1UJIon0PikeK0j9+aa4nqaFMbx6hyMiGMU5e9RCjQkg7jzhNF0Y4QiEuOBN3V1dSX40hhp6oY8y1nvbnj5xeesb28JUbFarbFJwbN330Mby2q3pesbTs+WWKRXXOQ5fYjsmp5dfYlNUhGSVppyNmMxq3DeUeiCvCio5gt2TY0age4oIT3G6Em0vDdi2OPoO4f3clGsFYXGNLEcHYkuhHOe/WivmiQZ1ljilBGjbOV9X9PWBqMiqdWkiTlIR8VB1HMWy4UQNTcbAJLEglGjS7kmLTJUmhAaR1Lk0ElrM8DoLgmD97gYMYnlO9/5LsfHxygtUlCJVuKi5AGtvhqieCgdvjr4vtTL/crPvyID/j3r7fu4bz6Racysfjk24q4dNqXc8aAX7joOw+j/UNc1TnfMyhKAYXQtny+XJNaOhEJF8PGgmTVRc7wbWM5nXLy64OryhnffX/Lh977H6dlDPv38C5an5xR5SrO+JYbI2ekpddsRgkKbhM1mxbwwZEXJartGq8jVbcfV1QWnJ8dkaUZapBRVQdvVWCvjWjdKnGqlRRg6Tv1gj/ejrb2P+ODwIZCMbjfVrKLeN/RDTxa8dDqMJagIUWyzYhhonBN1xnrLk0ePYcTdhhCEzWEN81FCKs0zgusZ+vYgvR+APgaCscIoMSkJmtRahn4geE/dtSRFjrKW45MTEfobO0NaNO9/4TWOh1JyTGpvfO+Xrbuf+RUH7mvPJd51B9S9j/vrl2Ir49TLlRdslMImCYvFgkVRMp/PBTsbAtvxgGaNwTlHO7o7TubUXdeKRm8Cy8UMpeDx40f89j/7bX7wg3/C8xcXbLd7Hj1+StfuefHpx2x3G4LL2O0bzp+9R7Y4Iisy2t0lVzeXpJkoz6xvb7h49YLb1TXPnjyWtmaiSLOEvm8pjKgl+sHhhgGil45DAB/UOEzQDIMnAG27QyknQBql6Lr2YEvlfSAvZaiQGD2a6CEUJiKuH/js009Ii5LlcokPQTzeclGEz/McFwL7fWDwUtIppeiDJ1iLLUoGIqVJsCHix93LBUHa9c5xfnrKhx9+iDV6LO3Ua8ivv/9y3g+8Lx/eXv+ZL8fIV3UjftF6+8Dl9e2esRabhgmGXxy8YQJaTM3reHeXKiWuhEVR0A8DtW5xN555VYm8ZpFxfXsLJiFLxWCv63corcmynMH1KKUx1rKra5ZHp3znw+/z/e//Bm3TcnV5SWoN8/mMH7/8nNvba7RRDH5AJZoHDx8Skpy2bbi9umGzXfH02VMePnjE6voWoyxD2/LZZx8fSh2bWLQTEJAyCTYp0CbFxxaUwbmBwQudXHmBaiqtx1JHMBD1vhnr9oBzHVppmqbGeAdZhhptQ1GKpumI3uOD48gYFssF7WgkuN1saLuOqiqxY6bsR3ZvCAE1il33wdO6gUEprPMMXY/WMpq2acrJ6Sl/8Ed/yD//57+L1Ub66yisUYed9X5wfVUeneLkMJw4XO+vzrrT12O86zq9zfoaPmcBPQo3CMdftiCnIn48bJlf8EcPFe39F/76pzx9510ZRw6ilxv3W2yjmc1Knj56QG9lAqVTS9SIQJwb6PuOuq5lqtQ7yvkpj599wHrf8clP/5bLVy9INJjYUa9uyDNLfnRMXe9xu4Z26AgDvPjsC3a3G9BeBi1Bc3ryDt3eEcOGendNiGBsClkGWjGg0ElGmlc0TYMJOTbNqNsN3g9415PlI6A+eEJUoDMZd8bAMEhweOfRhUYTaestVikyk4MSIT3vHTH2oCOt62h7GU4cnx6hbxXRDzS7rZA8+w6bGBkUeeiHHjUa6qVBamdtLGhDdXTEfLng5OyMf/V7v8f/6b/+rzk5OT1o+ILCgQTvFHvjIGLqMkjzQb92XV8bKExAK8brPSW9e8H8D8Y5C9GPzyGO8vKyf+gx+n7Rn433Pr70vfGVKK04PTni5HjJ1eUVZVGggSKX6VizrXF4jLHEtiMLYDBEa+l8R2oTlFYkWcJ733ofbeBHP/obfvLjH1Nv15wfLwlEjo+OOTmes9les1lv2G52fPLzTyhnpzR1S5Kk6CwlyzLSLOP0LKPdbaj3jr5b049bvFZi5OVCxHlPVVWEGBm6Dh80yqQycQFQFrT4RyRKjA0JQc4NIRKiRzGyf6PC+Z5mv4cUUpvK+2M0qEiMgf2+4fkXL1jMZhRFwWK5FFX0vqdtW4a9aD0kSjRi0qzAhcAQPHmeEbKS+WLJs2fv8O0PPuD73/8+3/7g23zv136No+NjSTA+HgKQCKMp8HjRpuz41Vt/HNtjh136Hlpw+ghfETD/INSdPigyo1Ej5UKw+jKY0Ei77BdFbyTiXnuWdy9qGiWnqQjVDUNHmgqb1zkvE6oIM51gTULf16hBRJEjCu+jmM/5nrOHjyhKy89+9nf86G9/xPXVFdYo0vyU+WLOYnHCbnvL7dUFza6mrTv63vHs5AzfO/Bz+lBTFAXWaBrXU5YVux0MUdH1nsFBRJwyfYyEriNtu/E90KK8YzN0mHAHydgW02gDfdeISuFo4uEHT2YTondM/mBd3+KdJ0+EXp4YwXT4Ees6tQIH78mLguOzM3b7PUmWEfqB7XoNRjNfLEirkvVuJy6dMXJ6/pg/+q/+D/ze7/1rnj19ytnJKenIs2Nse47VwdgCfeOwxZQtx0CNb9S0U0V4uMaHS3738b9m+sDXCNyLmz2nyzm50WJly90L+/smeoc11bevtTtG+sq0VECrSAyOoetHXdfAyckJeVrQ1TX1eoXb7lAmofMtq7rGo0jLknI2I7gam2qur17x048+YnV7QWINZZFzdnbK6ckpMRouLy754vlzdtsdRhvm1ZwHZ+f4fiD4jNv1S66vrtisdpwuH5KXJb2P+KAle2JAiQRqDELM7OoaY0fzbQLGWpIYRyFmQ5KI/ZMbPMPYt9R6mjwqjBZgbvR+BPMEBrx0CFxHlqVkJBAjiRKaTt12dIPjNM04PT1l3/XY0lAeOekgGIMtco7OTrnc7ymqGY8fPeIP//Df8d/8N/9Xzk/PKLJUzifh7noqFSVwp0x5aNbf2z3vbfNfCly5umPXSUL1tQO8kl7+G/n6l8bg/fXWgfvnf/ExTx6d8d7TM45mKYmZYG7x9Vvq9Wf/2vYi6P67H7o/kYkhokNgu17Rdc3oiJ5xeXHNcnlMnmfYqsS1Pa33uCShVQpvDE++9T6L5RE//es/5+rqirZuyBLF2clCDkDGiOBG33N7s+GjH/+IVy9eoHQkyypSq/FDz/LomM3Gs9s3rDdrEl1zXIk4ctcHbFrhfTu+JINNc5IYRS1nCsLRfE+FQGoNaWIZhoHZCK1smhqlZAfxzqGBLLMEN4CS84MyBjHw9Ax+wEdHVJ6oITEpQ9NB16OtZd/esO8Hdk3HxdUlPkb84FBGkxcF6azi+OlTfvedd3jnvXf5te//Oj/48Ps8PDsXFkQcCa9mOmALPetw2SakH+MBijtMwrS+tMWrkWDJYXB4/1uoOALnD4fzr9dRgK8RuB9/3tD0W/LyCKUNs8KQJQgofIzd+3978lVQ46BhIv0F70CJ4ow8IIxtG2jrHW7ox4vtaNseawe6IVDkOc71aKNpnccpRVpV5LM5f/hH/xV/9+Mfi4P40JJoxaKqOFks+Oijn8kESFmapubm+hWvXn7Ofr/m5PQY7zt2+zXr1TWLkwfsm466E7Jl1za8evWSYfBEZUiyAu8Qhx9lSGxGmmiin5zJI8F1YAx+iKRpSlePv6ve0ex3+L5F6XtTxxBwIchkMkkEieUDAU9UHrQa9XkHfAPWOFSIokRpDC5G0JpmGLCjF9zy+Ih333ufd959hwcPH3L+8AHHp6fMZnOWiznzJCWNBqLYXE0gcTXu7wcCLIxovjE/jui+NxPUlwI3gncB7gXll+JSjQf2qS7+iqz9i9ZbB65XZ3Q+59PnG3Z7eO/pESfLAqPFLP2r1hS8gIxXVSSxGuc8Qyv9191ux3a7Zbvb8dmLF3jnWMznBAzbXS3y9u2KrU0wKnB8fEyZ5mg3sN/W3Gwv+NFf/BXPv3hBGCKZSkmNdEFCP5CaBNc5utbhhi2vLp7T9XsCAz50dL2n7XYMruHm9oZ28KRpThh2KGOo9zsiljQryKuU4GVc3PXSbkpsTlVVtM2OGAOubw6DCd87uUBas11vxoZ+IDg/bstSU3rnMFpcKQle2AGjNZfWGnQQ9UslJUo/tLjQkAyeh0+f8Pv/9g/49offZb5Ycnx2SpnnPDx/IIJ/eY5RijyxDIMntVZoWMFjjFi7+iBMjKlXr+IYuEod/C+iUofu0a9i6Xsdif+S9fZ2UWfvYFPHtt2we3mLCx1DOGMxy6iydOSk3dVB0+w5RNFjDUPHrtlxdXXJyxevuLm+ZrVas9vu2e937JuGfmyReOcF4mdTut7ROy+jU9eRaMN8eUSKZZ7mzFLN3/zZD7ldrfBuYHY0RwVP1zQyajWWopqzmC94dfmK6+tLQnAYDUPforSh3m9IUplwFXnBRoswic0Nvh9hlDFSVjN856h3e4a+pWstBHFF7weBCeoYGNpulLyf3HUUvm9HaylBMgfv5bCuFCF6Em1IEjtSgcD7kfqv5fDqg0fpOM78BRvRN47ZYsE/+c3f5Hf/5b+knM2oZhW5VljU4cbQIWJ9ZG4t0QWsUQSDdCmIaA1ehXudHzWOhsaoUuOOOmbbu+rw7rwi/4yPVkKrv3vMHX39EKf30GFfF0QOX0dmdDmgjMazZLuHv3tZc13fcDozPD2f8+Q0J7OS7kOMtF3HbtdwdXnDF1+84nb1gtvb52xWG4bOEftIGCIqaKy2BK/xVlOUSwIa0zmabmCeLzhOM9quZbW7ZRM9zXaL6z2ZzSBAV3eY3rAsc85nx3g/sOo90UBadFTznKyMNN2e3kdsmpFnBhho+44k8bT9LeezBbGpadZbtDUE5cgXGRpNHgu0i1gVSU0gdA2+HxiCYdAGj6LzDqsVOmoG5wSfPI5nLQodEaA4YuTBWD+aJCFaQxs8PeKBi7aE4LFGSoIhNgx9R0hTlPZEpVDG8PCdxzx85xnVbM6sqMiUZlQSwKvxoGiEmBlDwOgASh8gUoGI587qNIyBF+5FxqEjNrW5xqCddvbwZq8zygFPjwEa7x3s4P4U9hcdin7xevuMu8gIKqEZoOvBhZTLqw3D3nPx/FN+Njc8PD9Gq4H19UtuLl9w+eI525sbfO8JvsXYIH3fzuGDIkQpI5I852xxxIOnT3j3vfc4OT3DJimDh7wo0Eaz2Te0XkiRlxdX/PwnH/PXf/E3fPrx5xgEAjg0A/tXPVmWYJOU4HtSk3Bczmhvb2lXF8xSjy5FymlXCxu494qXl2sGd8Hm5oKu3oAdQDsWs4Ll4ojNbSNjWgJGxxHP2hKDxqY5gwsEIn0/oLm7gYOSM8BUEsQ4Ht/HcNCjYuO0LQciLkgD2CbpmDc1xljwfqyvQWlB1D04P+NoVpFrTRYjiQ9yyNIKN41eY8THgNFqhJKGQ182TOP7MWYO7ck3Q+iA4Irj/15vf30pAA8xKFE9HfCmpb5CGeHrJN63VyTPBLmkIvg0Y9d5bHZKYqBtDD/9dMtf/uhjcBuSuEN3t+iupYwKCAy9Qg0ZJksluF1LTBJOHz/mN37rt/jwux+yKEVaKaJHag/4cd5+fDQTj9kI4Tvf5l/89m/xR3/4B/zwz/+KP/mT/5mPP/6Uy80OHyNH8xlHZUmhFYlKyFXCsGvI/EDidqQM6Dxhs/E4p6hrh1rV7Lef4je3BL/Duw5jFPOiYFlWtKuWLoi2LFEoRK7vR2NpOY0PfSuUmvFQIn64dwcd59xrTssTpO8wWdIabQxhZDdPj7mvTdB1HUkqAO9lWeLqmp/81V8SNzuenJ4zLyp0qsirAp2mQtRUIlgyjNoJxPjaJn8fZ6DU1Lz6h133R/7y2uXvv+1S8S0LjD/7pAdt2TZQt4rdrpdMFwMqBpxS1G1N6FdkqkH3K+L+hs3lS/qd6FeBxSG6WTpPePr+O/zgt36TB48fYJWmGKk8WoncfIxqZMhKvRUQLVqlLT4IWdOFwPXtip///HP+7C//ho9++nNefPYZvutQzpMqxePzM+rdlsurL+iGHcMwkOc5nz7/grb32LQgzUsUAd/tUMrTDwLkeefZe5ydPGK7bri9XXO5uqBrdqjo6NqaGAM2TcBaoemAgLiDyB6pGEmMxY4INmVEaU1pKRWU1iJTBWR5ThjnoROz40BvH4VQJin+oij58Lvf5VvvvMuyrJhlOZXNKPOcbJEzXy5Ynp7x5L13efD4MbP5gjTLxy4Ch9akv3dTKC10LDVF1peCbcIVQORO3+JN7dwxsg7wxxgjMbzRtz24yqrX8LqLv++k/8b6GorkHf3Qk2eWJE1JE4t3iuAVIWiKVDNbziGk5JkiTxQmBrY3Kz7/5FNu1lfYTGNj5OHJER9++G1OjxeURYYG7Mg2kPGmHIhiDBDlFWo4tG8ggJaDjTaG87MTzk9P+Z3f+KcM/cDtas3Hn37GRz/7Ga8uLvj08+e8uL5i5SwxLKhmOTa1LI89dn2Da7dot6EdetoQyPOcGGS8vF6tOF6ckaWWiCMGgQEmWqOjIUaF66WeLYqc6DzN5JY+ZjoV3SEQ/OiWztQKGn/OjDDFCAdlxfsBO2GPJ7p8kWVkStNvdww+0DYtQWu2MeJeerAGm6SkZcXR6RkPnjzln/6z3+HJs6eUeTkGXHhtJHuYgMJBt+EXrelHxnL98HmM4CPj/90rRe4t/UaH4v4k7m3W16CnR5JUY5EaKLWKfoD9rgcdSC1k6eRXIP/6qEnOSh5XDziOO/KZIreGTGlmZYZJJKNKeybilRZQ+r2iS491krywMRugsNPhRoFV4oubppqgUo4ePeDZkzN++3d+k9o7rrdbPv7sOf/5L3/Cz370cz795Odc317TdIbNuialx2iH8p7eCZ50VlUYk9B3g2QPCzaB+bzEDx24QJ5kov4deoEyup7oJRDEn2LclqMEyRS0avQEOBxWDplMerp9P4jg8yhwfX9TNKPm7mI2Y16WJEQYBiIRP2bzPg4oDCE4+q5jfbvi008+44sXL/lX/+bf8Jv/9DfHlt1ddlVqGt1D/NqVwusBKCP8N5x67g8s4GDUd1cGvdmp+MXr7Vm+QyYqiQGIitSIzKjrYHAREx15kpJmyaEoDyEStWKRWUiWmBQSLRMaE8eTNaNGQ5AgNAdBvekuvquDpLNyx5xQRDG8ZpzwKI/JRinTAFVhsN5Q5ilPzk753V/7Prc3Nc+fv+RnP/+Uv/rhD/mzP/1jVhfP2dUbjAVje5HpJCV4obKsthv6vkNZODs7wXc9m5uNdESUxeFwfkANEaIcFEW0ROjocgOq0bT6q7dgycxyYDIj3+5+wE4KjmZ028xsKu6byAk+qojXYewSBFzXEQNYlaB0gonw+c8/4SdnD/juB99hNp+J8N74d6ZwmQa0Ub8RjL8kA081693zfm3I+9pkbLq2avy5Lz/ul6+3DtyhTYkOhiGgR3vQJNHM8oyuE1pKpjPKRMsIMQY0ATNSfLSWTBMjDM6PwsaawZjDVqKUovMBqxVpIkEaYFSEVPgoGu8GJRKnIL1N+RPstTjSxChExhRFphA9rgCxSjgvFrz78Ih/8usf8ju/87v809/+Pf7f/+E/8Jd/8UPa5ppZ5SCGkWHgwMBqsyFJtcAIywVHR0v6fY/vHSGACvqwFwzDgNX2oMtlRgr/9PreXNMBTQJX3iijOUj+TwE7lQ5KKfI0oyrLsbWWEIKjc54QwEXPEMQfLsESlcf3gRg0Omr6upFsP3YxDgE7Pj/FndnKXai+9smX1pu4hUMA3n+592JyOhAeAvgwPXvbaPw6gTt4QjDIxFYySIygrRL9MicgmTyBVEcIAwbQ0RC8wntQ0Yu0qFW4CL0PDD6i1KhmruRiOyJapWNGhahEboKR5x9VwHOnhxOjlp1AJ3gXCUHKhxCQrDQ2vyXIPUErstSQJAXl7ITZ8ROOzm9xzREpa1I1oNXArq5pB8d+11HmYHVku2lwAXSqaLsGbUTEw6NGbzf5W0ZrGM2t43gRI+POcHje4iyulLyHespa46Hu/tWUQYZYT1VFwWI2oyoztJqU0A1hiKA0hkSMroGudxiTMPQdmdaY4CQ4/dh89ZHkoG8hZyYfBW13B7JRo2jh63F4iGaFDJmm566UKJrfe4BS6k4Nh/sZ+OvjFOBrBG7ddxS5tKpcP5rFeYUNUiroqPAu4j0EHYQwiMJFQwiKoOVtid4TCEQNyihCH0aTaAVG2uARCWo9ZtapJtLjBZZTeBxPxPL8ggfnOVDnXZQsMnHlQggY5MIGpek93G723Kw3FOWc997/gG6/oVl/QRYbjGo5PXvE5WrL7e017X5DlWnWbodzPU3XEKJDaUuIHh8ks5sg3Q9jDHr0orjLQlMQT6eZ6UTuRYZJy0ncSwQLn+6eOqUfD1PWmIM2mfM9JgbytEQpUXS0ShOddF2szeRm8V7o71eX3N7c8mxxRPCRTN+dG0K8G0Robe6wU/cGDlM9+qXD2zQJm7oEXxWNr5UL90sRuEvpv+JSofcKXwti3w9jqZBasqiFW4Vm20XYecoskJhJikkeL/WYtH3ilAKjQo0ZY8qgdvRM6EI4+ASY8U1LFBilhJSopCEelJQBDmjkljjIvJtRyIIxmHAepQ1eQR8infccnZ3x3nccxXxJouHzn+SoYY3v1ihreOf4CeXighef/C1d3xCtFyNA5w6OkG3f46KMcMXHd8yqY9cjhiCl0ehpdl8q9XAhDz1dGRDcd6OZrJZijKNxithRHWreMGU8sZtSRmG0ObS7BidK7yjFxcUFP//4Yx698w4WA1pu+mk6NiVFeRlvBtcUWPGg6/Dma5jW9FqndTgIHn7f648+3Nz27fphb+9z1ovE0tCDdwrvA6bvyb00ua0xWG+xTiZiVodRllLcQxMlf0wZBUpaXZMMZzKe5wYlYHOrNX66eOMFNEjbTbCjkvHjuP/GAG6AViuCvgtcrSab+Sioq6DAi//Etg1EY3j07CnV0RnZ7DOuL65xVMznOYsHD/Ex0PqAzSpWVxdsb57TNVuUEpxtZjVVVYoZddOO1q13LaX7o84pCHnD0/bw9buvHAI7xji6vqtDIGulsMaiuPffTgJ3cAGDIrPpoSuhglhjxzHIu67jRz/6Ed/+3vd55/EjnI/IFFgdhJajuhuafOU2rl7750vDhLdl9X7pp75GzfDWgburPUWRgZHase97+rajD5o00ySpInbyBjXRHwI3KkE4zTNDZkR6X0cRmkAJBWZik/ox+7pxahZ8ONR21hiimwSihZkao9iEDj30fcRpuUumE6uUF9NjJq6cE/HnCLPlAptmJEXJ5e2eH//kcwZy0iLjwZNjktTw2RevcB5Oz5+wun5J1w9o5VHBgY/MF3PB2vaC5VDBy5x+9L6QV8bdtGqaqt3LqNOFPPw79VLHm9eMtXIYM7ds5fouAIJHqwSlBHLpveFQhaq7G0dY0T0fffQRT/7yLzk9OqLKC7SRkmVygL8PprlrU00rfumsdl/cY/r8q8z37guARF6XPJCff9to/BqB23RBcKRK413EBU3Te3QiaihBa6SqUpgQSA6n/UDUYpsabcD4gE3AJkpklsa9SRD4UnJ4L2ozPsrxzAeBSonInMDwBi+KLEOvaFsvXmfeyOFEKxSBPLOSAUfV7ygjIzLAecmaEagbQaDZpGR58piz84r3v/UMYxTrvaPtGpbLU8piJhBD3zI0Pd45McEbeXFSJ3qsFYOVyatX+UmqSfGlqw5fCt6Decn44Ueh5+lngvdSKoylkDZWHH80B1bJ9DgXBJCDEums6D1D13F1e0PT9+RpdsBGj8c1pgHJ37cODYLXSolf3jK7vwJv2KpOLYa3XG898v1mfbP+t7Te2rzkm/XN+t/S+iZwv1n/KNc3gfvN+ke5vgncb9Y/yvVN4H6z/lGubwL3m/WPcn0TuN+sf5Trm8D9Zv2jXN8E7jfrH+X6/wEfobuuFXD7JQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "predict_animal(\"/content/test_set/test_set/dogs/dog.4592.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "vsUv1mbQdakM", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 230 + }, + "outputId": "ba2485e4-aa33-4ba9-f14f-8addb1bbc252" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOAAAADECAYAAACGEC3BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADL2UlEQVR4nOz9e7BlWV7fB35+a+29z+vemzczKyvr2VVdXQ1Nt+kGGrAEQjQtEDS0GI8emJGDwAppRg4QhD0RmpiwIyQcYf6wNXJIIiT+cITBIsITIckeCQSSGiRZQtCgBhroJ4+uftUrs/J1X+ecvfda6zd//Nbae5+bWVVZoqwOz+TKuHnPPWef/Vhr/V7f30tUVXkwHowH40sy3Jf6Bh6MB+P/n8cDAnwwHowv4XhAgA/Gg/ElHA8I8MF4ML6E4wEBPhgPxpdwPCDAB+PB+BKOBwT4YDwYX8LxgAAfjAfjSzgeEOCD8WB8CccDAnwwHowv4XhAgG9g/ORP/iQiwq/92q8N7/3cz/0cP/IjP3LP40WEn/zJn/z3c3P/nsbf+Tt/5//nnulLOR4Q4B9w/NzP/Rz/9X/9X3+pb+Pf23hAgG/ueECAD8aD8SUcDwjwDzD+0//0P+Vv/+2/DZi6WX5ebZycnPCf/+f/OU8//TSz2YyHH36Yb/u2b+M3fuM3XvM6n//85/mBH/gBvvzLv5zFYsHly5f5M3/mz/C5z33uvu4zpcTf/Jt/k6/8yq9kPp9z5coVvuM7vmNHlf6Jn/gJ3v/+9/Pwww8zm8145zvfyY//+I/vnOfpp5/mE5/4BP/qX/2r4Vnf97733dc9PBj3HtWX+gb+jzz+4l/8i7z44ov8/M//PD/1Uz/1usf/Z//Zf8Y/+Af/gL/0l/4S73znO7l58yb/5t/8Gz71qU/xNV/zNa/6vY985CP88i//Mt/7vd/LE088wec+9zl+/Md/nPe973188pOfZLlcvuZ1//yf//P85E/+JB/4wAf4C3/hLxBC4Bd/8Rf5lV/5Fb72a78WgB//8R/nXe96F9/93d9NVVX8zM/8DD/wAz9ASokf/MEfBOBv/I2/wQ/90A+xt7fHf/Vf/VcAXL169X6n68G419AH477HT/zETyigH/nIR4b3fvAHf1DvdxovXLigP/iDP/iGr7ter+9678Mf/rAC+nf/7t99ze/+i3/xLxTQH/7hH77rs5TSa17j27/92/WZZ57Zee9d73qXfvM3f/N93vmD8XrjgQr673EcHh7yq7/6q7z44otv6HuLxWJ43fc9N2/e5Nlnn+Xw8PB11df/5X/5XxAR/upf/at3fTZVl6fXODo64saNG3zzN38zzz33HEdHR2/ofh+M+x8PCPDf4/jv/rv/jo9//OM8+eSTfP3Xfz0/8iM/wnPPPfe639tsNvyVv/JXePLJJ5nNZjz00ENcuXKFO3fuvC5xfOYzn+Gxxx7j0qVLr3ncL/3SL/Gt3/qtrFYrDg8PuXLlCv/lf/lfAjwgwP8dxwMC/Pc4vud7vofnnnuOH/uxH+Oxxx7jr/21v8a73vUu/sk/+Sev+b0f+qEf4kd/9Ef5nu/5Hv7e3/t7fOhDH+Lnf/7nuXz5MimlP/B9feYzn+GP/bE/xo0bN/jv//v/np/92Z/l53/+5/kv/ov/AuBNucaDce/xAIT5A47XQj3vNR599FF+4Ad+gB/4gR/g+vXrfM3XfA0/+qM/ygc+8IFX/c4/+Af/gO///u/nr//1vz68t91uuXPnzute721vexv/7J/9M27duvWqUvBnfuZnaNuWn/7pn+Ytb3nL8P6//Jf/8q5j3+jzPhivPR5IwD/gWK1WAK9LDDHGu1S5hx9+mMcee4y2bV/zu9579FztrB/7sR8jxvi69/en/tSfQlXvGSxQzum93/kbTO38iZ/4ibu+s1qt7vmsfd/z6U9/mpdeeul17+nBGMcDCfgHHO9973sB+OEf/mG+/du/He893/u933vXcScnJzzxxBP86T/9p3nPe97D3t4ev/ALv8BHPvKRHcl2r/HBD36Qn/qpn+LChQu8853v5MMf/jC/8Au/wOXLl1/3/r7lW76F7/u+7+Nv/a2/xe/93u/xHd/xHaSU+MVf/EW+5Vu+hb/0l/4Sf/yP/3GapuFP/Ik/wV/8i3+R09NT/of/4X/g4Ycfvoug3vve9/LjP/7j/Df/zX/Ds88+y8MPP8z73/9+XnjhBb7iK76C7//+738QKfNGxpcWhP0/1riXGyKEoD/0Qz+kV65cURF5VZdE27b6l//yX9b3vOc9ur+/r6vVSt/znvfo3/k7f+d1r3v79m39c3/uz+lDDz2ke3t7+u3f/u366U9/Wp966in9/u///tf9fghB/9pf+2v6jne8Q5um0StXrugHPvAB/fVf//XhmJ/+6Z/Wd7/73Tqfz/Xpp5/W//a//W/1f/wf/0cF9LOf/exw3Msvv6zf9V3fpfv7+woMLonPfvazCtzX/TwY4xDVB3VBH4wH40s1HtiAD8aD8SUcDwjwwXgwvoTjAQE+GA/Gl3A8IMAH48H4Eo4HBPhgPBhfwvGAAB+MB+NLOB4Q4IPxYHwJx31Hwsj8wuSPHA9YXIjT+ECR/Lfaj1j8oLr8vnOgDlL+WxVydrWqgsvf2zkXIOC8HaOqkBIuh2iJczthVKpq50vJrlUy1RW0nFsZr4PkW1YQB9GjMeV71fx+ed40ec14b5oQGQOXS8xkUvvc5iLln/KMHsTCwEjJzukcIPh0f7yxzIdlqI/3NA2gVhHA4YDUbSH0kIJdz9utOMCpI2peq2YG8wVuPsfVDgkd/ekJrgtIvuawFpN5mC7ZdKRg63S+akCe0TxHDF8W50BAdZwXcW545rKmw74ZHxZ7mjLP4Dw4J3g83jn78YI4pRJBfI2kCi9CLdA4YV55mtojdaKqhVUz43C5Yn++4NL+Pvt7c5o9W9zFYgkIfRfpu8CiqdDY83//f/3Pr7t+9x+Kdo9Zdd6jZUJe/Yv2o4XgxvOJyPCnpmQT7MQmHYYJL8MuI7b/xTaqqg60Xr7jBJIqqCD5ODSXjSjnQneISJPmYzK9eT8srhYizAxl5/7z++IcmuJdm0JEbE8gw1TYeRTbKIXBOHsvM4Y0uTcp5ylH32MtxNmzppSM8Ygb+eTk+e9JHYCqkMCIr6rBV4j31FWFaqLve4jR5iOlcU7uKsOhw1rt7ovX2CPTr9/r/ib3Lef2Tbn2dL4LJ7B7SAxbRITkBCeKCjgR8ELlhcpeUotSoSyamr3lnNlcONhfsrdaMW9mNM7TNDVUjtT3iAjbsy11VdNtOwShC5Gqbl79eSfjDcWCSt6d5wnjnpOmZbdNNlghQs5xr2TSZpjYc+eTMplpJCLnJEu+aPu2LHaWrGWjOufvza21kPLkGmTJqQlx1c49phjv2mzO5Q2fN6XLzzAdCYg7moIfOLNMLIBBIBfOPrk3VR2376vUnVEETaA4VMTupdwnoKRMgHd9cVwn8eA9+BqpK3xVUTlH37ZoHyCOjFEm83nX/QyPO5V0r5HSJLvrUH5rYUjO4bKWU9Yk5dfnv1ceUBAQ26tFAtqWVGMyzpSNqnI0AjMCs7pmVlcs5w37qyUHe0suLOcsZ43tee8IMbDuAomamoDgWCy8MezkUIXT2OPuM8Ds/gkwczvFpNV08qYEOWxyASd+5LpOSDKZ7CnRnN9U+VrTYSqibcxBMsW0s2knR2fu5gA37O4ireyIuzdNkTHOZ/Xx/HOW7w0a+ERK3YMwCuHYZ6DqBumUJ2hKZoO6LiJINc5pIXJgUOMmH5pEmqjZIjZ/Kc/ljrRCTCUton7QEkatgbqmmi+p6sqUubaDEAbmlNUezg/N+nZh1OUaOlnP80SjO8yJHSIrzNhlAtxRq3dU73HuC6PGgXfeGJHTzP8F54TKO2qB2jtmzrE/a9j3nsV8xnxWs1zMWMznzGcNe02FZA2g3UaiZgIWiJqMgJNnve3pukgfAqexI67vrWmcH/dvAzo3qomvdVyeVJGi75sNlgrBDfdlk+fy+YZJd4rid85p3I+JVGX4HtytAmcytUVNwsiSh/+Qc/tHUTM1JurN9Jkkn2ZKgIOdl4SswO28bydOxv3VZROzQnBZ+qVzN6J5vhjVVmzBBzPUjXOg5TMKETlIOqhcw3+SzjEcLRObmVphCB6tGqRuEG8aQLfZkLoer7aBtWhBr6IqFqk+EESZPzfy1KmUK+o1U2KczDvidv4ux07X/zzzLe+5bEeKM8ITgco75t6xqDzLpmE1n3GwXLCqKuq6oq49dV2Bg03Xol1nu9E5+pRQJ6SkiE9EEVxIdGcbRBzbTct227KOHfH8BnuVcf8EKDKoidMxLjQDBx+OHwziQgS2UcxeGdXCorplBj6oG4XjpZTGc6kM5zl3F5N7ZfhcR8tpdxOe08ZsX01U0HtIVVMo7Vl2NpEUop/M1fCtvPg4khlZmBoqhbzyd4o0shsbgAkt6vHkacvpJ3aviEPUM9iYkFU4pQi8cb0mjEJNdXXe4aoG5nPcfI6va1LoCJ2pU5I0a/fleXenX7F1NEYznZ/yHd1RQwfGm++/3M+OVHPCRPnekXZThfaudZo8ryB476grT+Mds8qxqGuWVcWqrlg0Fau6ocoMJ0SlDduBYKOrqJynEiGqIMkRNdHSs0bp2o6mmYMK7baj63oiEfFvsgTUNOrhu5Jsyu0BJ4OkyNtg4NdOBCcApjYJpptn4yVz2Il2oxN7SATUTbglAyeWrNuPNyEgWVXKFtD5IWJq6pQJAOc2z6iKFsIoSGMhUlMzyzaZ2LEYAThxqNOsOkOKCkSGjcKu2j7Od9xR26YAkqQys2qPLfb4O6ZBnvfhzrxDUmQwy/MSeiAAyXtkVuOaBu9rPNC1LSn0SEqIZgaaV7awDzBbrXxu93uemMjfLWi1oDqq9IIbGIMM/9ywz4pmssNFJnam3ZGO+8TZPqsrz7xpaBpPU1V4L9TeMa9M9XRinC6GQIohS0tna1zZWiZJJBx9iIRoyHFMCQXalIgxwbbDOU8fIt57+i4gr58rDbwRAlRPSpmUUhong10OpOXCfqJiSSaDTGijEgWkiTqjiuJII+Kw83P3Ps2S0MXhzWJulM0nroiTe4972SQ7z6M6/J5q3y6rhTqwGVd2XvmmiSrBNmfhyMM5il1ku0knoJDk55oCM+VrojrhNeX8MqCmBUxKBRRyjlRcJ8UVlCdIUZwKzjtiXaOzGfVshhdP2m7RvkNTtGcUwQ1rN7ACRnuvzNWU6EbNYrqOxVYtNl55OmWUfmUFXblPt2uWeGFgnKo6uSebAyO+mkVVUTtHI85UR5SkiU6iXb+u8pQkfOWpXW0MPvPILgaCRGKMhBBGzUwcQYU+RiNab+BXU1X0KeF2NLRXH28IBZ0CAdNxL3vgvNo0OcmwSd097Mkppx/+ll0CvPuck+PLvywl74n8TZ6n2AplYl/tWezcBUApqmoBdMZjdpDBQR2UCce+6+y7msVwTZcZ0igV7IOR/WtWfVXI7slRba6qagAupGgSaufV4vIAVBy+bpDZDDdraKoK+ki/3ZjrQQTxHrLGYnQsO3MlO+upgwui4AB3mwgy/WMCVI22nXOOVOxnpvtgHFNQZtBgMOQbsc9jTDiUkBJOBPEOhzcVMwN5MYLzDZIcXW/um8LAoioxxuGnrLF3xmBjjLja4SK42rM+bUlBqXb5xauON2QDGqfZ3WznJ2XcrLvvT9W8An1rMv185JCj9JqerxDgeZh/3LAjRy5+wQJhTwlwShwiMvqz7nH/54+3vwWfN1VKalxYdglnKjEnZ52cfxc8KvYjGaUdFLOsxokrn03mclCDx/OrJLO2J/c/BgVkdUs0q3tZLVeI4qmqGb5uqOsaQYndlhT6ca5UDWXNT3JeZT+/TvciuLuPGz6kSMXzP07EgCHdZXjAzl64l4tilNbjqMVTiad2nto7SJGYEl2fkKigkRi7QZpXVUWfGXO2eIY1qrxQqyBUaBSSGkCVkkByxPvDYP4d/ICTCT1vP8FIlCk70wfGnblbCIHKV6iaVIhhFw1VTa8qsc5z3JEwAC0EykCE91Ivz59vykzKop53LwzPhWQbbqoLF+mcGAIIdjZcAY7K/LD7etAUBCd3g1wD8ntOstozJ3NliGR7Oe3c72ivi4EjyQAXkkAy4nbVHN/Mkbqm8h7tekK7htiPgYpZeg72fEbEp5veLgroCK6YyVG0kWxjFeZXmPdEXZ3Od5nj8wQ73XvlOXc+EzKTZIyQkrI3PKgBLTEFu4ZGXCSj4EV6m/RzUemCmTd+CMyw63gmhawSxJRwRJsbleySef3xxlDQMjXnJMP9jgHVVN3ZlMN573HNcq3BFcE5aYpJpuEEUxV2FKx33++r6rP3vodCgIMtkhfq/LHl93STaaIYQzs66NSe2g3pkrvuffhGdlOATWGBRhC991eGK2WbvMgFcVRVjWvmUFWD22G7OSN1LZUT83lNzzloN9zbHVX4khZQZAw9M8mbhmcdCKsQ4HnCZCr9Fe/9PdXeu5+0qLJ2TIqJGJWQ1e+QGVhKEZWEotQu4UikGPFVZQChKk6VlKObVGTwwZYgh6QBYMAsYlK8q0ASSe8PhXkDElDH/89pflNU9LzqOR0pmT9KkyJD2BUmBabnLEhZtrUMrUw7NLPDYCbnKertzsjnHICT8xvrtZ66EF+RLNMLZ4I/zzp27DlVxmAA2TlUJ3ewiyuee7YdETH+fd4d8VrkB1LwsIyZOKqqMaf7bA7esd1s6LuW2pX1mJ5PB+BkUJ3Lfew858QcSJqRYDKBGcBWkMuRGewyLWDQotwg8Xel7Q6Dm5oAmWBT0qwOJiRCn5SUfaYGUkWKnhpUaXKkkKaAzc6owWU+YWdPRrSJBCngvIE7RpE5+MTd396CN4KCnt9kA4xV7lMmx9kE+6T4SbzjzoI5JRZUVM1R7cThNNlmHFRJi4v0VUVyU4mTJuctju3zN60gKTvX86QPn8lAANNNX/T98TlHVUaT4mUklKQGv2tKeZF27SKG84736tx4zSBKxuJwIoSYqJBBNd2B1zGp38eeVNTO/MhJDSDRlEbbo9xDsctShNTjNJgNKZ5Uz+jnDTSeKgXiegtRCWDqWtQxpE0g5Q3oRHGSgY0B/CBvTgsz8FmyWZA39OKyFAIn2UbKGoGmgHhn9UmnklGNDQuQYjS1MEujaazsuNxqIQ458CCGREiJiKcX8Bp2bcxU9pkQs/vMlbm1p8AXezu7ok2ACEGN2IiFeZpa7yPm5q3fdBT0/AMbcRhzG3js8JnkyS2L5JwMUmvgUtmX5qoKVSPIhGa4PJ9RMlgCyASK3mUAo89xqi7aIpoETWDo3470nkogsiQ+Z+PtqJq7QdJK3pTshFVnpj7OyY76Plh8DDYcqrs2FqOaVJBFezZz64w+uTz3brza8HzOJFDMBOOLJBGg9rhqhjQNrq4BaNcb+rbFqyLe48RRoXhvc5YGMMKkX8zrugPEDZZAxgam5sA5U6Bo5M4JuMqeMaXB1kJHxnOXHTg5D5y3Awe5Oryh5HhczQzBvmTMQiyIodh247dz2CVYdFGZ4+FedACIUkZYnZj9R5K8Rq8/7psA/USnTQWSHmSzjhttYjMlMT3enJmjsW2b3Q0ZB3ECGOh00Rjh5SLmyxZ1U1to+C8vflEbnNlfSSfpSsPJ7zFB+f53A2lH94SpG7vObvOJgpOsVlOWb5Cp45WmqmmZV/FZC5gopGWzlF1apIUbcZGiCoEM/r6wg/CUZ8KIMf8kAXUeN59BXTGrKmLb0m22OIW6qrBbsudxzk7kgRAU1QhkSZTnZao6F/+cMtqoaXIrdvy4FrJzswySe0CAC22fs/nOAzPDd17lONNgQF3R6kfXzjSW9vz3ixY2dVkVF0mMcXhverxTzzl44FXH/YMwk403yKFyY65sFBkWBIFec1rM3Wcb1I/yu6g6oRjAFGlkxE4yn5BMJdegroxSq9gmhTdovlaJWLnLPZIlqXFdyz1zmvCFkWDuhqzjZWlYHOfkGA7NfGhUZovULASraHbOjsyqUpCYduZByPZuHO2bYRMkofJ+eJ7iqyLlPMMsLcgE4JzL82iEG6Ihl66pcE2D1DU+JsK2Rfqe2nuLqInJ3CuxJyUZStc7EpLVXdMMRjDMw7APtBib6BAhKyL4AqhNmOxUMxJsKX0GO4zF5O9Mcj7LLA/C/h4o/L0R792/XZ5vJ4Kf+IIH/ykMZsAUdS3rMZwnH5+KBMe9+RJQ0qugOllfzo9v0Qb5wSoRIA1scIx7dIhktQMgp/qoCB5LDJVs79kGxRApwkSlG23NezBQizctvDe/l3akzCSfkAlH1YRojqyZHJ/DKk1FK+pcSUUa7EADGrx3kH1vMZq6ZrQdM6OxDeqSIjl9yiSGaQDF38rkd3k4lxSN0YhflSmrrbLqW9T7Et+oqCXgxsSsboz4vDMm0/bETYvLmSVBIzE/fwltq+tMhMnhpbK40JSyphCzNiKWnVKmtyxLlhiUTatY3uQQVG6q6rCdYHhm1USSewdH7OgoU5CM8yrp9Luy852UrZ2ECZipb/FujelckrPmDIsJMyw/UpsFeT/j/kGY2A2vpzca1ein3O1Ujy4xi1MVxf72eQHKySfqgwCaRXsJx0LxLsO+xUCfcHpS1r2no6jDjEmyxDRGpSUH6ofnKMQpAolg0vbcJJpkzuqlYChflpLRGaDivWM+32c2n5FS4vTklBCCqStOSFEGqeuTQzQnIZf7LUHqr7IOHtsI9wIhqrImMRmYFXKYlIHsuBSpqypvDkffdeh6Q+o6XFJC6Cz6xIP3FQ5PiIE+RaKYK0BLdkmRBAmSjDaydzKonUVJ1gxWjepzRMmxxSnuhpkNNnzZGJP5nx7D9Cu6e8zATHV8fX4UNTm/ThMVdCdoYFSYh2uNUpCB+MrxxowD+mYTYJpwWuOMeeNy71RLUznc4FyeJs0qiUiYPBXZHrBs5al417zYOAgyic4oE6WAVsgkhakAMIgStbdzn1NLNDqEakfNG9RnHweAaDqc3l1EZ+CABkzj95YsV3MODw+pvOP2zHP9xg264w5JWe3RBGpBviWBNmW1dvDtFfBlsG3zzM1mxBAIIQxzMdxffpaUN7XJJ/A4KvFECYQu5py4irDtcdstPgUsuNzhGwtJq6sKiZF+2xE6C0J2dUXU3tBkzap3UZkz6KJRB0+Ey5+Vshy6Ex85uoSKlTgwykwc4gqaWp7R9sKwnxj3Sl4M20NZEMgEnLIwvDEhwNDZCYgoeY9HYzQOk452van2Nt5LTFnVz/M+BpMIIvcXi3b/KOhk7nTyP6q2oc6P7Iy1eD7yNNx77KCEBRgkAy/lmASeEV3Ls5LHJBcvn0+TSSbnYvY77qoFZhuGQWXbuYcwZiRO0VYVMpgkO4QLSiMGctS1J0nitD1lXtfsHy7R5jLXUqI96iCC14QQSCIUueDIuYDlmXSXMQx2iMfqz2gPeo4x5jkx9UrwmQg1WVZ4JJIShO2a0Ee0T/jYkxSS8/j5Ej9fIfWMqna41FNXPd3plq7bEFKAGgggOUKnSKtiTxVoY1iaov7bE+b1LmtrEk7S6GKwlZlEUymTM5bPHYKFA5aNb3SYkeG8R3yRXkWbVB1Q8QK0ucL885q6bAYJZiJ4762qQYw5LU7BZdu2mO7Zv1j2RpeE+KYHY79KO3lbhrs/U0BdJMm9hfFU70+THa7Jj9Js54tFKSnKoYyfu4i4XRtV88y7vCnvRscY7Kedj1SQVFPY+N0h5YUAmdiIJsGSFyo86/WWs/WaSgRfOZb7e1x95BFucZv2dEOKWBaI8xm6ZkftFJlsupL6YJRk8bNVQx+ybbxT1sJUrpJBoDkSpRehw1RmQfEqaOhIvRIEqrqhqmf4Zkk9X9EsVlSzhhgDWnfUfo1fO842d6hqIXmPZodjwlwzJedxagqMGoeSRNGsqjqRMQfQjEJjkMUlIwyfFcKarpPlFsouyipk6SYZjU5mZSST7KPNaSOpEWSSzEzUQtjcDmiYiRzB+WrUdsp+EotlLs9YiDiIEN7sfMCqmo0TO3mUQY/OkzDYTcaKRnCBYpPZR15kOGx63pQ8QyoORQ+3I0v86ABRk2EYnxCf5fLAFbOPJ8lww0UqAjktyNzgQ1RFuSMtPJAMtEzvcCRmLdd3QhRLMJe6MmaVlC4GXHCkeMZysWLvwgHOV6Q+55YlHW2MbK4UdJVsW04YP6oJV3maWUPQMR5zZ10ycyiSvaoqpK7ZqkK7wWmgwqE5FFKahmq+xNUz/GxBM1uyWOzhmhkhgasjqV6jkti0x6S+o24WVpQoz2ZSNSaqgpuYAlPQQlw0NSbfo5sQYI0f7O9Cb8WWG1XJEXwTccRSzq3ME2IqrlNECkvPyHcJS8tJ3YIbQtUKCirO4Zyn8m4IAHBigQFjOGRhKjmDRcwZP6jRWStwE+b+euO+CXC+f5hhZiiuB++8AQgTqTBmt+cMbVyuBeOMI+UHLmBGCTUqI0qJKpnwoXK+XGOmQMO2aGUh745CAaGWwrnOPZCMG2I33lRJGoaIlYJs5dOB7kLi2Fu02UWS2i3t+ozKVVRNRQyR0EaO+xMWywX7ly+iSehDyup24e6S02eizYuOrE0z8VlMpKNpGtx8MxaEUjuoqKOFUztxVrmuqXEx4L3gNxukD2hSGj+D+Yp6tYevZlTNgqYxAkw4ZvMahxDnc0JsqddHbM9uMZtXzFcrECGSY7vzREicBENMEMUCbJ0fVh/gvJaUVXxGpuIKuJMS3vm8d8raja4dcSlrAZLPk4Eo53H5n0hRYgszd1TODe4PGebemRNsEr2USvlJXPZ+yaAOlz1So9SvlYQ6GfdNgM3BhZxj5hGx6PC6roeaJHVd46sRVRSFWu149S4vlIA3dWAwlCcb0LhUHAjQPhqP886fm1wyYTqKl8T7CcKqIPidzTCucRoIsEycSMmmiMM9gW3+UQ06b//ZaEUhBNY3b/Dcpz6FJFgul7RtR+g6kkZO1mesDioefeJp6tle1go4B2NHSEo16hLnUNFEVVe023aQkElHd0iKiW27JcaId54+9IS2xXcdVejRtCFGU09d1eCaOeobk4DVjKqe4VxN7T11Y0HacdaQNLJt12w3W9o2sNzzVLMZUSBkAtRMgEV9nobmqYZzzHGY9iHcC9hBFHfiSsnsyJmrxonimCCSZZ+QBrAFGKRfMVnK+klm2YPtmtVP773VDC1zX1STcv2MrIrLdVaHSC837Mkiee9n3DcBuvnCIuZzoRt1juitHBveEZ0jyVjmwbhShyjEJCTn0HyMEYQrlhwUqeg82sPg0D//o9O6m0wkZZkkhSA7xKaTCd9VeCfpQ4zfcc6j0WU11k8M/LwFstE9te4VCJmp+KphPl8StmvAMW8WtBF6elQ7jk9P2dusOZwfEIoNo7ap8B4VRyLeVWluAAmc4Js6p3QpmpRq0DpMza/blq7rjCC3WwMjupau7aDrqVQQX+NmM6RqMpevEOcRVwFZIpCsVkxdszw4ZH/7COvTNevj65yeraljgsrTixLF1q3SafHdMEhol7WYe2+uyYaXMU2pFLKaaigljMxJDwWYmu4F9aOZItO9YPa0yEh0g81YhJfzJl3z/aZo6UVkRNrK9qRsSsnwnTTxIYoI0UXim14TRpUYAyGkQfVxziOVs/CelAhdZxEz0WLjKsmb1ZkaGiUbSu5u4homWHel43RjJTfaAyWqZbQHd+0zlwsVJR0zrLNhMS5IHsXesNeFUEcb1dKnjOP6yQZJMQ12S8xWSWxbA5+c2QVSeWTuSW2HwxH7nlsvv0Dcrknek0QIfTATIukArZk/sLhC7PlUlcY5VrMZp2drAyJyIijkorN1jXoLTau81SBdLBybsy0hbc02kYp6NqPKhCxiZfoa76m8IESceLx46soTnaNyc8L+ASerQ8L2Dk4DxB7xkgMXLHqoikIkoXlDFkgtqNlghWFOmYqmUtCpqKSZYbpEzCGIRRsqGS3jWgEpo54iIzMbpPBkExcmZmqOzX2KOGRkYs7Ufy9iaqYkwAoSmzaaGbEIXc4N9U5IRKqC5IqgrwJanh/3TYCzWW3qzsTjn5+eFCOh73OdTh0CXnVIMJ3UE8ll86KMoj1hqqPGUHSGzGUmwIJzkKPPy0RKNh8HWTol5qyaFtvQyXkbUUZAhqls1J3fBZwZpXoagB7IxIkRS0SJsacPHV3oEFkxmzdIBSH1SDRi69ZnhPmMarmwe8sqbvYqmYbBYNkMd1ckSSnVoCrEZK4RMwNzHpxvsGCcrBuGHm3N4V45Z4ie96QcoVLlTVlXnlld47wBDBHJaK1QNTP2Dg5ZHVzg7Kgmho75qiIaGzAng+YQQswvOroGZNgHFvi8A92hahtciuRChhC6EcwoZoXL9q7usEpHtt10JNi7VF7dXeGsYGb3kiG6peCSacDlmmmQtDrY2TY/9uyl7GGO3mHXPfRa4/6DsWX06wlKlUtJxBSNUzOCE5U3HqY+AzSwUyKgOGYHI7jo4ROQh+lnZSJiHCNGJhw05Ws753ZQTSQRc4+FwpF3VmMwFUcV6K5RFjGjbVOH7DQMqSBkDqGuKpK4Ifpj1jSkGFmv19RVRde2bM7OmDlhsbQCuCHEjCSaLZHSrpTXLBV97QhO0cqjOZCbXGEMUaSpqOdNxgVBSfSnZ6TTLQTF+RqpZ6SqIolQA86b6lU3mfjy5olAyE7/xXxO1TTsHRxyujrk5OgGfYi4xg+Fopw4xE8k0X3aQTuRJRS1HF59UYYV3LGTk05Z6vh+GTumyT3eT8mIZ4pLWAih7uxJKJFTFnY4Vgkv2poOZUNeb9y/HzBFRE0FSzkSpih+tbhMbPmBis8lc/ISm+smXKv48kwXn5ar20XPdm5BR/VPRyNwsA1Gkx0jGLWqXxTumEZuanHROvnCuDiiY3nB4hXKdzfYns65oUhPsT+8OMTDrG6g7ql8hVO777qqBkLsVFmfneG8p3Ge+WJFUnOJDFZpQXeHe8uulcrTxRb1nlJBrqDQdeWympR9YinRbbds7hzDtjcp4Sq0qtCseoozVHW5XBgI4Ty+qgjJgr8TsO5aqqqhambMFytWq4ucHB/RhUhdGczvsxgJGk21I6uV2aVUcKy7N/49ALLJjJ8nmilIY5JvBKkKQ3+tca/PUyrJ2poDqse2BKUCiYgVYCr703yPfrBRRUCcxdf6Sl7NbX7XeAOOeNtsTsgddUbD2KwGHXogFAdplSdJlKwejA/vi9EsMqbi6GvwTDUVp9jnfmL0yvQ6ku+tcCQygQzqUOZspnBQ3vUDQJABnkx43nurfOUM0g+xYxp2BEbXjpIR4NhbLln4ioPVHuKEQERjwouj9hWzurFS5+u1LZirqX1FygHRJRN80IA05WLG1sug7VPeMHky8r17MXVRUm/P2we2R3doT04tWdRXuLoBV+FdRV3PcgKrMJvNQTxJlXlTI0FpOyMmpwJRqZ1ntVixWV3E+ZdJcYNqyupfDm53bkAOTY3VsefMlMkVzUbZYTYjAGNvFDTzXghq1jNtbwxYASNAcg+Jd95FMu2hQbEfZQS+vPeWOJ5H0bQEDLTx5vmsKkddZQL07s1HQcesLvBuil8WRCj/LznnDGiSDsIl6hicK2CpOMUIn3JFXxZj5H53+wRlCF0aiBiGmh2DH8yZH3IXDWOyUPeaJB0NdTAbyXurkBU6REYnblWN0yeZQdVVzfLwkLBtWc3m4IWo0SS0KpKSZTOkRAqR1PWc3Dli//DQkM3MQIZWY8pQpLeqa3vmjHxaIWOf03mUKl+DmJCUCOs17Z0jNASDzZsZrm7wVUNTz6h9jnbJmy1EA1/abYuIR3tDASvnaFzFzFV4V7OY7zGf73G6XWcbOTMjdeBKVshk0zMS1l3rMBzx2mO6hncdnddTuDtu6dXO9ZojS0LVlEMLZcfdMFYJ8HkfGpPUlCz2VkHDm2wD7qCGE+5s95u5EJkICqFlHVUhx5JK3mBF6yvEU4iZgZsXIiuvgTG6ZUKYg0o6EOZoRzrn2e0PqAOx7kbP3e2ol6JFi+TCPJX1J4zlvWS+z5wrV4hib7ViOZvTnp4ZGOU8IUXSHCtlEBObbQfe09RWBHazWSO1p1nt5ZqdlJq7ZW+BJmazKtvbGaSwyUdyGY+kFiTdeE/qWrZHR6Ttmto5tKpz4q7QNA3zWUNKyqwyj+NmszY4oYvsXVrSbtuc7qSG6KWEF2/9gKqK2WzGybYgkn7c/IYGDes1Wte7+LKZJlkuFs2mHJP3x67/c9wH5bNyuYEwC7c/tzdHdVV204QKqKK276TUCh3sV6E42t3QUmGU3FHTUCXPCfTRzBTxMoTqvd54Q2UJ73qobGwnKOAd06r90U1uQgzqLd8vFDzYjcWeyxkUQxjVcJxNiPN+IIwpCFPOqd4PE244zN0SkGLd7TDC0T50fqr+GcQetadpavoe+twXrsxDXdfEoNRNQzOfm29IMLQ0JEiO2s2ofMBJZaUMxNGFwGo+g77j9OyE/drTzGeIq0i4EV6vDMSaVw3rzdqIXkvVaEuSVSdsibiUIPRsb9/h9PZNCD0i2ceXJXvlxbLrRWl8jXeOrm2pmwVN5alSYr6Yc9q23Fmvkbqh6zrarqftetRFpLZE2hgddV3lPWybwBckXGWHAAqTtlkef8qxgyaT90MJKJsmyZaxk1fhnO1D3c0tPD88hdinx2SiTsniZJwYAuSzuikO8fb8kn3CBhKZEWPPnAkymTq+TvE+42D+AGUJh2zsLObOq4zOuaHg0PlznLehymfGWUYC3EmQzHPlzqmoIjIY4mWDDYqNyIB+Fqk1vd49SxsyormFyxYp1/c9TdMY+psN8lKzpWmaYT622y2bzYZFM8v2p9lmTVVZD7rKE0NmHH1g2cxYb7do2zKbzSzA1zdoMrvRgUWmiAVWSy7RF2McKo4p0CC0bcd2veb01i3itmXhKwuCgEFl7vsecRV13Yx1XXJBpNlsRt/3dG3LbL4g9sdoUlpfcXrmiW1Ht91Se+s26zKQY+szuhymyOI9TY2yfmTZOGWSRTPKatS9VMbz700Z9RTTLus8jZu9+7uG4I4RLeMYGLuIuSgmkjeJGDjpK1sLLRUA3OjCeJ3x70SAZaRcSwMZq1aXTTlWyxof+rz+PzWGh89TjojRSd3/YWF2ibgMh6mAIpbWM0jVfP0pGxgXYTeU7PzrsnAl6KBcN4TAcrlku92iqtR1Tde1+Kom9B0nx8csmmYIzdtfrHAx24EeQuzYtDVtt6GqKipxzBcLy5wQh3TBQI3aUdc1Dmiqir3lina7JTY1eE/bbrmzPh1UYXEOUk97fMLZnTuE7dYC3p3kJpWepmmIavNbN03e+I6qqaGqSWqFsSrnLbZR7dqb0BO6LSd9B1GRGAafn6+8mQ3eZrwAYdO9MF3f8y4m2yMyaESFmbj8emrz7+zHc8Q03Vs75Ssmx7nJdXe+p1kK3+Wqgj4DcJL3QpoSIGrxvE5HAKcgsm82AZYCNFNJMoTfuEnB0imR5cpc9wJUzkujMop0FZHhmsME+rHb7V3G/E6GvQ6Lp8pQLmL3GmPBoalEL883ZRDT75YeAbPZzNQSEZpmRoomHZ2aNIxdj6qy3m5JXbBygiQi0dT1HKpUzxpEYH+1R991xK4jtC1u1sFsjhNY7O9TofQpUDtQp3Qp0m3OiCGSmhoBum3L9viIuG0hp+HECSNLKeF8TdPULJdLVJW95T7brmMbAiKePkZiF5hVNWcnJ8QQ0JRotxuc2IbxuSxGQZoTCRUL4apLIvFkbe4FvEwBmIH3TQi0qJP32jswqqllH94r3ndX4jqKv/r8sD4Ru+8VyWfpVpaFosFSkaw5SwEJIAz1S8faRvc73pAEPP/jSpzcFB2abnQTSXdLuclDTr8jIoh3d6kQUyK/1/0U6BggySST3AlM0gSnCyZiaStlTBexqJjT/gdTYmzblv39fVJKtG3L3t6Kzbqjaay5yf5iaeF4yfx/Z5roQmTdbrh9fJuzzRlJlLqpCVglMl9VnJye5NjZiMaezXYDSVkuFhwdH7HdbKDyqMDtmzfZnJ4SQyQ2NaHvCZuWlBtKWkiWFbmqVWnq2oLpq5q6bui7zmzWprH2ZGFN17b0XeTi3oFJ+GBIoHdCG1o09rimxiezT+u6zlkKslPo/Lx2cz57ZLoWMJGAYpXnRlBOKT64uwj53LqN1fPSXccPfrrpnlEdy82nu4l9WHcMi3DZHVWCsBFD+weVe5oypfq6jWzL+HciQDeReK9LgHofBDixAYZsZ5109XG73zt/PzqtrGXPn2ugKG7yiOeDmkXufb5ybLHzzh/jvWez2XDhwgWOjo5QzbGmagQXYiTFSN/1bLZbTrZr1psz2r4joLTRCh+FBG0fcHVFSSjsW2sO0vcdKSVWyyXrzRmnJ6dWzyVf++zkhNB19H1H326JITBLgtdMfFilr1IroEjA1XyBYnbtfD5nvd2w3rbEEOn6jpAiZ+6MVTNnMV+waCrWoYUukXqL+CmYZ1Uap5S2ZzZx2Q84bs4ydzpZo131c9BbBxUUGFDR8n2Gv+14t3Puu1XS8toCJvJ6T/dNPvfg17trf6bBvnXOWXHovs+JnxNhVL7L7t/3M+4/G2IiIaY6eZFA9zJgwRbLvufGzkJ2wnFSCpdzBYYuU6MDoRQjfzq54/VkRwMFhoBuL6MBPpBSKnVKZIc7m7PdUVX2u9ReSapjceB8XJF++/v7nJ2dsZwtiX1H5zpeObrNyZ3b9G2LYBWhz85OqZuG5WrJ+mSNJKGLVtelaltSozSrJevWJE/tHURlb77k9PiUdrulWq1oQ8fJ2ZoYciRiVGIwmyyUUogFW8zNSGJUuq7D+4rae6pmznJvH+8r7tw5oXKVlV1Qj3eVSWEVYlOZuuqhQelhqMCVUqkGJObqyflxKmEgsBHOt50wSXmekFbOW8zvFeBcwGzLrNGoDm9mQtqtYF72hVVXz+ohObKlhOxlAiwASXGFxNzl1IIi8n3k63tvkUGGHntSZsrJogwsFE1ylJeM/Qzv2pCvMt4wCDPd/JpFrUwk4I7EsC+MlYOLhJygW+e5l2TuJjkuL5HDjeAuNaGgk8quc3YHUAmTLOzJ91NmCi7D88N9qNL3PV4NtGhmM9qc3hNDMCmV0dD1es3ly5cREZq65mS9xs3n2VhPiHe0m5a2C4Q+EENk3syYVTP6EOijFX/abLcsclvoLgQqcYQuMGsas8WOT5jP5oQQOdusabdbYwhJJ1FG41YfiiANG9Hmuw+Bo+NjDi/V2YdZsVwu8a7Gb7Y4dZYsgdD1Pak1t0IlBsbMqz02Z2eEGEhEkuZUKCxzoEQgWvZIKVs/kXSj/Jrc17n0IBiOLEHmY55mEQBZu7qXrTlpOTD490TQlHJJ/3w+RoBuYoKan1AtU6JEa/mJcPEZhyCWOKosiJxlUDhnrqH7NQT/nVXQKQFOVdC7aieK+clgF2WSSYTKFPIvxWstBGp0LYzqy3j9aV+CIh2n5yJP0BAoMHFJTOdn6m7wlQeMMLquo6oqVqsVTdNwdnpq6kxGw3xVcevWLQ4PL9Jtt/jK0MnKe7qup91uCH1gu+2HuNGbN28ym80sVai1FC/JRWAr59GYqGc1KSYODg5Yr9cA7O/vc/PmTcvzy8WBChAyZAHYxGISI8+Dy1khWW0KKXF8csLZpuXw4kW8n7HdbJjP5oivCH0ixTRoNWXOrVCt2U1d6FC1UD6RavABg0XmUFZF/EhnSXY25aiiFTBjVD/zI5hPTkbQb9dMGI7MZ5nYYBOmM/zlrITFkAtfiM12m/lTixo8sfnLPvPeD/vbCjQpOQKdckl12fWlcr/098b7A06JqMCzhQCn0um1bLaBBCeui+GnOBLyXAyRL7kiden8unP+CfGdv65aQVHzD+WNWMrdWSTEONlWvzMgTqnqinmWZpvNhvl8zqWHHuLk5IS+7+ljpK7rHEGvOUwMtus1Xd/T9z3rszNCH0hqUnM+nwOYOlhVzGcz+pOWmJTYB/zcYlzrqgJxLBYLrl+/zuHhIc451us1IfRGIJkRFN+TZFtqYEb52UTV2idjcZl96AkJxPVsuo7FbI+mmRFiJIaEyJgZUddVdpVA19t9W7HhUAKWQCwfLg7+N5fXbjcsTGSqdo57AshVFUzi5UovA/HAqOns+hRLONgo0crrYe2VzCiynZmjokqaVwnuEOet5GRh9pP9WkbZc6U6mjUZLkHZeR/F3Gzn3Hdfa7whG/C8nTclwPOEN1VH77IblXOLMzF8cQM3LxyplG5wMvoYp4RbVN3z51PMZEmZkHFWGqMEcpdKzjvqtROUSNd1hBCYz+esVitr15wSFy5dZLvdcnp6RhLwTcPt42OeevgRtmcnHLVbUops1mvarhuCvGezGRcvXmS9XrPZbIibDZeuXOLs5NgYqVp2+2o+J4TA1Yeu0LYtFy5cIITA7du3advW1LssAYut7LJdVKzUAgLY/OeZdoYwh5TwDirviClx1m5y16Ke0JkroqpqluKMKOuK1WJu6+k8fbdls12TktWYEaeIZ2J3ud3FHdbk3gRYMITRRMv7R8bMwh3ArWgr4u/xfrb7KL46newLwbmx0IdSMlsmIEpWp8+71YoELABcCGbnWkFlu2wB4cCY2LlYx1cd958PmEXwedCiTOD5CZqCNndJLGV4+Oln1oFngmhOiV0cXtJwH2UM7cRktEtHNViGiSkT7PIkZtzrLthacz+LlJNE27al73vzm4lFuaz29lDg7OyMprYFOT45Zm8+Y73ZEENHmwlYKrO36uIGcG5AV7tty2q55Oz0LEe9CLOmYX22ZjabDSjx7du3s/QLuYTClAjLk5K5d+HgnqhFMo7qnWVaWLegpDrUWo0xsG1bUsIyIxCaumJ90pEO9tlfGhGGPrBtt3Shw9fe7OVZY6q7OuI5VZNhJdJdW9IYrLMwubIvKM+UiZsc31u2zqAtlaceAzeA7A7JjHUKvIH1C2RktiU21iqxT/YBbsAsppqdcxYcEUIgxLijfuIk18d12Q69v3H/NmDmoMiYsDmUiHAC3k2QKruhIvJxfpfjiFVrdj4/HDlqoqBHWmDmMXu6hD05l6tZ58Nw5WHLRoOdLkWJ0ZbMqtXAE9O0hbEgkiNfnOI1FxXOxLJebyxvbrWi73qWqxVVU7M+OWVWV9y8dYODp95C0sTZ2RkxJLxUOHHUTUXlPbdu3YT8rJW33hh7e3u0mw2zpmY5n3G779lbLeljIGri6PYRp6enhYZ212QgPhkABbKkESEXqMWqYOdns7o+JYMec7Q3uaSe2Jm8ADHQpUDoO27f6aj9JQOoUqTdtHTac+Fgn1untynoI7icCjDZB2U7qNshwEHaiQzCQrKF5nRsbWY0mkGTwb8mOz1IbD8UST9K2qlpI6ZC7d5TCa7G0HIvpaRE1rRKuzEcqvbjfY33ZqaUEEMRywEULEbXk5MA7mPcfyQMWZdGSY7BlhIMnhVf7fQNTyKoVDjxRClG/Jg/WCQSmN5emlx6KQ1QRjVTBt1ewVl6CJJjKdGhxNyg8pbXqlSVZIPeuNmQQjSR1lOdXVQJWSpIjpYRNNcsUNbHZ6wuXaDXaP0f2i3adxylDbdOb1HNK45eOEETLBorSRG0Y9tu2Gw3VL7JrgFjYoeHe9y5fYPZrEJIxNBy8fCAXiOnmzPunB6hzjb1UIZPBJz1e/BqG1hTJA61VRTN1eVqn/s1SEXQgHNQ1Y4YHSlGUntGdBXOz5EozKuahTgciT4lUtyySZHrtwPzZmmVtQNZUs6oth7vK8guDHX9mOA63UA5qwA1lXmsvGqNSg0BLb9lkILOWcwpk/UFzF0gOdIJNXdTPsaJyyUhCmMyQimEOGhjYtFCFY5GSkU/q+/iswsnWbdNxFuVgcp7fK1UKiT6Yf97YSjwVFNznx2q758Aa19P0Mbsb3FWRNdlH5DIAIcZUeHwvhrUCueKyukGYiT/TkUNlVLpeDJRg5TKdS7ZceswU8svLHF6RZVMaiXziu4u2ZmaDxpshaKmpRJuZ00FMYDB8uHIal+IPXdu32J1sEeMiVldsdlaqYnPP/dZPI7Y9XgR5rOGvdWKTXS88soNU0nxrFYr2tbcGvP5HBGYLxYcn57QZpXu5HTN0fEJfbBiP8WZbARo968iOXIIiIJ3OVZxUKWyWt91pFqoG4evrO9B1EjftsRty9ZvWKzmuKqimc9wAin2GcAwxtl2W7yvib0lXs8WcxChqnyG5j3iPCoph/jtWnwlZ1AYJbetLSBjTDF5bwy+eefGGMthP5STZsmnDH0nBguw7MWCEIsJD5moldN5KtE4AkhVQXbAixqzc94P5k+T3RSCaTHeucyscxkS8cY072Pcf13Qep7Vs+xDc1kcO1NLS4Ls6KtxgB8lWV38bqPdWHT7qfsimAYwEOsQtylC5V1OR8qdd/MEerAJmLofskpbZUnrfWXZy76yjYkO7bfKkMpn+0ws/yfbSV2MNHXFcm9JiB2sYXN6wqKpOTs+YtE0VDhO7hzTrbdGgM6zaGr295akbRpBCDV7uqlrRCMxKN7XzOdLrl17hWa5YtP2HJ2cEHP5+jLfKaahA5MTIYaIFntYxKD+0qoqb9aoika7H0kVxEjQlm4bSZ1lU3RtR9X0zBYrXF2TNBIThNChGlntLbN9GNhsWoImrj50la47oWtb9kSoZjOSejx+xAKmZn/KoEhGG70bnQBaStOLDNkfhQgNAHGZ/51br0GLUcYCzRMGJBOgbqrlTH4PqLwy2MqlGoFqTmHyGWj0xgx8XeFSGIqQpVRU8KzaO6u4cD/j/lHQpsGXkCNngdGurvHicfjBnhvKNziTgEV/Nz3ZNr94y5crHEUz6hJTJDmHVH6w/1KKpjaqlbioqspSQ3L1KckM4Xy7rqKuGO5lxF5V9VC0V4EQrWc4WgAgK4w72qQySD5SIjllsViyWs45vnmDGy+/xKyuuHbzFdptILWRsO2seFSKrOY1Tz7+KEe//7v5+f2AovmqYrvZ0rU93tWEqLRdYO/ggDunZ2y2PYLD1xUpBKsmR0AqR3TY/IuMPQ8zxxcnIzCV58GpGrF3AU2epELXJkieytdEVdqus4z55HEobd8R+w4D1pUQelBHiD14x2K1ZH3rFilYUa56Pke8BY8PKLZ5pU0boRRe0qH0YGGgQXLTE8Uc+/mZColK/k+z4VpMn51RCExKkWC71nm0fXBVFamoYx7hBDOmIOKgufIAQxoYrnS0Gu3SIS8wqXUqvj8T8P4JcP/yQznmz2VI29smcJZnvJOOVOw72UWRzJ9jhYU0Fxhyzg/ZCiklyFJuSKzM3NKJo8aCdYt6UBIi40SdHDieM07q4kRS+tHyiJroQm9qdH7GMRhAxo0i2VYKkT60tNtT+uNjZpVn5h03r18jodx46TZ92yG5YaKvHIf7ezz5xON85oUvmv8oKt5ZpM1sNsfhqH1D08y5c3xKchWbrudkvbFiS0mZV5aJH4l4L0QPKikXZYIU4pi64z0VWCxq6eRD9oWFHL0Ss6M4WifXGKMVVs6RR9u+R7DeFSl0VLX5/Xzl6NotiMPPZrjKCgOnaCpqPZ/TLC9gleF3pY9qrhKWiaJUUSuEVTkdfJZe5C4CnI6daJjy3qSLlim/mSHrrt2oRespxJo/F3YTeYdrYNEwoFauYxKGZwyvyuqzy+izBfkjprncz7hvAjy4fJmoyZISMwjgnJWBd4UA3WjblSBWX/mh/W9pxCjeE51MJGDKEjPnZRXClpJEKhbDmNmgeOtJUWzFAZrPY/ADqpb2K+OmyMuWFJoUB6mcVAc12mVOW4xqhzmh1+tjzs5uc3xyxNkrr9BvNziUO3fuGJoYrPiSy6ja/t4KP2iIDl/ZPXV9x3azQYCubUGEo+Nj2r5j3bU58RPAMr2rqkYRnAdxamBKbpsl5SffZ9FApgRAUKx2v5V1TDlCOyVBHDTzFX42Y7W3x7q1ZGLtOyT01E1DTLlXhih1U9EH5Wy7oW1bUGWz2eLWZ/jFAVXVZA0oAySFAHO0CUl3i3CpYgn+mTgZCTAbcZNdKJD7GO6EPPri15uElulYMnLn+5PA8Zhb51U43LRLQanaLoJIsqiXlInQmX+0NHMZ+gAOKq6p1PHNBmFmezUhxNGmdWZTDZElGeAoUQvlpsx4Lb6+4k/xqI7ScYSUQbzmOZo4QJ3gXYXDuG4pS2GvK1wuM7/jz8tuj1QmfJAGWfUEHNXABMTlWERxVHnRXU5M1ZhIsxnSbbh+tuHW9RvcePEls/W80LaRvg9j62gnzPdWLC9d5ObJKbGPOVwMhIDEQHsWcZXnzskx2+2WLgRSZnBOHHVVZ5XSDf5LQ+wSFRWoBRGLt8CCEhVTnrP01rNJjaQuGIoaE15tTYJGeufRykMzR92cqlK8X5NECX0gpMbq4DjBNw1oIuma07VwtlnTx4SenhFmt5nvrZjtHaK+Al9ZT8cELkFyFUEjSsrmddlImqXJJKQuE2JyltVBJkiTjrvpamVRC0pu5kgprpvBNS0xLzrQnyu4DDKiy3nuzD4tTMCC2hUhJjHJlqWiSAR0sFntPRBvMaFvKgHurZaEEG0TiYdkG1Rqj2a/iZ/Wa0EIWvxvGeHMWev2WGItrIVJwV1A8sYSyY+mFiRcNpOOmQ+qVgksOgx2Z/Qp5vkw+DsXahpR1ZxQKaA5qNjjc2FcLeaIldVLkb7tiW3H9vSUzdEJJ7fv0HWBzdmaGMIQ7aKabBMJuKqiXi7ZdNbVN0WrIF45BzHSpw7tPcfHx/R9b9LMm83ka8e8anC590bCUqMStnG8aA5JCwMSLN7hM/tPKVLn3hH2Pc2uDPO0leyOpqpwlYPY056dkAIsZp6FF1oSvSZzl6TSCCURtmucJM6ObtFttuCEdrNFj25zPJ+zqufMlkusPtgYGFDw5tJ4tKyHUKoInUM48zKVpuJDQH4xBs/Z/EZLMmTq5wtY9e+URkR0ONZ80ZKJKbmy6Jkp5CMtSqf4nTOTcBZ47tXME8n3V9YCGZ/49cb9S8BmhpdiW7jstzXna5I8Tap5bxu1pLwZJcrAbcz2zUHEWSoWPRyFlI0Dow+LnnADKdrxTkZ7rxqIMY4LOqnj6DEpPEhYhur2BENfENGhXIETyVEiGTyIkXZ7xsmNm1z7/Oe5c+MGxETjK3pxdF2Py64Na3Ml1F6GqPm264ZAbC0lDdTCzqIGtmfrwcD33lPVFbNmRuUrUz0LqACkEMyXWTQAknFlsdhWl9e92LsWOJyy+uqJIZYdkpkOuNBaWQUNpK6l23q8D6TQZvNBkdhZ6+kUIQYcSrfdUuW0C42JtNnSHZ+Q9tdIPcOJIyKEsjsLwciY7Q6FKb7Khi0SCiZlIpl8b3LoeYQTDLks1RAESuPX8uwqDHVn7AtZqZ/Gk2bi27nLLFRKcSwpqrMUZ8v5hIBXH2+gR3wOX0p5IfCImLhPzriGG5yj2QAeEEcdbLqSeqLDImRHaRHiYo0fSxB2qXvptGRd58mb2gAKSV2eTNC0G1toib0uc1Tjo4ojZDvBQJdc7k+M7CPJIPzQs12fcePll7j2xS9y69o1zk5O0ZSonWNeVRYnqlY/tK48lRNWqxWLxYK26zk9PR36aQxRGTD0ufPOmQ8upz81zczgfOeG8Ic4qUtpTMg0DsWK9Fa+wkVzSBeEolQw70VIoSdJGjemc3QxIKlD6KxtmTqCCFJBNW9oFnO8h3Z7Rt+17C0XpNjTb1uIiRqT7MSsprct2+MTqmZG5fdR7yyoATO9HKV6QVmfSSZ9BlIkH+fEfHxC1qImUm/qUjg/iuvqrlpEA6POl7MdnLPadVAkjVeM+6cUmS74RAm7jNnkKfiGDNJT7gJ/XmvcNwFuY7Liumo3SAYtJEdkGBHYxa2UmxtCf4TdVCQKxDuJ0yxxj5bOkbl29iPahI75emSJNsamjqiv5t7jJfkXTEsvjtYx9tOiPazXhRug+9LvOyJ0KZC6jn67ob1zh9svvcTtm7csHy8m5k3DrK6pEJqDFWcnJ1a9rDKXR6kzo6osFgs6EUuetR7HRvAZgavEWc5d01DVNURjeFYHx5DcumnMjxcsvam08lIlpyg5BAt/I7dp9qJoZe3DqqKB4Afij72SuoB3itdEzHqHVB48dO0ZYbtB+5Z12ObamaMfr3LOWlY7Y4B932fb3KHe43IzHoERgRxq+5Alk+0Jl/dJ6SOScl5dadoCGUNBdohwmoJW0PQisaZlCIcy81k1LiCWQt4HDKbQGCygA5OwYCgd3D+ObKOroiFmLTev55sdjN1lfdpKrmG2WC7NPbCXKfqFHVP8KSXgdjCOc/Z7URY1P3yJGHTmXcx/Ky5fN6maWuGcxQyq2TbFZNb8n88NR5RxAYo9OgTXiqM4TEu5Hi+OGk/UYMSeEnGzpT85Ygas5nNS2zFfLbl65QpOhNu3brE4uMB2vbb0nUq4dOnSUEWrrmv29/c5jgbGOC+DWyL0IYfeCe12S103qHZUrh5mpgRw4xwaI13bWmB2JaaFpEQUoUreYkwV6+uXo5UcySJUMjE4zM/qvCcwo4+JRWVlCtddwM1muPmcbXtKf3qC63ucRlIEdeDdnJLapXkzQtZ4Ko+vqwER94VBSI4dLiqkDhAHFCnJGM5lKPQYWTX0FdFRs3m1UVTBu33DI/GWv8scT/dPTOO1dJLcoSh9DDnYINuE+Z6Hpi5FHX2zCTDELJpNCTZOltWd0vqr2HRlk4/VqqdZDbt/S+GKwNA5N/cINPtvotPnR0OLmmKbjB2bXLIPMKNbbrfffGEKjqLWyiBhbDLzxsFRO8+267nx0ktsjk5YzWbMV/uEPvHEo1c5XM3Z29vn9PiYmAJVbYHOvq555LFH2bQt274jqbLdbhElB2GbHaoxZEe6/WtcxbxueOXWTaqqZr5cUbkGUZjPZpxuN4SuIwSrzKahdBPO6qxYn4IkFmRdUEBfVUZ4KbsmEoTMvKxrcUWPkmKPVBW+aWg3G/rtmRX2LX4LwDkrn299QIygS4qXr2pcU4OrUM29KPJxkUyFMqzioF6Sa6+IjpvaIqxKiT9yBogOEvO8f29A9yYSr+wHJkcaAeZUp/Pn0FHFFEZApaiz06iayvuscY7MXUvlh8GefP1x/6FoOnaCKWJ2iIwZNMvdFI4SKVDUy6mbYJCGvvSZn8Ry5pAfdZL7y5eH9Ln3RLFxzqFPZcpzntbQK6KonVnb926scGz8xA9cVVHaFFCNaNuyvXPEtS+8QH90xt5qxerwMtdvnfHUU2+hP3qJz33m47hmzp3TI3xjzTlcU3HWtUTnODo9Y9sFUq/UVIgXtikQULqgUFf4xZyD5R5PXXmYd3zlO/lH//TnQFto9uhV8V2i9NBrU0BTNNU0AslsTyceGiF4cGIO8hIaGJMScQQ3ZnsUO8YRqf2EKaaeOrWkzSlVH1A1Oy6JN7BJHGjC/lXWAxJDxYdsAgTRGpIHEkktjYocdFE2fEFInZrGM8lryesjgxmTSnyuajYo8/tDtrzdvqr1JkwFSKNk7wi1pB3l03oYZuLKJkjxBQ+xNkXjkjGKxuU4YRGLBUVL8IlQOUFcNDDxPsb9h6LpQGVjCobzeSHGsDLKQzirSTklPuAuAizUo3KucnVx7A9Em0ktS9wpsU+5XrnesKHKpLm7I+rL/ZT3VUsKUiDFQH9yxq0XXkK3HY3zHF445Pnbd6jmCzpVZqslrmnYX17ixhdOmM0ai57xnmsvX+Pxtz7NZrsFzSF0BTyJQuoDvmqQuubg4JB3vv1tVJszfFhz9dIeZ33HwSMPsUkV/dGG9vYR2iboA0KkdhbUjlpdFu+FuKNiG1OJMVqIX671Ysf7jIqGjHpkrcEbapg0od4Ro3UBRgzxq5zF4UYd0dykaZK3NwYAAMSYP5NMcJPGpjvSR7OMGd4re2U4YNjkw5plw7JIzcFPUXCCwQ6S4XwDspL/KGt/PsZ0HIrc49000dqmKU1DRr26ncCQ1xpvuCRFkRRlEkpr4EEdBMhGqSUpjhNi8zHRwcuJs7ph8PwIkgzVrs3yHohEsw1YuJZdcnzgaWHd8rqMUuw3RYs2mTIHVUPztA/0p6fceuEFbnzheaTtqBK87amnee76R5mv9oi+4sJDj/Ckq7h5Gg259FZO4pGrV2lWK/rQc3T7CMEhVUM0xwcx9Jbu4h2rg0MuP/wwb3nrW9i8/AK/+iv/mkji8PIVZpcOwC1YLgNH2wBtIKZEoM+ooVKJs1bgApoEF2XYuc478J4qKV0MVlJPRz9n7T0hJct8L7ZNJsRqPiN4QVIidh1l5zrVAT0mg0QuB0uUOQwh4GO09uV5Dcy0GPeBMOaHWqga59RHhcQQ91nURjDzI2WVcVBHBzAhuwWy62/q3puO10Uph/16r49sD3rvh+Ro8wtaS25yaNr9jPtPyFUdOp8WnlLEbnFgpxgHhMhuMkvL8rD5oTQb5qno7kWtUCZEZ9dJMZqPTKzHeF3CkGKyeFRlKMc35b7nRymmI2K1X7JpMqgVBT2zNlPGQI6uvUJ/eoYPkVld8fRTT3Ppdz/LWgWtaprVHo/M5vzOL/8WiFA3NfO64eDCBR66epXrR3fwVUVd1dbrHGdlDnE4sfSd5f4BiwsXOA6Bi1cfZvPbCWrPwZUruP0DmmpFVQV0dYuT9Sl9qtDQW0OUGK0wb45pRTxdSmOcblNn5mZzHCexjBIj1LUhkjnTvqDEKSWrcdNUOISw3dJ33aDO6mRnlnjQlJIFFKS4aw5kqWzO/EIMoxR0MgZPD+CKYmvANMuhIKk5rnTioC+27uDgL6IxZXQzTYC/yR6ZxqpOG8DECYQik+rpd/3OgjfXZsr9MmQAIO9nvAECJEPdoDKiRmZXpbFcd86YN108+2WyzTHo/xP1kBy9TyFuzQHWE26YsmRK5H4JWe0sZQJLTN+Onj5RhwtxTcvrFzBmeL5h80VIBvV32xaf1NozAzeuv8KVg0v87ksvM58veOjhq9y6foOz0zOqqmI2m3Pp4kUWiwWPPf44t9en7K/22N7e0Meeaj4nti30PWigmc+Z7e2zuPwQ29mC6vCAdnmRiw9dYu/hJ2CxMmRTI62HszpBcDiZW/UxcbgqV8XuAhJ7uhDAO6SucH2Nq6shAdZjgdpiDwzOD6F64s3GiyHQxUAkUXuPmzUs9veo+2Cfta2hqjm6ZMgCYATlYOIyypLOqUWopOH9PEbebDhAmhCW6vhbpNCUSbVpmYqyfoMkLYtqcZ4xgzlxIN67JeAYszrap+XGzqvLZd8jIzglSXNEXT4/u+d/tfGGJODQ5wFDDosaanUQC/JZmhvqbsVqLBStGK0jJ5JBKhbfyrQhinElNRwtS6f5fDZmfhcHt4wEODhjJypoIbCSka9lEsvz5WNijPS9Oc+37ZamqalUSSHw2eeeY+ZWdOsNR7ePeOX6jI/9xkeJ245mbjU2H3/8cZ599lkOLl1ERFiv1zZvztEsFiQRNqdnqMKFwwtIXVFfuEB16TK3U+LZr/1Glvt7zOYzjm/dwZ+u6W7cpApbXJPotyB+ZhwfjyTF1x7oIayRFAk5vy6kBDHQ+IpGKgtPi4VZ5s2F5bcNreCkQkMgdD1VnYgC0jRI7S2LBYXQm/8v2+RVU9PMmruDwLOdNtrX4+uymcfKClmmDqCKG1Yog5HDPoLdTAkDV4sUHAPui+6pyYIqImMoZCH0Ya/uEOD0HLs+xvE1poHkC6mXjAoKKmm84dcZ902AOjitMwGmHN3uHKV3eyGYojakmBDRXDHZpi/GhG8yUWlGwMrC5ccu7Y7N8eky57Tvizi6EIHcFQioJA6FakGsGG/GbDo1f1LlBFGHS7aoUXKYVCb6SlyuTuZoXEONR0JAUjSns3ecbTckFzlYep7//HO88uJnOL51i9V8Tj2ruHiwz9WHL/P2tz+DVA3eN6xz/ZTZfMHF/QOqw4s833Vsz0442FtRzeYczFcsDw6p6ppHDw7p1mva669w8vIrHB8d47otp+2WbVRELUO/8p6UIqHvUYkkiUjl0WSF/VLKpQtjJPiI1Nl36gVNkitrB6idxZvmMLWYotlwztHHRNCOAObKcIJUnjSbWTJvlmqOXPJQYqaWBBJRPESHqCdqDrAo7ZM1RwQpSByrjhdph+gQXmduI8mMe8x8HxhuNkschpAnETTmPRtzRoRtrB3MoDBoi9SSQZAwIbgyptoVmDCJmst9eCFQQhoVVwLh30wC7PtuRyrZA9tV4oRTxZhGxDG/mwDJnCmEhLjS43yYlyHgUbOKK4JNZuZag62Wu5JqUkJO1q2dw/lqUDNLALGdVhGnQyhXmZgozrh70YhSjmRICYLiVEh9j8SelEPX1tsNQbZ4H6kihD6x2ttnWdc0szmzpuLi4QWefvotXLj0ML/+sU/xa7/+WwSN7NU1jz/yGIvZHO071mcrFs5xUNW0167jLxyQvKc7PePGCy9w56WX2BzdIa7PCKFj021oUzCtJ0VCiogoMXbEGIjmkzCXQYwDqihZRRdnPkjvnbkvFEIfcCpU5robUGuNOS9TcqJyVlvVidnezQzvE74LpAzgQE3jjVG52pPUVHlRkOSImiVy3jeWPmUakyuISX6v5JYPvtlhf4lZOQxF8cfnzK/t72ybplHqZlH8GnShO6908kfZe9PfmiYNQfM+jtko9Op3JPRrjfuPhAnWx8C5HJuiVu4BJoYpxUC3GyqcKZbQoKySxBQRVw0PuotaZmBGcq95PV+cqagnSuiskG4UR+1zEdmqGpFPVRpVq2wmktUQckRNtBhTGeMTHWVyoyXsxh6fy9TXuZz8uu8IJBbLOSIWK+pSYrlc0HUd1669TLu1ep7vete7+Jmf/aeAQ5OQImzWLaFPLBd7uG3P5vYtNke3OLl+HQT6szWbzZo7mzM0dKSuQ2NPSBFESUFzSJVm2zvQ9a1pAH0kxYR3lmBbbHaA2PW4WnII2jjnLmFNbLKPbQh6DtZAxlcVlcec/s5ZVoTYeZxLO2U9LDSxwvuaJJbIa9Ig4wIpFM13tEPzvhk2w7BvC8aQXRz5yAEApBCdZgLIpk3u1V5Mk8SYjpTKxc8P3d23RTCMH+uOWVSOTJp2jq2cdYGuktyvBvpGgrFzxa2yWXNWvDrJRJNVCCfEco9Z7SwIFwC+ONPtzyh5MxROVcp6q2YCNC5uv62YkBsK71iQcooQJQwEONQwFUh9N3CnXsOQWaC5+lNx7JcIiKFVlbMl3rYtRJOAm7anSz3NakFVe2LsCaE3aZ4SPveLODo6wjnHI488wmq54npMnJ2tee655/DO0W7OWC4boiY2J6e0KcKtG7aBOpNmZ2lL0oRHiL1VwzYkcwzRiqnPRGn2seRkV4P97dkEA0CIEaUnukRK5peM0eBzC+kbARXr+BpyqFyPAL6uKb3cezUmacEAOQyuqpjPl9SzJVGzmwebT0uR0YGIpjVfjHTscxMm2fYTyy7PkE6OB9VxY+t4voQ992Dzp2TPq1avJU6OgVGdvBcQkzBAZdrhdpfwMuAzXNk2ohexHhpOrNnqm+6GqPyQ1kPeoGR7b4iIgSENxsCaEYGcBs9afKidt8RLFhSrmoAkA5akaguU8/5SJmpfKlWJUHsrflsm1+dEYF+7wbbc9j1t6K18H5PIHsOyTUqSqMDqcqZoYV0psW5bq3TdeGIKSLL6KCF27C/2eduzz/KWJx/n2Wef4cknn8R5z0NXHuItTz3JC1/8HDH03Dm6Re0rnEtsu0jQSEtPFzpT7VKCYKol9MQQTGLnXvMuGQwYNICYhwFJBojEvIHd3Q1yJJaiUAmL4a0yoTliDLkbk8WRlrQykpX/SNjzW7KxWjwqlh2uvdW+cWII8HK1R1XPsQTWgmKmgcBTIaR8jWJ+aE5kVC3kmO29iZ5ZshfApJ+mEoYnQwU1ZUJAGQRKaqFyMZl0LMneZe8VzWoaEVPSVO02p4DhxBQScoyzlUisvTDzjpmXHNnzJhNgkSzl5odol6wklLorhTMO5QfFIWkoDEGpdmYiPPOPzFEFBpRVyPGGWQKWDWf3kcvB+VyTMlhC7TRWr0xWqqw5zHw25wDo+0DftWy2gW0XCEmHZEtNiZASGpVt11E1DX42o0KJ0YCIuvZZMkeqyqG15+1f9izf+Z3fyTNvfYrLly8OpRP3Vns8+/Zn+PjHf531yZbaVaYehp62bwlZPXdEEOu9l3xmNn2PpkBQQZLg1dREJ54gVqzK6m8yzNfQ74KiSmnesBm6j2OfBLOtrRxkFNAUSepzqQvL/i7l3xM6hH8NRX2TBSygVsi3qiqa2QxfN5lBpsHxLliWvysGGjmrIUs1JU3uW1GV4dkcY9DHEB4GxvSH8zMw7Wl9Tk06ZDCkTLhpSHvalYIpmcSsJmGKTOZwOgpaaiFvgPqMEhij8QyRcq9PV/d3GMb5is9IMjXkoGfjqi7DwDlC3JUUIEZkKb+WrB6SdfXBL5iln1Gr2RlV7s8mAiqjIzmlRAgRkd76tDF25ZkiZeptseZ1w/5qxd5yxeHePiHC2WbLydkZ276ji5GuOKTV4HnnK/xszkyg7aMFJrsSAmdJsRcOL/KV7/kqnn3727l86ZCmqeijKT2rRcN73v0f8Lu/+zE+8zufIbS9EUJV04eI9ErjPOoFxZBHrSurSFYYUl7wpDnaKkULGXPWbsxMnzSo8UMjmsGGKmC+bVZDryNJEs5XWfJDnxKx66kaGWr+qEgGrzxkDQhn9VPEeaRKlhs6MN1qUv6BPI/GaNVlPSTbTSPhMNhlg+XirO+eRViN+YG+PJVgZUMKw83xm0kVCZEgWUqSGBIIlAHUGYgqE3BhVubOykrvhPB23BAlba1ogpngTQV11FISCd5kCVjXs4mYLoG02fUgk8DV8a4pWe5uMrsONXQsq45DguYwEYmhFqRzJm3Imd1DNL2dsHDJfOJhTseSFQLRYPfjruNsE1C9w2I+5+LBPnuLhqbeZ7vd0sfAerNh23acRYuU0VTh3ZzaCzFt6UKP+Jpq1jCbN+Dgmbe+lbc8++XM9lb0CLWrqHMNnCXwVe/6Mr740jdRqef2Cy+xPT2lns24dXSHbYyEmMjuZbN/1RKO69qh9NQpETQQfSSIRbBIDBmFTrmN9IgClh1aClYV1Xr0wSVErQehJEtNKqCOQ/EpB8WrWH2eHB3ik7NGgWrqu/egvjeV13uSNODqvCHz3haTSr3LKGiwSCkysygbtxYBTVQIXhIzJ3gM4vdAI0KTK+yVCgG+BAOQVUTMNaBOqZ3iXbLrlE2ueZrzfjX1NDMHBS3nz4V4RyZi19CspU22NyWgw4nVQ/XJ5YiY+yW/NxgLWsYUtSzcY2iW+Soiu+jN0/eGzrUTDjOWXBBCNKdyCW3zvs6cpxw7hhbtVMUuFxEZ7LyyERU42245azdUlWO1WLBaLNhb7jObzTk7PUN0S+crFk1D2Jyx7QNd7Al9T1XX+KRIUC5feYgnH3sLB3uHiKuGbAFfeQxGh0euXuV9f/SbiWcbnpvNuf7iS8QYWe7v8+LL17lx89YASGjMvefUHLo+RxUVSRGzY11013lc7OtXi+4YuFSxp2LMMbcR52fZ75btnxDs2t40lbqAZpnIQyGecinBCm9l02Cq/sOoDk+HTH4LWH0hLOa38RV15XJQu/2unadxfgjwD4wlJcalliFGdXSqaxH8GaQZVdhh7vI+ken9ZB00K2I78znZWsAY6xpzU6Gkjr5gF/cx/p0IcCgnqCNneDVjVVWHELBp4HPpEDQNDys/pS101FwC3I1O/jLZwMTfWEpNZLfCZJK2W+tutH9wsBPe1gNdUrr1hpPNllUz43C1z4X9Aw4WezTrNbcENu2Wk/UJUjtCDMSjjqPeegPW4tmut3z+889z4fCQqw9fIVRqNltGh6uq4vFHHuXrvu7r2ByfEFPi5o0bVFXF3v4ed46PrUR8HwabyTrvmJE/mzdUwbFtW/re0E43IbxSe+Y8qrdjB09AsLtjIa3MX5m3lAKoUOVW1YOdle0qj+R4UCMtEWE2m1mnXT9Wxb4LOWS0RdFxsxcktGhSPpshMpE6O3sn30+5/+lIKTcX3SHEcni55zIvAJMoqQmjGyh7PHwYdzE5zI4PSejV6oiWygP3M+4/EmYwVnOs3iRViMli7zgrz+nR5/8uKBSMrX9DCJbfhqkwklNlyvfPp7wAWS3JM1UINdtN6kyV7UvF7nxeFVDvDPHyni5Ebty+RYNjlhLSbqHvIPbgMEd418K25/ToBOdq7tw54YVrN3n2M19gub/P3v4+TTOzKm3RJKAmqJ3jLU89xdNvf5bTzZouRp77/d9ns9mwXM64uT5FsYabe8sVddMwm1vMa9/39CHgT2C7PjXwIZVHlZ3f59u2nZ/7KREOx6sVyHLiMuiVw/+iOelLMDzeDRpLymqqHzSWyjrsTooZTa9bfnyxrfK9FHeEl+Jq0FwkayKJshYzhI5pqTC6C7aFECitwc0uFAiGB4znsh8zlXNccibEaXvs0uJAMiBk5SnTzvWMOBPkII8+QhsBUZZRqd7s7kjTRZuqoNPPYOxmOj2u/ExRVGAnOn8gMBkreiEyAD+FkxVuWCSoZFCn+L+GqHaMO/lc7Ij8dwGGPIJTI1RXcuXEc+36Kxx/7rN0t27Rn50xb2rqmePoxjGbdgt9ZLttEXq2AXR5ALMl6irEVXR9QNXjHHiUECyUbdY0vP0r3sFLr1znC88/z9lmw41XrjOfLzg8vGD1YGYzFrM5oKTYsd1u2fYtosqsNqQNvXtjlzFlTlPivJfPCyY2zpB5MOa1kX1ukpkZSRFrmk5deUttyuePKUvmUix5MkYkNler09zMREsirg4AiZWksGO9MKQcGchk50tZtRzakXH3fKQclliIVdVwC+uGVEwS3dWNC03BDtGq3juP1MyeaCqxCEGhM5+NleF4s0GYaULrGCSdBolzr4WeEt9QZFd2b2xXHcr+wDR2+SnnQUd7cyplBwMccseaSUiVGiITKdWUbYadCJUKDR7ncnSIKzatcHzzJrI+o3GCn80IPoEXeo2gicXeHlcuPczFq4/xH37bH+ervuEbePuzb2G+WEJGYS3ax0oXxGBq9oWLF7lw6RLr7ZYrDz/MI488TF3XeUMqJ0fHnJ2ecnx0xNnpMZv1eohoKSpfUaOm83avcS+b8O6DGCJfSiEss83J61pR/LMp+wGTmk3pnMXXVlVFXdeABbKLf5UtpcVxbnvfF3WyuAV8Lm2SCUWV7KswcCVJukvCy87p78VksrtGxfyGzhzzZR6nwfjFdbGrGpOJ8G6VOp++HGJqaDRiNxT2TS5JYS0hMppmwZ2UgrtVzgnU/MDF8LYUv9FCSxqH2MtS7axIQXsQOzpku9CeTEebIevmll1gU6XYIb3a515kiCt1CL624GXvHLO6pvbVUCioEseiqqmdNWeMMXKBR9BHrnL985/De+Xk+Ihmf49mtkc82jD3Ne/48i/j/d/yx3j86Wd467v+Ay4++igX92pmc6uFVfq3azIfpKgyqyoOFgu+4u3P4r7rO7nxyiu89OKLiAjHd47o2pYmRE7bluWFC6xWK2KMrNdnbNuW9dkZm3ZMjFWK1CiY8Dh/hYkNa1dUvGwtlH1qNpcfXAWkBFb7KZ8rr2pW2Q3idDnNzIPzWfI31JUFxo8wfWHW+VyiQ4HkEqfrMEkkMtpqpfGqsZmCGRTnvO0ny8wZOyMrVuMmqtInKyjca67iV9JxFEgGBBaP4kBOOoJFBZSxN/MeK2l0uqv2iiP7tcdYVfK+9/engb6BFtVSFtIkSso+MwVSyHq5ZsdnnrxRQikpBkoKk6p9XlTPKbhSGI/IOEFSRJeWKpmSMybyZsqbx3xFjkqEpqpp6ppqJnlCvJUQdJa5X7KXZ74aWphFatZnx4a+Wd8NDg4OeOJtb+Pqk2/ll/7NL/HopYv8J3/2z/Le934tywsX8MsFblExm1mNTrBF9t7jNfdq8I6lnzGfNXz5M2/jkSsP88lPfYrrr7xC23bMl0sALlU1+6s9uu3W4iido+s6NCnHJ8fcvn2bV16+zunx8aB2o6Oyo+wizTvAS96wxg6TtU9brmhmM2JKbLdbYttmNT7b+2qlLCwCwtxG4h0inqZqqMRnIrHMcI2ROMn9nKLkBWyBEviQu1uVoABKDRfBKu9Z5IpoznBAjFAzgluIDwyZ7ZKhx51aMEUf465PkhydonfhKjvDGPpErReGKg0w1Th0vIdMF04cTeWZ4ajdm2wDmjjPAbzOsh7I6JnLDKO4B6xGjFhB3Py4Y/GcUYqVv8+DK/cCb5IqQdnZUKWKWiNQa6LyFY33VN5ReUddCT6J3afz2VnvwHmrw4lJTBWhB05jz2dfucaLL71IWG9omorLh4f8oa/5Wg4eukrcbHnikat80zd+A4cXLiBNTaoreiLdJiBYMG4Mkaaq2LSdhSlV1uPP1xXzxZKgylve8hQPXb3Kb3zk13jl2jVuX3+F7ckJEixcqlNzMC8WC/b397ly5SGuPnSFK5ce4vkvfIFr164Ru+5VHb5T+1zFk1xuDefEukir0gZYXJhzsLcihMDJ8QlnZ6f0wfpcDMWQRcbSIuTAhlmDx9H31sY69D2z+dyk6DkCJFlMq4PBpRSyMLSazkYVJaUulRQ2Z1UQnFq9G42GGaWoFo+a8YGQovWoUCVkV07MkUIWCH93iZL7UtFtAu/xVsEldFTZfZGB8poEfn68gQad1URvVkKxnQrRaeZgWQM0hO1ulK4U0i0o1jTKfPr3jkGdjelUQIIMDnh1eOeZ197afNUNdWXRHVXlaeoZtasNTa2sm1CfOeRpiqQU8TFRJyAl+tDDesvecsVms8aLcmFvnyuHF3n8ySf5tvd/K/PGElstZlXpo4WMKRWbbWtaQVLSfM7JyQmLxZxZiqy3W3OtpMTpes31GzfoQ+T49ITnv/hFbr98HWk7fNa/WobpQ8RU2Ycffpi3PvMMX/3VX80nPv5xXnz+BesdWDbTxFaZ2t0pN4SW/Hex37s+cP3GTebrM64+/DCPveVJTk9OuHN0RL/Z0m+3prI5yxks0U2Vtx+PQ4OgKdB3W+owB1cPrcgGIIOSEZ/BC4wQI6YG19mUSCpDTU4VWxOJOpSYLFXRNOUyhxmks3kt0jNHKiWHtUDY3cf3tOVeZQwMhFFQDODWeNBkj2uOHy695V9/3DcBzmf1CIaoolpZzGOyJN2E6eBISf03p6Qgd20KQUhunIzpb7hbWhbp6CqrF1lJdthmtXLRzGmahqqqcM5KzluvQU8XE23fZ7UkEFQJKbEh0qXACsfFqmHfV1xeHXD5y97B87MZn/3Ux/HdlieeeILLly7hRLh69TFCjJycdcR4gq8EbSyWsq4WNDnI2dXWwqqezy1PUQE8iLJtW37/M5/lU5/+NKenp8xncyvGi1I6GnmxosQGJpkd1seeF7/4Ii9fe5m3PfMMX/HOd6Ixce3llwh9n6HyOHDsHd8qBVywLaop5nSdCFE5PT5mfXrKarXi0qVLPHr1KikEzk5OOTk7ZdN1QxZJVXlWyyUXL1yAkDhOJ0SEvm+x8v5ZImipdF5suqJijpsWioliPd1jtu1i1GzyGMOtvKcuhZ+SkogM3ZZzwDhZ5Uw5isXAm0RMind+IMTz5THPa1vT11M/5PnPijZxXkI656wWTXqTQZiLFw52gBMrvpPFOyb1guYKW1kN6aMte3ENQCGqnEWdAZipO2J4QBnLDg4T7Y2LNr5iXlXMfEXjLfrkbNvT92v6FGmzI98mx3LjipVfen03leNwtuDy/j6XV/vszxeoKneO7zC/sM/BQ5dx2w2zvRXqhM22RV3F8XHLjdunXDzYJ2pHdBHfVCxntvG6GFisVqw3G3BCXVfMcutrX1c0s7l1x21bROF93/zNfPV73sOnP/ZxPvXxj/PC888TumBFdFO2KSnRPonQK7/3+7/H2dkZX/nOdxL7nmvXro1zK6Ofr8wlGkx6uJK7bpTgNBqwlRSPcnZ0zObklFnTcOXKFQ4vXGDvYJ+z7ZbT7YYuBGaLBZcvHfLwpYdo1xtQZd31OUMhgJSexJg+mec97NyPbeAKRaJO0oUYetgbvpeZtrcoI8n1OMEq5nmxeqj5iSybP0KMgRCsglyM2T5jKjxG3OG1CLDsyVcn2PEed10hdwneVx1vQAI2ODFOFYLVjDToWcfNrVkJKKn/OWaUkiQ5vbEkFlkS49BUsjzUFGIvn2uA6BJ15Znlpp1dH9iuN2w6ZRtyXJ/PNmiuUq0COEctMK9qvMBiNuPhxYIre/vMV0s64MbZKS/fukHXdVy6cIEve+c7cdsNlw4vsOk6NChnm5ZXbh6z2Wx561seYzavkCpXv0hbBMe2a/FVTYjRkm9DQDTiveP2nSOOjo94+drLnJ6c8qsf/iWuXL7Et3/7H+c9/8mf5aWXXuJXPvxhfvWXPszZ9dvWKHOi4nhV+hRRJ7zwwvPUzvOOd7yD7XbL7Tu3TdLKroplzE+ovaIaKI2jRMCJolEG5NYBxMh2s+alF1/k1q3bXLh8if0LB+wdXuBkvWa+mPPII1d54rHHeemLL3L7ztHQ/9GKARvyOUiGrDVZvr4O7ghRzeVIFC0O/MycRcQigcASmZNaKZOChOroxtCYtaWY0GDVEEJMhDApUZIMES0xoOfVyXu5dIb3YKi8dpfNmAEdJ4ayA8QQrUW1vMkgjO8juDSiUCmZvhvzazVxH5OpTAmrk5iyk3d44GIMowgxp+IoELNt4kByay0dW1f7yjGva5pmRlLPaRtZbzb0fcCpt6rM3hy8VSV4UZwrURXKoqrYm1ccLOfszWdcaFbEJHz21k2un53Qtx2rqDxxcMjjDz/E+vSY2HVcWC3ZxkTYnporYHOKpIobr3guXTqgWVRUrqETj5OKxXxuboemsVw+5zg9OcGRePmlF/m93/k0v/SL/5qv/qr38NDFS1y7/gr/6//6D3nskUf5hj/8h/mPvvv/zFuffJrPPfcZPvmJT/CFz3+e9cnZ4EIwIrFN94UvfoHV3opn3v4sH/3oR0kh7BBsGQVdtJGt+FSiRPLa5GyWhKlWSSq6oNy8cYc7J6dcfvgyjzxylb2DPa6+5TEeffJJjk5P2TzX07aJWhuahbWbFiejSinZP+gsqqZI4hJ0Yc1pYnZZiSXQiiC5f4WqWl0XgZBThqxwcLSaqAhEIaTENkQ2IdEmM3+I+akrgRIkkG1Mb1Q2/KR7EF+eyJ2i0SUrw4kFc5TgeS9C7RyVg1qyO+zNJMCu662a8nCz1upYEUtNSWK1XvJO8TltRTGY2KXShNNKQ+CwZh3O5d4D9rCCGJHrWKvRsq1nuEqIfWTbbtm0LaXrkZDMKZw3aYmiqJxQYyUaDvdWLGYzFvM5ISVePDri6HTNyWYNzrGczbh8sM/+wQXuhMD1o2Mk9KS6YuasPsy239LM4OLhHqqR23fuoKfCwaVDmkapXUWqKnS9ZrG/R9duiQKurunbDet2y2NPPEHV1Hz84x/j27/rg3zs4x9nuVhydPs2P/U//U9cODjgPe9+N9/2bd/Gu9/9lfzTf/pP+fV/+5GBuEy4jNz1ueee4+u//uu5fPkyN27c2AmZGlQn50aJVDZYscvJkoYSZWLDOev1gLP3T8/OWJ6d8da3PcMzb3sbi/liKKzVdi3JVVYkKgQLKxRzPxU3BKVQ2PQ+yk8uK2n1Ys2GS2msNKTojrmSNJFyAShRiMHQzz7F3EIvZ0ZkM2SKrGvKuyaHJRYCfE1bEIb425QBQJwzPyBjOF7tHZWHWvTNzwdc7e2DywHJ+cGqaLUiRY3IYkYYh1jWaBwj9jk+fKgbqdZ+WP3o+ynFdfMkl4Wcz+fUdU2MkbPjU7q+2JgGaigGWxcpO3C2oNReWMxq9vcs0yGp8MqdU07P1hxv1zgPF+oZh/MFq4WVmX/+zm2uH91hsz5j5oTT2HNxtWTuPcnD4eGSxaqmcp71tmW7CbS3jlk0Z+zNZ6RmRlVVrM+ULvSsQ8/p2ZaT4zucbtZ88bOf5f3f+sf4mX/0D/nQhz7Ed3/3/4lf+8hHePqpp3js6iP8y3/xz/mt3/goX/6Ot/OBD3yA97///dy+cZMvfO5z9H1nav1kg7Rdy+c+9zmefvppbt++bXM42eTn40XL62nUEfl3QRYho5BecpdeYb5YcPnyZQ4vXWQxXw6SJEYrDJzaDTH0zJpFdkXpsHlfNZIkj2KalHSzoXaoS6MU3AksMNeEz/43EYaGMSVUbff8o4Qr7q8haH9iu02PL8My7DM2kXKpD9wYNyqWB+jIibhqbEXO3cOrjfv014P4Om/6CgM2QKSiD0pI5msyU97UyK63+L2+T5loyCqqaVDJynbYT1KSCn1ItF1P27aICIuFLebJyQlHR0ds1ltCMP+O5nPkLiwjp4sRScq8rtlfLDncO2BWN6zXG65dv8EL11/h5vEprSrVfM5yseRgucKLcPvoDi/cfIWbZ6ecxchpHzjuA6+cnHLt5JQNiWbV4BqPOuhTj/eek9MTbt28yQvPP8/NGzeIfc92s4YU6bZbtpsNd27f5otf+AIf/+2PsT5b86f+5J/k85/9HP/kZ3+Wr3vve/mtj36Uygkf/M7v4pFHrvKbv/mb/M2/8Tf4zd/8Tf7oH/2jPPPMMzngebRbJLs8rl2/xnK5pGmanY1eEL8SnzvdYAOYpmrmQ5FWIuBdzoo3FbKezTi8dInHn3ySp55+Kxf2LnD7xm36tufwYJ+68qCRtttQkoMHtXZyzRKrO3U1xWhr6ahwYn5awSMFzJFz3bTEYlUrP0Y4WTyqOd9DijvXMMIZ1fJpPxG7p5ITuOv2mv5toGNhAKOPU7BUKcvu12xXu8EuvJ/xBtqTmW0XYjRpl1LWy5OVCqSgUMl0daySmhFdBLHk2oQBLylY++ch7rNwoZSYzWZ47+m6js1mM5kUrFS4eGv64cTg6NykxCnMfMVqPmPRNCzrGV2vHJ2ecHRyaveDUDcz5vMZc3HUdYU0DTdu3eTa8RFnfQcJvCrNfIY4T5sSx2fHLCvPcrGgW58hfeD05ISu71isVtw5usPxrdscHR7y0ovPc+nhK6wODzlbr9mcbDm9dYc7129w58ZNPvSzP8f/8//xl3nvV30Vv/HRj/LRhx/mj/6Rb+Jn/tE/4g/9h/8hH/zOD/L3/z9/nxeff55//gu/wFe9+z184zd+IylFPvN7vz8QWbGt+q7n5OSEixcv0nXdbr5mUcOmRFsQvmyjKaZWOWcFTux1ha9q6lnD4aWLPPX0U7zt7c/y2BOPs5it2Byv+e32o8zqGZcvXeRkvSaGnr7vaZrZuJm5WwLu2KkFsNBSjEmGEDsn57Juyney8VFUyBACfYx0MVj1Pp24EVQHV8jIDLJkK2+eswN3pOHk9zB3+X5K0IfPVfk85MJYgmOX6f2BCfDsbG2uhsw1gxoRhr4nxUjIJR1CikMYqqTiJE2DEaxgaFlGqcZIF9s0VW2NKTebjYVhTTeb5JadDiwZMnfgQZk1FavZnFVT4zWxEEdqAzdPt6w3GxIJ54X5oqGuK+Yk9qSmrhuev32TG0e3jUBjZB695fvlytObrmO9bQmV5/rRGb5vOb5+jZNbr9C1ax6+eoVbt47Ynm24/tILvPDiC3zFV34lDz3yCNs+sl33/O6nP8XNay8zd54vfu6z/ON/+A/5rg98gE9+8lP8xq/9BgerPb7lfd/Cz/3sz/JH/sg38ic++Cf4x//4Z3jxhRf47d/+LWLf8w1/+Bu4+coNbt26NQS2WykQuH37NoeHh1y7dm2och1yKclY6oQOG5ihglwAxDt8VVnbN7EKaHU1o6ln7F844OlnnuYr3vku3vb2t/PQlSuEbSDm7Pb16Sni4PDwgHUb6LrO6vTk4PYSuH0+PWr6u6DrrrQRl+zo9rvpUztqbEoZabTrdJkIp8Qtzg12bSEgmdyD6hggvmMnnldHpQQK6BB5VOJoJQMxAmP91CQ56Pv1x30T4Cu3bpqvpTg81SSbRku5sWhwW/Dy4EiuT5k57RDrmRKEzJ0wqLyuKuqmJiVlvV0P+V2DveJyv/RcHc2T45JU8E3DYj6j9kKKVp5w3Qdun56wCTkFRoSmrll4T+w7nG+o6znXbt7mxumx2aLBUpPqHOmv0aqiddsOVIha8crRmlnqeeXGTV7+3HNI6lifHpEC3HzlJjFG7hwd8Y6veCcf/bVfA3Gc3Dnh9u3bPP/FL/DWp57i4MI+//bf/ls++Cf+I9715e/k45/8JP/bv/43fMd3fICv/8PfyD/7+V/gg9/9Qb71W7+ND33oQxzdvs1nn/sszz71Vt79le/mX//yvzGXwyT1a9u2XHr4oZymY9CUr2rzhZXNn22tylfUsxl1VeNcZRXOBKIDV3tmywUHhxc5vHiJRx99hGff/ixf/hXv4JFHHrFGoWFNGzravkU1cXJ8ip811LMl280J3kOzWGD1QDWnEk1ieymROxbMjMTsG/RW2DdLQCG7K8RlDAHTdARQj2qumhCtXmquw0HIJTsUjHhKgLiWgISBuoCCEu8S4XSomq+y+Ce9OCpJVjldzKutWYlPYpkXxT3yeuO+CfDo7AQmYInduD143xvlD7l42XdHztsrakOpXFJs7CGlRATvHX3f0YVgTuqJwe5LiYrs4JBcq5qUmM/muHltgEyK+Kpm3XUcb9a0MeAqR1155rMZjTj6zZblfM5stuD22ZpX7hxZfX+1sKfGVSRRtl1rRX41kYJlcYQ+0kWL7F8eXKRZ7tGd3OHGKzeZ+YZXrl+n6zquPvYYSROnx8ekGHnppZdYLJZsNmfcunOTR594nOc+8xy/+su/yvvf98f45O/8Huor/tk//5f8X/7j/5gvPv8CH/rQP+c7P/hdfNO3fCsf/qVfol9v+Ohvfoxv+8Af5zc//UlOT05MyvU9Cmz6Dmkq/KzGJStnQbKIo0okE1t26XhP08xompp5NTeNRhLRgZ/VLA5WPPr44zzx1Ft4+qmneOqJJ3nkkUfYW64sIyZZpe2Uo3S8d2w3G9q+Z7HcI/RbfO1x1YKgMtn8WTplkVQy7jWVjBjz85V8PCHnDBolWR5oijh1Vgs2QZ9g2wXThPLaRJ3EfDIFXnRHAkKRjPm9YjfeAyyKmtBcLl/MYqUSQz00JYL2eCmZIrqTr/ha4/7dEHH0yU1FtdXIt4iNZDohqma4Vt7n/hBjbdDp91StZENT12y3W9q2za4IW5ghuRfyOXIFZyJRhL3lkqZu6GMipg5pGtq25fjkhDZF1JlvcLVYIjHRdS2LZobPWQZ3jk7o29Z6HmB2n3ifnf+GwratlbQwSWxqUkRZHhzw6BNv4eUvBK6/+ALbzS2O12c0szlPvvVpXr55A9c0vPz882y3Wy5duoQIvPLKK7ztbW8DgU996pN88/u+mYcuX+RovSalxEd/49f4rg9+kP/33//7/Mpv/Bbf8cHvYpvgdz/+SbTvuXHnmHe841184hOfsDZruRxjr7lFQNWgfcI3c2pfWwfeqmJvtaKqrX980kQMEe89i+U+zXyGbzzSVCz3VxxevsjjTzzOE088wSNXr3Ll0mWWi4Uh2iHQdS0xJebzOYvFgrbrcC6aq8ptTfL2AaUjqZU5dEylS9Z+okktNV5hUt3ZBrfqBVbwyJXmrIphB5rQBG3f0fY9Xd/Rh7GOq6Y0BIWXQAABooYhz08ZwyPR3ZSjabXvIZtHU74FOzbEyJqWhjR0Bi6V4mv3v0M6Ut+belnKcZPhXk05MwJ2iNOMWutVbnaftVXOWgQp6dB1tW87+t6aThqgObYqQwQyqlWJWLSNWssw7z1t16II9WxOCIHT01O6tstFjYRl05DajtB1zDNKGGLkdL1mvV7n2D0L8BXvLRMghbxuOrhEbDEcSQWpHOs+MTu4wBNPvw1JwgvPf556PmexWrHc2+Olz32Wru+5cfsWCz9W6+66jpOTEw4vHHLr1g0+/rGP8Q3f8If4X3/6p3HOcfPGdc5OT/nGb3ofv/WJT/Dc55/nG9/3rcwXB7z0xS9yumn5iq94Fy9ff4XNdmub33sWywXVfMVDjzyOS9BUDVGFZrlktbditVxQ1blXYYx0XUdVV8z3DmhmDdWsYu/CARcuH7J3sMflSxd55MrD7K9WzHP4nM/r2Pc9x8fHbDdb+r63KtrJEtFS7Il9ayUPncuSwFpV76p3mveRGAWK5HzPDKxlxhLSGFAB1o8jpUhIPW3X0cVAn6JVjlMdwJUB+MlpW4MQMJlX6JLSvpqUfX054HukwJLSlH2wOXBfUdRBlNy0KDNAl/e3vz8N9A1IwG2/i2blm9cMsqSsRkxVyyQyqqNAXdd5ESx3qvaebrsdNrgtixu4U2n8WFUmCQVBJVGvrADQer1GnGPezCAEjjcb2tCb3RCF1XKGj0rXbqnqitgHqGpO12uOTs6s2G5Oxi0oWKcJp9Ey5b1nu92O9UiihXIpNVsNzAUuXnyI9379Vd7y5OP83u/9DqvVitOTE/qu49atW6zP1hxcvkybc+1UlevXr3Px0kVOb9zhw7/8S3zv930fP/2P/zGbzYZrL73EL/z8h/juP/k9PPfcc2zPznjpxef5pm/6Rn7z136d7ckRTzz5JF/+jndwcmaxr76p2Ts44OLlSzz2+FNINCSuC1Y2/uDwgOVyPmgUBVafzefU8znNvGG5mrPa32OxnDNbzNhbLlmtVszmcypfgSpd37Nery1ELinOO9q25SzfhwEuQrvd4HyN8/XoitCy+cnEpgMwYupo8UkyVGEzhBSLjsr33fe9oe2powu9ZbeoEtT6eaAuq7uS1duJZNOIeCv4NK2iJ2o/BZTZYRNqGliSsWaMBW5FtCoMw56nVHhXyL2QX3/cvwQ8XedXJauYAeaNKWZbz6REMXoTu8hV6IyIq7rGO6HNnVcLrCtZ2g2cqziIswpROc9sMacSx3a9IaLUzg3n3W63hGws788WNM6xOTujbhq0D7jZjBACx8fHhGiOX5c09zEX+j7Sa6JyinNFFR2RNXPEOuO6sScCjQoXL+3ztV/zXt77nnez2Wz47U98goPVihvXrnNxf5+9vT26rht8UEdHRzz+2GOcyR1efvF51usTrl59iM985jPcuHGbs6M7fOzffpinH73Cr//2b+G15/HLF/myZ57k1o0lFy8+xNd+3R/i6NT6SvimppnPWS738Nlmin0iJKWLEd94FrnIk8vFrwrCvNzfYz6fsViaTbhczpkvZsyahqZpDG3NWQiqymazYbPZUNXWD3E+t0yU2LUZlBOCiHXtjb1JNfGgaahcZ9Npr60cyFgewnrbR1Qz2Jfz/FLWRmIIpkKT6LPUs2DuhDrNDuaJrVcy4lELpdSxg7OZFUb8Hj865c9lMpig1klmh1WtYwIUQo7KUYXa2sC9qQQYtn0msBHNNKTJpF/K/Qec81n/JocWadbrM1fL+n8fAm3bDk5RJw7xE99VSqU2gqkJCs1sTlPVdG2HepeBmx4Rk1SUJil1Td3UnJ6c0DQ1se+tujZwenpC13Xga4Yeb8mBkyGKxxy50AeynWUwmRdBnLJp20HdaXFs257FbMGzT385IQb2V3t88cXnufrQFa5dv07lPV98/vkB0W23W0qr5aOTYz7xsd/mq9/zbn7rNz+KpMTR6Sm/+ov/ij/3f/u/8puh5wu/9zvsNzXf9I3fSGg7lqsVqwsXONlsLLHVO1Qs14/eEmmH1lzOI94K/SIm8QefqghNU7NaLWkaT1Nb6X0rhJ2lZQggkx4fGJOdzWZcvXqVo1u3Wa/XGXlMhBCY141pFCHkatqAjnVtip+utBygJP4ixNQR1A0SMk4c4SnHH2ve6KH4nxmrWrschTL4l6dDlKGPZLmuas4IOec7PEeAuZJwrkVr4Y61kGvNuCHheIiPfrMd8X2ZuHv4c5IqoY+ZAO2WjUCjlTBQGUqH11VNHyN9b5PqkVzjxbIpBhmvpm+Ls2aelfPGWbuOqjJf4fZsYyULq2jVw3L90Fk1Z7NdG2gSrYT7sl6x7VvONmuCRlwwh1OvFqnvfe7+mtR67WmFdokQelN9sWI7KVo3opnzVFjqy1nfcnvdsm4Tl/b2+LK3vI39xYq9vX1+7wuf5/bxEVx7mflySd91xLYjbja0ArdOT/jsp3+H7/6Tf5KmrlmfnOBVefmVl/jUpz7Js0+/lV/+1V/l4/3HePTKo1x59BG2fcf+YkGTkrVgRjKTS/i5LWmfrDqX85VFjYhYNrw3UMMC3C1PrvYVtbfiUCVdq9i/kp+xhPk554hdz/HRCaeblnUf6PqIaxM+KV0FISjaR8RFkJAhfB21G6M1s+1x5jPLalUfkyVeKyiJqKaFJEqomVVJj4khsbf4HDXjE7lFqZXUICeIe2eJ1wWBlUxameBkvAWsV0UJpTOldBQ+Zs96X1NVBuD4LCgkKZUXUuXR+0Rh7r89WVZZ7hUzZwVRzd2gYp17TCwnSJnj5lqfkn2DhmZNFkUEdQ5fueFhgZziBLOmoc9qnHeOzXpDjJG6qdm0Zhc456ibhtB3xBCYzWamLjU1XWeI2bZtTTpHNdsP6KI1+hxCkEjUWISF6iR3LGVfEFhwdgjEqgKBSyf7XLt1i73FjAuHF+hS4DR2PLRdc3x2ynyx4MKFA0Lb0q03bLZb1Dv6ELl+7TrzLFF+/+hoiND4lV/5Fb7v+/8cv/jLv8y1a9f53/7Vv+bPft9/wtnZKeI92z7QLJZ5NRyV81SVVamusm3kvbdwraTUdWlsk+dXMNQXNQZbCl0Jk74MoM5ZeN12y3q9NtVQHNEJLjewcU2LD4K4iCbzDTsfEHEEyV2JJhW9yz1Yo1TJ17Nmog4MEs0SL6ppQ4P/OaOg5W/UvmeaSimNODi97F8G/ooqfT6/bwwfYSgwpuQCUIPULlqfnd8UvRygrTm7w+U+FaO38TXH/aug61N7nAyiTF8XvbmoFCVbGUb0CWdqnmaIP4otdsyl3Fz+nDQm4SLGTefzObFv8yQ4ju+cEkJkNmuIfbQgZRHEe2ppaM9OqeqafrvJDUsc3TbQdh0pBrtuiEM/AAFCmIJMkJyzQPMSPKA5fy0pfeiHMKukSlVXbFLgxvERh/srLu/vM1stObx8iSvthrOzM1IfeMlbtemzO0eoQN00SOVZbzdcu36dd77rXfzu7/7uEG3/4ssvc/PWLd7y1FN87OOf4OVr1/ji81/kqWfeSkqBtttSz+dUdYOraovELVLO1dQ5JF+z366sgW0f0y7wVppRnWkDIfR4PLPKMRsSok0l7TMg1SwXXH3sUZIXy5bXxA1NhNMzavF4HGjOjCHbj05HqTJh4gnL1SuVDmIyRDHFiLN0m6JPEQbQLxOXlnjNOKTBlYpnWdANKqVkIro7eTaffSKxVAvRmp8vG34jAebfKY1B10O9G4x5VW82CBM2pyY5hsnL/pXBi6lWhRojJs2cgDIdySoMS4pI7n0ABQWzz62TzRBXnolYqJ1FuDgntJs1Xd+buoSna0uDTLXORO0GUsJj7o35YkHfbVGUkJt1IqWQVMCqOOQ6p6o5rMjj1Co5myFVAsCTtfjKNq7LPsO6abh9fEzabi1D5OGH2T/YYzGbc+nwkOZtb+PKxYtcuXiRL+wfcP3aNVbLJYtK2J6d4ZPwwssv8dQzz7BcrUjblqppSAq//tGP8nVf//V89gtfpJ41PP/C83zlV7+b23eOqCpLifH5d5UrOFvomVJVTW7EGYesh5jSpH1c1ruK15uCTDKEX5HXM4Rg5eedQ31Nn5Q2BjZtS9u2hD7gq4puu0ZjonHVUMjJOg+XTXs3Pm9lD62RpuRI/ZQSTk0VLdIkxLH6nqeEMOpYOyeTQ2mGp5Jz9qTk6E/Bl4kmBztVPFXIhX2t3ErWfwaEn1w4Wh1j1XbIBAkuRir3ZtuAYcPQ9ktHlIkS5aLYhElR0koTYRsm4dQILFdjlvx+afwhCJKsqrSGQBJhuVwSuy3ihK616luiSl3NiN2GFHrzOQFeTOWczWZ027M8mzXtdmOxjrEf61tm48BcG5kZZHW4bmqrcExWc5JaWFp+bfC2EvtA09RIHzjq7hC8Z1/gQtOwaGqcVy4fXGDZzJhVNfPG8hEvXbpE1dT0TUVsOzi1Arzz5YLHnniCk5u3cJW1+nrlxg0uP3yFRx57jPliaUWGHcwWGdn1WCxz7rBUVcZ7+wzZD+pWjiYy1NrAi7quh56CJfPAqtDnEoQig1rlncNVFW6xoA/JugADq+WKCxcPiW1rErJv0RyJU/xxtg5pkCq2bcaUKKtSbjZUKWMhWerEIs0yqGR2n6l+Uwk2ZRjZIWbFuwoB3UP67vw9uMLsmVWn0TsjAwGGYsSV1yETXpKFSZb+Fr66P9J6A5EwVvhHdqQgBU02WykXUnX536SjW9brEyIZ5KBEyk/KEeRJLLGLzWyW0d6ehNK2VqLBpF+i70MuLqRUVU3qrV+7pETYtjTzGV3bWrhWsTfLlZPF9ElWlVVLkIEOlayBHQRuqDOpFpHjgYWrCGdrtqGlWSyoRFhUNY04kuj/t703jbVty+76fnPOtdZuTnPPvfc19epV1avOftXZZZtyGWODDSQhxoABxaAAcRC2A4kSCWFAUYggFoqSKEikgRBFEAkIwQgn/oAbGgcMhQ3lMjYul6nGVa5XVe/dd89tzj3n7HP2Xs2cc+TDGHOtde59Vb6lvKi+3CUdnW43a681xxxj/Md//AdNZTkYGsY557h2dERV1zwYOs7un7DoIzdu3iCL8OK73sWrn/scoa4JoaZZruiGga/66q9m1/ZcPzpiGHr29vfozzdo+4/NC/K6OHCOFG1nN89XmddLBptn0Rx3tVqVugAeTDdVlefKQnKiG1GKkRwjtfPsL5ZcPzjE44htC/2A9AOvbC/JOWp+XdTIKbMcptx+NESxoZpGhpCU9PpibWrYSDKR0fgy9rgRNDFjcuNyLA5dJRjL70xe+OHzKCwW7JqVPHwMUW1D0KVa2prm2jJpkqbw/vUHYby4cUfJekaU3QIp02wVSNGQQcsE4+6BDUIBED9dKVEPOg+DkgEfAU+3bREpgEjJXQJpUKkChbCFZlGT+0TlK7q2Z4iJOjvavrNFkEcPUNS5xcJIRfxkrBl1uVNI30IOGfvLLLXPyn4I3jOknr7ryE6o9va4fnjI4dE1FusVi2Wtg1VStImtysOM1rdWX26Rt7+dJsMzz72B87blAx/4AJ85OATxhLqi7yNDP/Cud7+b28fHHF0/IMbE4WLFxm3RGYiKIpfF4bynaZqxDluYWT7ouDMNT7XMMAwDdQiEytPUWooIwWv3iJ88YN00JkOiHnhvb4WvlWO7qCoaFwg42t0l2/MNqVN+prgpBEWm3E3TFz+CWlLAFSbNGJ2OdcV8gJImiE3YLRu8rkODYvRazIxGAx7ls4wgzYi4yxXQZMqS1ZtqI4GGm8H7MUwuG7cDKyupAwl4fHqdQZiFq0xHxILFMfdz5GQBZwj6AUU1PZxM0uLehXGOudKDyg5kN8RBaax1zlGFmjjkccdKKY+GKSEw5KLzj6F1gZh6vKuISXC+JmWIMY+hs7eZezibe27nmXNi6Aflr1YVVJpzFmMt3b9eVEJPsi6s5IRt6hmkp/IaYj7z1NPsHx1RrRasmopF38MwmBGvWSyX9L1yF2vnWT33PDg4unmTZrPh4PAQjycN6uEvtluquuEd73wHeNU79S6wqBcs66WWIJwn+InuJmgYGYInRpNyGDSX9UFhdAR8cFqS8R6RRF1YSF6obTy1DmiBuq7wfkWoK1oHDRlXac+mRj6ePkZy0FwuOS2WpyQkQzhLF4TZXxn9oGGxKBIr3sgRonXSkocVtokvPs/NDWbesjTziCU6Awu79d6Xoa9lCM3cu3lMY1cKqGI6OfaawRDbIJPzKSGyq0031Tvq1xuEKVNyStI5+w8m9qH5XLmoWWwXnfLGUVmbq68xR1aVejb1s5XnlYS7TEaa5xDeB32swd/OOUJVWSj7aE9ZuSnAFF4aeOG9x+XSNmX9X2IAUcZyGethy0JMAzkLtdP5D4u6Gb2GAHVVq6YMukNGUS9YxUjlPU1VU1UVi/WKtutYrVZcv3Gd1CVak61frJbs7++zt7dHCI7VSql4ddNA0hHSoa6Va2ufs4j4lwBMEFKK4NQws3WO1FUx3FnIJWKgjvXTZW1+Dj7oilku7F5ZDhcCzaKhIOKLRcMg0NSePgl9zgZmXV2UIjr0BefU0xjAUtqGyvHwNC6xcHT2QtPjZ172kXyP6fk4DEyT0YDK4QtSqiHE5CWz8ohTcPRxGIeUmr0ilkd6l8jhdTZAvHHmLH8oH8Y5PxZCkyijxecMPpPThHTOL8jDSNj8wpbH7na7sTY3n0lYCsRzndGqqhhsem2fogrmOGXFzDuq5++bk4yI7bz3MIvgRY1fDcl2OeMhSWaMAlJMpKgF7do5Gh8YOqXXLffXLBYLVX0WG8ldBdrexnp5nYHeVDVVXSPejfo3h4eH9LuBuhnA8jDvPUdHR4ikcXBLXVVkEiHUhFBpR4ExQkBZPCklcAHnRCf3OiFUDlDGS7DCu3MyoqPjNcPYP2XxGzgiInRdx3Z7yW67I1rN9W1veytVlXn18y8Tu4Hgg021VsAqzwbxPNKZD6PKtZ97r9cwJG2fsk1UJnEp0K1mnEM4W1vIrGQwbsKKCDjnr/irsgmUcFdHqKnXjSmxbZOBRWWcuqYxPiiAlAaoHq8h/vENMKEhnBZhbccwOF8Nz407mobW7hE+XDGweRI81/sojynAx3yibglN9cfJ+xWkrk+JUFV2Xmq0MUZF/2DybvZca4J4SDBYF2QWUeJ4zngXEGeQqWX5hUAMThe/02Q/th25H1g2DZUZVuUcCyqNHFwZNGLXDsjOs16v2Q09TdNQ1zXL5RKfvY58NlDFOcf+wb7e9KBMlrqpER/woSrrQz8LCmCUUo/3zjYory1JTvBBNxdvo6irME35KSh3cJOeTLkv2N+WyyUpZi4XO5xzXFxc0HUdi8WSmzdv0l5s2W1bupiVhDEz5Pl9LCHo3IuJWE41Rzplmh+iIFHRcjFDMqOagy0PR2pG0jKwz6KukRtqz7PHzjdsZ7RBEVWEiMHRRa0nu5TwyQzbvudBu3we53h8JkzZpWSqv1gBYhT0KZinQ3eZaLvxvLl2bnzjpZn9/qU8Zdnt5sYHs3HXMaLj0UpdxuCg1xjj7EOALNZOoyOnFcAIXG5bnNOhmiVfFQOKxOmCTllBIZ1i27MbelZvrHnq+g329/bx9nqgj6nrmoWJHxXWfBSBoP16PkWapsF7r03GOVAbgUHsfFfLFTH2usi8pwlBCcY4YpymBhVJQKQU0p15PVFOqGeEzMt1HUN14zsWRK/yGtYm6/KOKdF3PSlpqrC33sM/o57z+PiYz3/+M9w/vsNut7Nz0s17MOCiIIjjLR3fn0e5mw8dc4OyMTuPhI9uNK5HnzMCfvaeek8ny5Pyek5b7ESYvLF9L7kqYCJSjBRKP76XauQ+zvH4I6pL/KyR+rg7lZqJlMeUxN2ZKK+TUROk7CoPq3TNDdDZLpxFxnlyznbyPDPAee9htNCmyOKPBVrKjuimAZxlJ7X3m88nTFZAFYFXXnmFNz//JlbLJUpGLgBF2cn1dUvHRBMCB/v7HB6oSlgu18panTRXqqhCHCcAS6h0kVcB3ztq6z5YLBaQ3CiaVKT1VfUsjdesqmsSkRhVDiQaG6mAMS4E3Wico6ordDwchKCPKVGBhqFaqqiCo6pMcQw/li9cBIIgog3UOWfiEOl6bUfyzrNer1gsGtqu1TauJBB0bqAW/Sc8oCzPcQ69n8LcYgQP4xhzY9Io69HaHsxBmIf+N6o5lMlN46plVs03D2zgz8wAnRRtGGxtG57qy0ewtCbEx9Yb/DLmA/aAsr0dKoKr56t1uZxKB7K3Xd4r6sRV76akZzQMKKGHm4AScerBNB+zn8dy6jRzsBxjqGCLtbydatdAFdwoCgUokug93gWCE/CM2jYIpCGxWi442F/TDy3NQsPabOLqXmDIQnRJ8ykRGi8sfcV6f4/eQdt2LCuTaax0KFq2BL2qa+oix18FqrpWZkdVGctCPZZP1bjAnLjRMPpBhY2VBaPeMZkKtU4bmgxsmq2hHlBEC/U5J5Z1TRQFWVRJ3KlX9Cr5V/tAKHmv6D0W70muGCe4lFmEiq3A0LZcnG1Y7x1y7egGqU10bUfMINlr064w1oVxjBGUc8W4DOyA2eY5u8fzQ2tiuq7ShEmMDb4lFvNmLJKpbUR1SirvL7a6gkCVYACyVxS3Ek8l+ntG5xS6AiQ5LWc4r69XQmjKxp7hkd3jixyPH4IWQo5Dwzx7fWfEWFCIX6RwJxml5R/O82AWylLcvHm8DKUoP25HoJjePIS01xxnyYuMpF1nULMPAV/Vmn94z2AMEOc1d3U208CLjfFKSjmrQuDpp5+ewKOSMYynZecpVrAV9QbHx3e4c/cudRWolw0+e4bINKzR8qjipYOhvWKfwXsjBghU9bSDl/kOJTrQ8LqMAWD8XtWaa/oQ1HOZITqEKkz5dFVpflsZah28J3hH8EXty7yiTGH+2MCKEgqWzYLgVHJkd7njXKBtW+7du8f5ZkNvMh7BO+XcSriigjdpdYK2vUzroryfy7ORZldSF5laisDys9GnXlljhdShuWYeAUT1YGboovZcxnTr++uXrhnRTnjLPzOm4jbLsxWgKwYuV8LiL3U8Phc0BwMShOzm5U6jnDk3hltZSn5hBWwjNVdWGihoZrlopawwSRJM4UrZcfRvV8OKcmOyV3DDeT3H7NDu7LpG8Cjc520giEAIJK/dGdq7EkhmtDmp9EUIYdSCmW4oYzKuE2F1r3ZJEFHJ/NITt91uqSQqPF9VWoIwz5eiTr+tja6US2Rgxf0CDj0MPpTNTOlzjK1hzukUJl8FC3XN63kNIfW2zBTm3CRQW8RtaxtqGqz4bh1hV0L98l7eGUPG6QDRxWKB8469vb2xQXcrGgmAh1AZq2VmYPa6hRwwwh+zFKNMRp4j4fogSuz6yDq11tyxBDPvwMh+whXKKD0rVGl8k5O1oZbIYmp30nO25zglCCQnY2WgrMcQ/JjuPM7x+FzQ7McYWCXh9GScCe7CvNSj7RjeQsJE4Xo+VK9xj55oCTVH3ikTQgVX80X9f7lIKsAkBSkLKnEnybyh7eyZEqW4MVEWph1L3ITWTqc6LYhknlZEKW+khAwD7RC5f+++jgrLmYPr1zh86sj69LTskGwaVFXX1LV65pgSwWhuaSSGTyjc3FgcjHMX9FrLeNMra7zVvcuYGyj1z+FG4nhlRl90RUMI1F7n71XBqXJYFiIqFZitlloU1UrPwfymHBwccnTtknsnJ2NJqBAwtFEX07Kb7uGVHG12S6/kbSWXf408b4JMrj4vo8NdvGYXWgE1NpOXab0UhECANBpzMhZOHvsIE4ITPxGyLXae4oGr75+sg8O93qpoFPGa0XBMWNfg+SuQh+3WmasnkS3pVzb7Q1DvGKqWuoy/aqDjYpsmvI65o2lJlsS8hArO2LveKbujnKEkZbLPj8lITGSHydhLoZ6sgbiG4ImQE0PXkS63+JS4d+8en/70Z6hDYLG3GiH9lBJpGBhixFm9r4S8xcNpyFfyYT96wNHrzTygWGG9XJoQ1PuJDFYwx4rtKt/oLHaei/kW46vMS6q39LrZm7x7zFPoHc1zp5TwCH3X0feqEbPZXI6ATl3XI5FCI55onQPhSuQyhaJaM76y1Gb/d7Ow9ermOxng/PERi2SACqdoqRO0NCXjpKNxfgmFcJ9wOU/rsmQZugKstlreRzfAlK+W0UR3GiTw+ktSSB6wbHkKTQx1cyMgbOGEc2Cd2nMTHBdQSWJnIdFobK6gn95y8im2lzwBOfPnBucIOqNYu6+DKRY7rRs45/DJWl5ETKFtCm/KuQ2pM21HLbL3fU9dEL8YVXgH7GYlcoyEmDSszcLl5SX37t2lfeEthq7qTYgxEi3MXq5WLJbLcbHMgSkvpadyqr/NPWAplJf0RxHNYKG3I5lUiRq0dTB4R6hVhWAOzBQDqazcEGzTCjC2B2muNNM88R5JiTioLkvbtjx48IAHJ2dsNhsk5/F6FYl8iyIfCSPHcQM40wV91JupAh5XNml7BHO6zNwANTTUnC4JIDLp5MwMUJvwzSs7rQurBqm9FpAMYHFWf1L3YDVWUfpfef/y3ZU19rrngL2K5RZtl5JTFOkAERDSFc8UKWiWm/I4r7MciuiSZK0XYheEkDVxn+36+uEAgmpuSBx32UIOl5xxYsVuQ04VkNFNIWcDXXImm3KacyYinBPBRjyLXeCu6+jajr39PdWlzDr8UbKyIJxkyAlJUbs1up5ehPv3Tzg9O+PZtmN3sWXoBpqmolkuWO3t0SwX4LUrIXhPdjrnHibGv7MQ2WnBThefNjCOAkkOZ42yem1TNkkQ560VyCnzBeWPRklKL6umYnZTWeeDL/QrbY7FvGYVHFEg5ziVLLzTnDtPI8OExIMHJ9y7fx+ccPPGTeKup93tSNJq8/MsjFROaDYnpiAW889ui1nl/vII6kkpxMJIPn/YAPVr8mwllx0RZaxmYMZowYG6itHja/lBCfTJwBrdlLwrbFRTArTIUMNyOz0R5PWWpt9dbEeUriBx6n0sBJ3H6fbBEkn5oG5mTN7jXKByqhs57nyuCPPkKcSCmQEKzifG+qIYydp5HXWGt2EeYQpBfVDdRvLYQqS7uhKtQ6g0LxVt1i3nsbvYKFDiQGKHBBOayhliNv3IiCQVqe36Ftd1NKGij5EHZ+ecPjij9jUH1w5YP33E/npN1TR42zAKjlB5r3PNJVuJwLyES0jw2tumAYVeGa+tWM7yR2+6EWnIeFfjXBi/Rr1N73WaL1AHb+rO0ASnebPVtEqtM1nYXnnwlSLbvSRS0jkgXRfZbXdst1vOz884OzvlqadvMMSej/7rj3K+2dD2ndICA5A0XRlbWyUX9QugCFFaSGkRi45KS/qlqNoo0KuE/zTmofONOmTrA3RWny75phlhpSmcevoxxy4x3EyPVgSfM75yZQ80YxMFCJ32tZZIzpX7BAYkvM4GyNArrcs+zLjLuDnCNv0ME8HW2/Ra77RXKnlP7zRvwcIAcc5CT20snec/5ed5uPoIo8ZmBJYdTXekNIXEvqh6aZ3LoXMLARMq0v9fXGwY2i0heBWxzerHU86qdhWTGkKK+vq2C/oQEAdt33P7zh2WqxUA633VbEkGtpSWlQI+hBCoKfQ+K+xaWFo0T0qfot3dMYz3IrjKkF9LB+q60utdQk0LL+tQjfMxKqvbOnutKNP4rRKeaulj6uFrmoa+VwZMHFQA+cGDBzx48ICLiwu22y1933NwcMCtW7cmZNs2Y10cRTt2CiklZ1zJl8r6EQVCNPeyx4tYGxyGXk7hbJGUVw+nrUnlPctaKDW8GAc0ncnTBm8udj6lS/8k5HgVUHGWhmkUkq8Yvz4ARjTsMY7Hb8i9ONfah9Pug9Hdu4zMTqR8KO88YrMExUJK8VoSEO+RkAnoHPds26GzVopy7nMQZg5EzL980Fl9CQtLCuDijIbm7DXhKsHWmZhrStTG1ex2l9w9vs1q2bBerw1OVlpRkaRwFHi89ITpQh5SxNcNu77j1quvknPm+tERl7st+7s9Fqsl9ezmKvgSRsJ4XdfIMEyGYF7XS57CmfK5S8iatRMC04FxOKo6jIvKBWga9fKVGXvlvI5xq2u6XsWrSl2yHCklJCUjb7sxn+v7OLY3la6Us7Mz7t+/T1VV3Dm+w6uvvjrlY7N0RGSqHWOoc7ZQdyjw+UMh4wi0WMqj68yCEaZCmBRwJGve6MsiGq+3lY6ydoR4A8DKGqPkvCWKK4krBaW1vxVjE00qE3BlkwEQZwNjX2cDTEOrO7G3sAi7Nl5UJsFNtStwY/1Jwzw3NllOpFyNoX2ZDeedzaXjEZBlvpuXn+dtRPpcM1yDlKUoJRudrYzOFph5y2xtOJmUItvdBXePb3Ht6BoHh3uAerYYVY9GEV/NA11O5BzJcSANPVj4onPrB5pFw93797n51A1W64bFakGzXGoI7jXvc6U2liE4GT/fvL4X/CxKwMoQguXNFjXY9zrUM3a+hpRKexvIIjbPTo1+PguveKtyXTXc96RoCz9D1w60bUfbtgxDP3Zn3Lhxg1deeYXbt29ThWp8vUKmn3eaIHlMH0quhofk0oSpZK3duTxxjCcwiNE7l0gCMxWHERKMkeWCajIkU2zXzRiVys+WXhhqmYHgwlgqM9RCgZSZmJQyhcKIts+R/zFq0xdmPkb8dTHATFQFq1S4lPrGKatalSshkeVfUQSXi/KYQuvOF4Ak451dRIPzpIRBrhq1WUqbx3xnmhenQUsbGdFpGNZrmkvngi3YsujS7DXGMCRnUo76eVJkvV6yf7BnzazDqIkZo+Ci4JN+rgLASNI5EkOKDDHSVBXL1QpxjpPTU269+iqrdcO160c6dtvqcA41mlA2BosuQgg6p89CJMbrY7VUp022IwJsHlDV2YzG5pWNoUNM9Tm7trUcVBdJ36u3LUX/MgOjGGIw8KrvOx2AOUS21np0fn5OSpHlcsn169fZ399nGAZuv3pbm4UXi1HSf2Fq5EivgIaUDVJsI0BlC80AgzXjKrJW1neGHCmCIs5pT+kViL0YhRT168lbzX2Rn7FmnFMaIuJGCX2x1ygeVKOcUsc2cCaLwc2Ffuk06sq6wQQCwTse53hsA+xiP3q40ogJKpqTbLGPF9H7sZNcfMKJNoB6S4K9oCpnmiFq97mfZNNDs7jSOzZ5wImu5Zig+pgiBIdUQggyeVUgS9bmyVmIXDr7CwUpZxVc2luteOtbXqBqKiQnvIPd7pLtdsv+/j4uCX7IEwqaoiqtyUQJy6IdFru25ez8jLPNNaIJJF0liNsmUEIemRgvBZQvqKAXwaVki8TrVbfwO5Q8WlRmYgqJCuFdF0l2OsIsO20zmnQ0TRJw1ns5JwOAylb0fT8Olnnw4D7YprPb7bi8uGBzfs7mYgMysWO6tmWz2aj3rWsGMrlXpfGiMJcQktmStzDRjcY5AXM5J0p1PedEkwOFUl/oiI5C2NfrW9Ihc7SGR7hxlnw59OEWdYi9nveUIn7xvLpx6OY+pYX6Q+nIUQdkcoaPcTx+GcJmSDlsTJi1rWBt/noYRKs9OyCelN14ocrwSEyotS6dAmgDYwDER3Kfrdamdasie4H3uKpCol21FCxU1x0s9y2FFudwqnE5Hx0lqGfJmYGpNUhytl43C/c3amQxRtrdjn63o7vcVyaMSRumBHXVEHxtiKOicinaABFr6F00C3A1MTkkm9eNOrdQpy2VmpdyRguYMlhcJaLsG/FeidpZB2yWbofgw9jz6J2jNhnCEq5ioWBTVWP7UUxZpR/Uj0ygj0UeKSXatqUJFWLaMA5hd7lhc3rC2cldztOA1DW74/vE03PidkebMj2RITquLZYc7a3xZG5dnLPOQh88e3XNru9oEa4lYROApKT27KDPQpU1TkouU0mmNkJBK7Y5eU/IQp1UGCuhWqEl6FuiMhgbJyxwtMGxF4UFAZ9009/5MkDFIS6TXaQSCOJI3tM5WGRPZaR7wYr8tpad2YOMG15hH0Gyv7+uBrheNZZE24KxkNKVBDbP8zVjc4wF+oSz1g3SoPmX94gEoLyGAinZoaFqVolybIFIztr0GkrNbJK76NN0YUpq7pxJWmCNpTgwJTO9WCXJh1msM75fWayNV/Ur114iOWoeEzNtF2G5T713iEN0MqrImPsE77m83Gq+HgLO6WiyUDmaRaP7xszrgRWnncfZyKtEHHm0wTvTc1HNEmez3MvgmkKonhhFE3CFUxRUy0aeKKomV3Rcy2cuEiCgof2273ECvXW/B+9VZS44+tMNp3fvc/feA+6cnnLpHGtxXNt27LqBi+VAbhYs6ppnl2tS33MxtCyTo/IBn7Ipywk1lr8F3cyjQC2ZA2NaXdi9OhiE0OuIgMHBhYE4dcpUWegdDN7Rec/gNYxdZ1gBrRMuSdROaEQ7HwbnaESoyLQ+EcWxQlMpL45aHIOH1ix7IbDOWqDvHVQydR3NSQbu/w8UdC8oHF5GSHnzwcmAkLFkkIBUQvc07goavjLG1+Lc2LAbvAILDmUvODdRzYpxuJxHo/feK7uh5IE48ow7ihgSSynuWhe1K3Q1Ry1QyUTTmkPJqfZT8u4yVSUKZJCoHHQSWbjMqnY0rozsNmaJNbCWoS6r1dLkG7as1kudUV8p+itMiHIpdGu/pKcpEo9WtHdeVdJ08o+F4sHrYEoRnAva3W5esIRDhQA/D9OqEBiyiRKZwZXpTdMsxJJD6XPbtuXy8pIhRk5Oz9htLtneP+X0+I52vWcFHpxAiolt3/Eg9bDrWCeoqkCF041lGKhRDzSpnzlu9JlGHHe8MEhmEGEgsSvxnnPsCywNBe2DIpOVCIsMfYB+nFrrCJmR/6liS5ld44hJWMc8ttR5hFqEZYaLoK1JzyRh62Dnda1WGWrRPDChRhhKueKhIz/E7PlSx2MbYCU9ORc6UUF5zFOEwmyYaX4Agai5qoWEglqZGKrnvCGjYv1oOKpCxPYT+qVK2/p4JVJrzpRN4awSZyix1QiNZeG8EnNLY2+BpJ3TOlq6Ej5MBugkT7QwrI7kFDySnGEY8Hhq5/CSdX6eD9NChxElrOuay8tLzs/PObp+jaqy+QxOQ6GC9s69ltajdAMKEoi2aYUQ8BUKUJhH9B76GHG+yCDY5zPDGkV2mTx7qCrSMGh8UlBF8951rQM8o+V9i7oZz+3s7IzddkvMQnVwCAcXDLeO2d07IQhc5si9GlYusBbYdVFn98XIbuhIQAcQdQ21poB2PcFlQMNRqwMeZkfn1VMdJUcfYFt7WmDVZ/aiEgWilS6aEGi8sMvC00mjsDMyta+4cMJBVIbV3gAbL+wqz/O9Tha+XzsOo3a6Zy+jJmiPQA4cSeAgCVvvOKsUklmlie8556lOJYnX2QBdTiOx1TnructY06wbA7j5Qi5BaKlLjZw5MIUzTXRylpFho+jfjGhtqGlC6ESbgV0uBmdQvThC4b7b51aI2SbXZDRcs/cWJ0Sv9cm52jfoxrGgvIYFthZyZyAnvQGSnc2nqAlVQ0xCH6OGV7ZgV6sVKSU2mwtu3rzJarXSLghfSiJXN47xZqpvNNK6emqj+djuHm1+hHZ0VJW1I0kYwYUSQheVN40odMMKFiKXPkkx8Ms5d6UElC0XTDFShcD169d59dYt7p08oFmtyEdHbJ65wSWJeHpB2irndSHCqqqh9uxyZimOQaAWYbDNpXIOd22Poes5b3syjm6hCHDVDnRWp90XzwGwzUJMSh/zOeNx7GVoRRgqj7t5k3xyn5UEJFTIckEvkXu9iXRJ4CIPSFND0JmSdxpPlTIHQ6Zd11wsHX7bU5E5bqBKmT3RaGsIgUsvDA5qcaPhyHztlHvIPL350sfjlyEKQ8rNuo1FCcdujISnk0EgKidBzVOg6HjiHdEBsTAXUM8HE+okUBjshb419erKbOGqMSdX0C+msFIU1oaC1RgKitPWqjwTfZpOm2iobk5TXB+8I2VPyiCuVgZKWOBCQxLV1WyaxuB7YbFcklLilVde4dnn3sD+/r7OVggl70Wv2wyuntP5FAWVkR/qQ1AYPuvINzFP7xAWtQpA5ag3qgA5xbCr4EH0VqecqZxnUeu4brFG3ZHXOSv1LBYLYj+w2+3oh4Gqqnjr29/ObZcJJxvOLy940x/8vVRvuM7y5z/J7b/xw/AgclEF6m98P2/6jd9Ef+8+X/jhH6W/dYeDPtM5rc3m4PmW3/O7+PjPfoTjT/wKz7/7RZ77Y3+Q4doe+Uf/KZ/8kR9juWtJy5rzr3sX7/8N38Iv/vUfwh3fJ4eKC5fYt/at7dGa3/T938P//Zf+Cv6ip/53v413/P7v4r3dwCd+4v/h8sd/ik0YOPr1H+Tp7/39NIsl6f/6h3zqx/4RG4lUX/UmPvj9/yHurc9x/6c/zL/5W3+XcL7RTTcJu+ef5mv+8B/kF/7uj1D/yhdYAG3QtGi+cU45vTCDSb/k8ZjKFagXsVG+OWbykEajGnIev5IwfsWkM77Ld+ORKHdEnDU86mOHrF9R7DlSeu+06JyzUOH0Szx1+dlAnCFnfRxljhzELKTsyASGqOeRs7MvgZiQmCBp4ddlhcGV9aLeLg6ZFIUYlRGTnANf4fyCTEXO6ufrOmCOjfV6Tdd1vPTS57h3/4T1asW1w8MxD05ZFaYxD17KLEUiUG/iVGBWWF7PNSeF5ws11ftgZIdJv2WuxVq0Ueu6spApj0K72kfoaULF3mpFHcIoCx+KVJ9z7HY7NpsLLrc7zk9Oea9bceIy8bf/JjhYcf/Hf5Kj976TZ7/3u+kO1hx96wd4/5/4o7zsOnj32/mm//JPIuuF9tZ5zwLH4uga9fPPcvezn4dr+7z7v/oTxDv3efD3f4p3fN+/z/63/jocjmvvfRcf/G/+LOs/9HvgYA98oHWwK6JSTnjjN3wtHzt+ma5tuf6t38g3/sB/wq2f/he8/C8/zLv/9H9M83UvcvDs07zrB/8U3RducfIvPsy7/vj3cfAN78XVNd/yA/8Z2xv7fPJHf5y3/c7fxjt/z+/gZjIivw+85ff9Lg7/6B+gevNzrES4lmyLVPc33Se96OjW+joX4rUO4JR1kq/SgIoKt+PhELT4x/H07EmqMFyaXxVcVd6DjoOyqTTOm7czuHgMMa2ON3u9MgrmCnteoM/aAYHT85ikLBLZ5dFDlyqFJKHOOsRSi67qBVOMitBWOvscvyBmxzBESBG38NQBFosFOUfaQajrJcvlikVVaytTSlpesTzXlxO1Y07n0886xtPkQWt/yTvrWCjRCIh4Y9OgNUpXQtxS70o0daXwoQuESknYLmZcLqFoha80J9p2W6oQ6IfEEDO7buDsfMP24pK7x3e4/enPcOtoyQtvfRM/9Rf+Z85+9hf5heNjvvX7vodPP32dpfO89L/8De7905/m9I1v4MX//s/T3LhJt9mBCE2GF77tW/j4L/0i4WLLjfd/gFVd86//8l8lnl3y7JvfzJt/4zfzc//sw7SfeonLP/mDfN1f+EGNTMSNWqwZGOqG9/ymb+Wn/9YPsR6Ea888zfHf/GE+/Xd+GAmON3/zN/L0e76azY1D3PaSz/5P/xux2/L8O57nxd/6Tfz8/TscfM07+Gf/0X9K/NRLfKKCF/7t38yv/B9/mzgMHLzlBZ773d/JS6lnEGFrvU1L0Xshs3s3rnvBUqJf+3hsD6ieSj1BppAEMmShEkclKm7jkoxfJRQWy/+mxlYxj2NDTsYvGCU4kyAxq1hSEkPXsonhXv3KxraXLNYyZDSnWT4oWZ+b7UvMhYgNHJGYyEMk2iDP8tUOA7u+p7WGWmWh6OL31sJUZgtWdT2K4S6XS6q64vz8nDt37vDgwQO2u51RsSaOYlHkLl96jaafS2hYPGRtNUDv3NhIW9DM0vYzopuCIbx6m0M15acT9WwaPjNYmJlzZrPZ0HcdVV3Tti1vfO6NxBjp48CrJ/d55Vd/lcEJ/a3bVP3A8OmXOFyt2QPan/0ox//8IwTvufZVb0e6Hrdtxw6E7f6Cd37t+7j9M/+K7D3Lm9e5e+8ecdfh+oFXPvOrNM+/AYD+dMPu7gm1ibQobcyzjJkNwv5Xv41hu6P7wm3a4Pn43/sJfulv/h2uXw5cf9sLHL7z7Rx/7N9QPfsM3a1jVpcD63bg3q++xM03PU949jp3+x353gOeHuDlz3yWk2cOSXtLKud52+/7nbR3jrn+qy9TZeEwCWcBtv4qAnqlHQpe/zpgTNMbTEVHC5+KhpxMHe66707J6RxoyMZuL3zAafcQS4nU42XTlHE4XIAs084+QvGOqZ+QRxt8rdY/8ivjWBtTay9jjZ26byQLQ0qU1hysdOKcp/Y1iAlPZRCfdFikK9CzGspqtcI5x8nJCWcnJxzurXjr29/GM298g7J2olOZg8qP6GR5rvbBTde59D2OTanIKPI0smgKipkmirLuPwaPOUeKqowtWZkgziuQ1A8R7yev2fU9i+WSk7MzFR/Kmd1ux9mDBxweHnLr1i16BzIkWoSD9T675RqJorW4YWB7esrz3/wB3vndv5O9976Ln/vrfxs53ygpIgg3v+F9vPzyF6jub2ido6803HUxU9km3nmo8SwsnQoW7hUc4MBV3Gvghd/6G/nEh36aRRe5dIIfEmvfsHzmKd7z5/40n/0HP8npL3+K5de/l8sAgyQaF1gk4ZoLuKSbf+eEU+3aRUIg5MzB21/gTd/1HfzMf/c/8vV/7A+TvWdTOSoBeYhqdoXMnue9Gl/6+LJAGAOwNFyzxV0XhHN8xwlaLxQtDRmn2uSVuXHMShTi6PNACTGZGaZLQmHaOGd6LgEwhuC07PRvmDEGX2gzjHMIdPc3MvaItpbwVgECRGt0JSREdOCl8zW+aqxgrqURnNgkKE3C+77n8mJLFRr2DvbVGO/f52Jzwf7B2lqJPHXQWfdj8XvWPRD8QzxY+9xin6YYaaGwaZOvKrrhtKwzpKgUtVApoCQC4hmGOMlDeq9lDotosuhY6KpuOD07J4RA27b8q498hGWzoB962q4jB6W/Ddst127eYLu/shKQEL3j9O5d8i/+Ev2i4Y1f/SK36hrallwHvurXf5Bf+PF/wLqL9I233FlTCh8CMSdDLoUabQr2tggLM6hzsHj6KQ6fe5Zf+tgnFMjLkL3n7GjN1/3gD3B+5y4f/at/i6odwMA8VfXTNdOnZOmLrpWzAEfAjUGITc1T3/N7uf3JT7H58EdZfq+Qakfr4Sg7KufpRcbMqjiRUfFhZpBf6nh8UabZ7sqMS5mGOO7i81rI+HvxeraD55ytXjXtIDEbt9F5stcamdK0dGGUXkIvUzljJHgbWEEJxSz88jYazcvEJb3a85ZRJuuEmpYEmhwoClilty4lJZZnX9m5l7aiTNVUpu4F2+2WlDKLZsm1w0P212u8VzL0drfl4uKS/RBYL7RPcB5VlGNuYHOPruQCPc2pQ8aPcw6rRo0po2UInz0xxVEoKOfC4/X0/aDnPJZDhLbvVVQpGdIqOqNjt9vRdz2f/Pgn6LuOpqqQmwdUONrKs3n1Lqs3v0jrjBFUB84+9VnOP/or5B/5+/yO//Uv8tK7v4r7H/5XHD3/HGsXuPjMS7hgVMQh0VQ1UnmGNuMWC5Y2DVe3Y5QTaqWqjHAePC9+8Nfxys/+Au6yJXqnxXjveeaPfDcXNw74yJ/6Qdz9DX3wrBPcyJ6lq4gh0teBLdr0LM5KZgK+rlhGoTnc4w2/7dt56Qu3eOYHvp9b73yem//ed9J/4tPEzx9Tx0SuSwePv7JZlva719UAMU7lHHZVPmgR2tXFqhC4ch4rN4f5NeyJg0r1zRzgKMkgiGmqTl7JmYV5HDV6Dv3Qk2LSAZ4zdbNyzKfpOJNvcBaqlXNXgq/134m9t1jIZuzgeb7knMM3YfS3mUwIDl95QlDeaUwDOQmLxZL1Wg2s67Sb4GB/n9VyiXOYbKAfPdhrGdoobSATXc2NmwTjeRXam3PagVJKECVSKGE5FoansdgejR0zdbDUdU3f9+PjF4sFp6enJnKc2Vuvudhs6M43XK48vutZveOt7G7fo37+Wc4vLuiGga/7/u/h+Bc/xulPfIh4tuVi6BkWFakKvPdbvplP/sy/xLWRi+AISeju3OMNzz7D8sY1hiHyzve9h83nXibHqLiRs5yqpA8Z0qrmHV//tfzTv/TXNFd2jiEEjr7+ffy67/wO/vGf+fPkV++yj2dD5vLll1n//t9L/8w1uvPM8+97Dy//8qcZbt3hqF6wfsebeXCx4bn3v4eT49sMZxfc/2t/h+r6dfpVQ5Uz680OiRo9PHCZBiXKT+vNoghkpFG+bga4qsM0osoxCqMWDUU1MKOqOAfiaezn7OzPWXCuJgRH9saaEVBy9kzFayZZJYbi6C6oxXTV4s+kvtfiug58szxB8yT1b4zNrCU5LgVqR5nCY9lSAWwwYq8TfC7GEMi+BrFgOQ84Hwi+IYlj2ylypMYQICeGdstld0pdVTx185CDgzWH6yWrulF6VBbEa347nl8xNqbJrpXNoM62QZQex1TCS1eRkuaoCegMSFFaYGJRmk8tbQjWD1d5R0xRWTyieXmFgxDoYlQuvRO22wuOb9+i322pPDx74zqnd0/wX7jDyT/5l3zgD/8hPvrrv553vee9fPIf/RTp/gWbXc+b//gfZfHMsyze8CzSJ84/9VkW14549i0v8NN/7ydYJYhe+Ztn/+bTxJeP+Q3/9X/B7Vdf5S3f+EF+7D//cwjQoOpmqwxSO2rJxOB54WveS/vKHbqTUwXzKkdfe1787u/i7OYRT33fH+Btf8TxdJv5zI/8GC9/9JNwuePd/+2f4ezshGdffB8f+8v/J/3tB9z9yC/w9X/2B3jpox/lPd/27Xzkf/gruPMtn/zffwgn0F3b45u+9mv4mR/7SZZ3TmmDYglN8Tz4MSpxFv77x6wDOnnMYPUNh8oPmfI7ufJ7+Xn+t4XGQiRnrPFsSbZ3ZDelqfPdvXStM34r1DETUy3Z3uysU9b6ZJAJ1o1OA8zJA0ztKYAWUYUrn6W8ZRJtkA2utKY0uHpJs3dIWNRa8AgB72vVnRElB3hg0TRU3hOHgSZUrPfXvOnNz/Nbvu3b+Zr3vJfrT92k2Vvjl4uxU0M/zwTEKNdVz7eqazJoaCli8iiOtm2JUcWpxgZbH+j7gRAUCNIZ9o1S8TxsL7fUTV0wLuN9ahQDzJTMhNPNObu+59VXXuFD/+Sn+NxnPsPl+UbBmHqP09NTbvvEG77zt7B+51s5+/hnOPnnP8vR6Zbt4Yqj7/7tvOdd7+b485/nV374R+k/9Vle+OYPsHz6Oj/7936Ca712mF46YQVUb36Od/3u76Q6WPPSP/sZ7n7458lDYhUFt7fiTb/lW/nch36G1ckF5xV85/f+B/zchz7E7Y//CgtjOfVNxfMf/ACrd76d6JRBdC057nz4X7P5+KdxL77A89/17yCrBXd/8kN0P/cxJCX6m4d81Xf9WzRvfiPHH/l57v/jf6HeLgQiwq72vOU7fjP3f+GXWX3umNPalYqcUU0UmAs+WJ6pJNR79+79mnb12Ab47H6jT/De6lkTudes6Eont4iyzrHaFU7DwEoUdkkjamNwuJThLZORjS+Ngg9X5st5N/49CnoBZCLfRvO6jRn21KtVegLnQ4mnQ0Q9Z0CsW97h6hX1ap/F3iEuOGIWfKisX80ocAbEBKcl2PVyyXq1YtE0XDs64Gvf9zV8w/vfz1ve+lb2jq7hFo3Nur/KQx17HwsK2jQkUZJBjNFGJsOubbVsYKBLignBj2WO1WpJyplmsRgL723bklJitVricFpWMY9ZloHqviTOLy94cH7O5WbDJz72y/zjf/gPSf3AZrNhGzOHzZLz83NeaS+gqdkfMte7TK4D94aOXRxwwCIEupypUiQc7tMvatyu4yAqSn7pocZatIxfLMkGplr0sxdhL+vjN07YSWT/+jW2FxttM8uCpKQCw+KRKPQI2a7jUhyNc/QukoJ6qJSUgJHVCMA7NpVKJK4jrJxjZ9d6JdA6JWOv8Gw91A6i19WJGaBzxvzyGtqfnJz8mnb1+JIUvTaE1pUjRpkMxcJE50pLEqM3y4Y6JQdJ0qj3ofr6jhGdHKlljJQzmOUw9j6+uHrnRtRVs7milqUvOUYGyChMO0s51dPOvLX+qXhxvere5RFd9E1NWC4JdWUd8mU6lHZUe0MUU0r42lPXDfViAc6xWC25fnSd5WJB23Y6Qy9GLYSHapxq+/A+qJ9LP1XMOhassI2yCH1MDNHKIN6PeijlQ1xsd+CVgymSwGYmDsPAkLLS5gxomctGeO9p23aMMLz3vPGNb+TFF9/FL3/0o4QQ2MSe+yfH3GiWXK9rNl3HkIUzyXS90DthJZkLIs1O2MMxeMH3LSFHcoYuW205Z5KR612OkJJuSraBt2Ta4NnvB7rg2HpYR+DklMpNgzqrLIQhkUNFD4p65sRA5tQ54/1mDrJjmWBD5sJ6lvfEE2I2+iN0CJ1kUlBgZo3nmUFoPZxX9n7oZl/WmwtKUwRM0vDxChGPD8IktY4sGZemSr96FrX8Uv1w49QLV2wUMXnvmc+8svC8nyD2QMnTCsTpLO/UUM+Vv2FcUou3y8w4wLQcp9ATZvlfMbrZx5t7oWA7sb04vqnxdaXz/GZgSfn8KSUInlB5HRkmQjcMY96Zs0oOrtcK1as0RaCpm9c0PsCk8zXPjSmRgW7oaXuTepdC2HYjUaEAMFVdszk/V4ZS21FVKsnRD7023tKx2e5Uxdq2r1KAn7RcBrsv2qJ086mbHB4e0m63XI+CuIDftZqjCWxypq0cvQiHUXimy7wskTor6DRUQIo6NzJmdklJ9Y0IS5fondDZ/Woy7CddnHcqYecj963VSATWhqdlX9aWEjoAejKt1wgmZGUyVbbhp+CIYgR2HEs791q02XadrEHAGn1dFi48bAOsvaNzwo7MShyD05Y2seQvF30foPKOMCoSfOnj8bshUOAgSboKmc+Qu/lQilIemBQ55j5IQRRzN2OpQp359Ni5sYJq+OsH9sxOgTIIrRigAalktFOiPHTyqMXLvlb07fCu1MgEgs5fzyEgKePHpll3hTSA1wJ31/dTM29dU9fNCFat13tKqhYBY77Mx2gDYyE+i/I4Y0pEUT2btuvIWalokvM4ZLSgtzJk6qbSCEUcfUxc7LZUdeBgb82QM31MZAv728tL9puaoWvHybxlsEzpirhzfMz9+/c5uX/fOjk8+8EzNLWGZc6xjhbyp8RezJy4xG4h0MNhLpthJqUBYgLx5OypE9RZEJ+oRLTrw+7fgHbHSxQqp/142TbFQYTBZVzWzhVBa4MtEHJmH8ZrKKLG5DPkCOLhwquywDqqanbvheiFJUqzTLYkG9FWqPtBOPfOOiGEwwSXJqFZxluXWY6TDunjgTCP7wFhbBmaG+BYENbVMy4++9WW9BgRTrIUlMVroMro9WYiOm5qdBL73/hCWG1IU+D5uLjxPT0CbqbOYeFyeYDjtUxQNwcHuBBwVQOojqZiQHlEFMXZ4EuKFJ2OZKurhv39PY6OjnDB08XItm3Z7nYcHh2p/H0WuralaWqgmiHKSmCIJiuRRWm43TAY2uuQmFSmgqxcVLSY7DL4nBmGXluOsg5Dvby4VEYNDucDp+cXNM1C6WwyUPmKvh9MclBo+45t1+FNYOqVV29xfnFBTImDa9f4QrtlVzlaHLntWPqALBs2XUsvgouZXoRYeVqXCTZHJIiKL+mHykhyDCK0VdZZg1k5wjuvnei4TEjCWhwr81Sth61D25YsTPUmVZG8/uyztg31ziGVRl41niY5Whfog6oc5Kwbce8S4oQkimMMVqaucVzP4LPQWZ16KcLSOTpn7XO+jLizjV2URMDrXQfMlGjQXTUfNzMhswA/+3/5fRx3ZTWmqUMeA2DQ4vvcQOWqD3RSCrGKVIoV0D3WVQ72mhPAk9w837MHODcfLTB+BqWbC3o7Pc7V+GpJCAtd+GTElMayyxBUbboU+INXGfimUXm27eWGs/NTVnv7PPPshiFp+DV0A6u9PWXjICDJOkQw1Wy9xikLItrBnQal4kkcCN4zpMSu74hZh2QmESUHy6BNwkAis9fUdDtodxpyZjxnmx3DsGG9XrFBWC9qDpYL8qAE9SFnzi8v2LUtd4/vIM5zsd1SLRdUOXF4eI3tnTusQyBWDX2nYwtCFBbZIYPAEKlLkd87yNqHqIsuUzlBghbbg/V39qi38wJNQZtQ+YfecnPK5CfnGCQTkVHpu7Jl09lmWM92V0E75j2ZZZYxs8E0aAqpQ8RTj2kGbJxKZujSyWQcDypdd+I0StA1ncboS8TTv97S9I+CFWNg9yWeNH2TRx45D03dQ/+d3ktmfxI3/a+Eq6NnnfnK19JkLOWGudTh3JPP3zoErb05UxxLOZsI68x3Wxgooshtn1TaPnjtvhg69ULVYsFitUfbtdy+fZvlYsFT1VOqxWngCWNjcLmZE7G86xP9oLITw5BxKVI39QioYAV9b7llDyyMxlbXNUimWS7pY6TdbREC27alHyKXXQtpYBk8Tx0ecLhasV4tlOs4RM43G+6fnLDZnOO9p9tql8R6teZwf59d244zCGMqolQRJ5naBKFGKCIEMLQ7FfDCNuCysZfBNG72t3mEIrM4qTy5pBNXMi73cPJS1pI+x8uMIMLUTlTebKQnOkeWaJgABUEckdPxfKelA0A2gejHOb4sA5wv3Cu1s5mhjeDLYxyvCT5IeZGrRxYNMUq/mkcVrDxWcJ8Z65VNYga8FFLzHESZvemIaGVbFcHrIMrkVPahCB8V7X91fEJOExFasuqnBBzr9ZpF0yCSufXKLZbWs1c3DaFpCGGpIbk5/WjFdRGVNlTD02bkIWaGIbEI3nQ6B1JSLmuWjMdrjhhVobuy3sKuT8pTFQWWhn6gj9rhUTc1QxyIUajOM+3mnPWi4WB/zf5yxa3umKaqONjbJ+1aHhzfod3tlK61WLC9vCQPA01VUXk/GmBMiihWs2scrdEa58j22Hmmr3iXe2Qrfvgo99TPFr+HcR4EMkkOPlLjfWjtvuYGfOV9LBopJayHcvUiaFw29nJ451Q25TGOL4OMPcGq8w9VkB8oUiWv/aG+2AefeyL9+bVPvOA1cw+Em4i1X+zjvtbZjJSz8vvsHHHoKC9n02MtbPPiVA6w7MMPDeBQD5ZHbdNobT4XFxfsuoHU9dQC+3t71E1DQjg8OGC9v89SPEMeSFIGdUa6viULhHpBzqVUAFTBBsIUjU/N7dquo+86auvEwLlRzzNnIThPaHRgSx0qehchC3t7e6R2h/OO7eWW41deoaocUunsQJfVm3W7naqdi3C5uSBJpqlrUoy0bTte6yoEXF3ho5K/S8pQvE9ZyCKT5ykIZpnp6Lm63sq9uao85sZ5HjIzkvK/19rcrwCGrwEkysxwR1EwC0XncwDLc+dj0+Y8Y3LmUR/82seXBcI8fMgjP3zx4+EP/Ti70MMXMZS/mZ6mwg8yet0xFHjoNR++2A+fs5uFPzgDm3wYR51pZ76iacFCRZVddEZbM2Fba5/q+h6PU2K2CFWzgJg4aJY8ePCA4+Njzi4vuHF0nZtPPc3+wQGuUlEnJUNHhtjSLJbE3CGiRXPva0rbUc6ZaqFljBAC22EYx3+DkhZ2fU+fIk1TE1IC5wlVTb9cIoMSrpsQyM2C4IRqseAkJ+7dP+X47l0W6xXrxYK7x8dsLy7ZnJ1xeXFJvVzgXCCmngqH+KAzJgzRVnaOlhySyDiFKHg3dh6M93d2H8ax1PLFN3zsnkucD2SxqUbj+rg6+HX++oXuV7xWsMnBV9aZbaJlUKsIrxk5PWzMo8cVNxWzf43j8Qd0Pu4Dv9jzH96RChjycDj7RZ7nxJTnRVHK5KbQ0+N4vKrLFz83yTq0URO9jMPjRRhiUgHXEvbIPGia9R8aQ2joe8jCEAfa3Y5Q1yydp2tbttstZ+fnvPLKy7iq4uLpZzg727C3v8/etUMWyyV1oxNmQ10RQiBmxjHPKSV60dyxsiI+ToenDMNAXelkpGHQMWJDVpWBygfEmo3Bsdc05IXNNWw7UuzpUmRRVdx4+mm+cOdVTjfndHfuqGF1Pe3lJU3dsHNbLjYbvSclZCzJnAjBe8R5RYdTJluRXzCWD9NiHod0zn4u6nhij9OwT2XyJ8OdgLORtK8ndDWfHFMLN3rf+TEnHzxMscRQT93PvlhUVpoF3IhziAhkHcH3OMfjM2G+FNbyGudX6lnzPKwcWrNzds9kBDc0oZ4Sb80JClFapg/qLAlWd4VWiMTeR5kzgvL0NE0r2Yadr1OGznjRmLX6gLaSVBXUC3JoVPbO64yJIFpwHVJkEBsgIhB3A7HrcLboSlNmyOBdy+A1lzw5P6PLiYPDQ7bt5+k+/WkODw95w3PPcXjtGjdv3uSpp5+iCivAkdJgrVAKCMQemnqBw4OptQ99JMdMU6tCdxJo+wFXKW0jRdXG2bUdAlRNRRV0IE03DLS7lmF3yaoJODLvfOEt5K7js5/9PA9OTrnYnOFyYtHUDBLtMytQBEpUCN6T+h4yNk5NCd24SV9mPicyg7btiFEU/STLiIAXFWZOthE6GzWQnN7t4BRB1sGiGCLO7P5b07GtHV0fWF43fS9LM1tLnPNF7EofnLGasy/lJ0dhgOLSCAyN69IZLe0xPdb/Zw84ApPy6OPkymPclX/ooNdSWDfDechzTzucLvJMcfflQ9tuad3rRcezjAcumjPY6zziXct3mToRvHNEr0ZG1rqS9tBpfW6i2en0pUEyQ4wMlx25jybeygjoxJiI/UBf97R9z4Pzc7Zdx9bGOzvnODw85HJ7ybPPPktdBfYP9vBVIPcqTiUwSaD7QMpC3w8Ks3sh9lH3J8njgJAhZZZNoO96BM0FlU86kCTaKDfbJJqGnAZOzx8w7C64trfm5uE17u0dcO/2HSQLl7st9x+0NHVF1SzGYn2R4wAN3X0UnMngS0oMfaTIQkpBvJ2b1ODEWCxXvE/JqXXBO8B7GSdCqfHEh9A/NUxnRo1t/MpPfhhNNeMb5SEZH5ORK/ke+FL9MKKxAloiHmZrYnx9p40Bj0mx/jJywC/1go+Jek6PtzCCGYAz+3lu0K/13If/VyDmR4Z2jh720VD30Y8wyxWSstmdm4zzYTQNNGxKOY1cypQS1VgC0YWSUqbtOtbrtYrzHh3R9z3Hx8cMw8D169c5PT1lvV5zcHDAyckJ12/eIInOuveN5n1KCtAZgDFG+l7LHtOoNlGd0mXxJKod2vU9Kxux1vc9TVPjHNr7Fwf6foeIUFUVFxeX7C7OuPX5l2jqJXUI7O/t0fUtddMQU+TB+TlVVbG/t09VVTRNQ9d14/AZ75UTnHJiIhdehclKeDkxVaZrX5BFvc4lSpruUanPOfx4f64CKNNjX6vU9CgeYGBOYXEZxjA9Juj7BSzU8xpiiuEE4kbh5zGlyo9nfPDllCGuoJXl5Ka419kvYyL80HG19jbNuyux/CRewXS/Hrp4D7dAzY3rtYxsArp5DQN69CgAh1RiokeVQuYY39VNCJmYZLvkWWvW7HOKnzrNvfNst1uapjGh3g273Y5r164RY6Q2MaezszMODw/Z7VqSCKu9NS5rJ0RwDieBOAy0O51UVAAYPfdM3Sw1vBOVjByGgbZtcU7Z/wreqO5OXTes3ZpwttPZDxc6cuyzv/pZFgF2ly11WHK4v4/z8IVbX9C59k2NJNWJCSEYqVsL0sMQyUMar3uZojWOpSv36eFrZX8LtlHMYX9EC/NOZqRGKbXe1zKwyVBHfaKyTrAmaHtMyUNGj4leG3fFA7qJ22hx5vSemp+Oeaf9OVSP7wEfux3pyfHkeHK8/sfjC/M+OZ4cT47X/XhigE+OJ8dX8HhigE+OJ8dX8HhigE+OJ8dX8HhigE+OJ8dX8HhigE+OJ8dX8HhigE+OJ8dX8HhigE+OJ8dX8HhigE+OJ8dX8Ph/AeiekgUhC075AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "predict_animal(\"/content/test_set/test_set/cats/cat.4210.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "wiOOFxXFdaht", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 230 + }, + "outputId": "48160249-173d-4609-e5e1-f786e6d442e9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPMAAADECAYAAABKiRcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9W6ytW1bWD//68T2MMeac67Rr711HoPwT0Aii8QshRL5EwiESuFDCDVQZL+QgxsSYeGUKE7yAeFUqMTEB5cLEEOWqTKAwmhCJwQAmCBj4sAqs0957rTXXnGO8h378Llp/x1ybKqiqv4sPv/qvnqystcYcc84x3vG23lt72vM8TdVaKy/Xy/Vy/f/90n/SL+DlerlerhezXgbzy/VyfYmsl8H8cr1cXyLrZTC/XC/Xl8h6Gcwv18v1JbJeBvPL9XJ9iayXwfxyvVxfIutlML9cL9eXyHoZzC/Xy/Ulsl4G88v1WetjH/sYSil+6qd+6k/6pbxcX8R6GcwvaP3UT/0USin+63/9r+fHPvKRj/ChD33ocz7/ZbC8XC96vQzmP8b1kY98hB/5kR/5k34ZL9f/Q9bLYH65Xq4vkfUymP+Y1gc/+EH+6T/9p4Ck1NufP2zd3t7yd/7O3+F973sfXdfxyiuv8M3f/M38yq/8yh/5ez7+8Y/zgz/4g3zlV34lwzDw4MED/tpf+2t87GMf+4Je5/X1NR/84Ae5vLzk6uqKD3zgA1xfX3/O5/6H//Af+MZv/EZ2ux1XV1d853d+J7/5m7/5Wc/7j//xP/IX/sJfoO97vuIrvoJ//s//OR/60If+yPf/cv3vL/sn/QK+VNff/Jt/k09+8pP8/M//PD/90z/9eZ///d///fzMz/wMf+tv/S2++qu/msePH/OLv/iL/OZv/iZf93Vf94d+3y//8i/zn//zf+Z7vud7eNe73sXHPvYxfuInfoJv+qZv4jd+4zcYx/EP/d5aK9/5nd/JL/7iL/L93//9fNVXfRX/7t/9Oz7wgQ981nM/+tGP8m3f9m18+Zd/OR/60IeY55kPf/jDfMM3fAO/8iu/wvve9z4AfvVXf5Vv/dZv5bXXXuNHfuRHyDnzD//hP+TRo0ef/6K9XP97q75cL2T95E/+ZAXqL//yL58f+6Ef+qH6hV7iy8vL+kM/9ENf9O+dpumzHvulX/qlCtR/9a/+1R/5vT/7sz9bgfpjP/Zj58dSSvUbv/EbK1B/8id/8vz4137t19ZXXnmlPn78+PzYf/tv/61qrev3fd/3nR/7ju/4jjqOY/3EJz5xfuy3f/u3q7X2C74WL9f/vfUyzf4/ZF1dXfFf/st/4ZOf/OQX9X3DMJz/HWPk8ePHvP/97+fq6urzpugf+chHsNbyAz/wA+fHjDH88A//8Nue96lPfYpf+7Vf44Mf/CD3798/P/5n/+yf5Zu/+Zv5yEc+AkDOmY9+9KN813d9F6+//vr5ee9///v5tm/7ti/qfb1cX/x6Gcz/h6wf+7Ef49d//dd597vfzV/8i3+RD33oQ/zu7/7u5/2+eZ75B//gH/Dud7+brut4+PAhjx494vr6mmfPnv2R3/vxj3+c1157jf1+/7bHv/Irv/Kznve5Hgf4qq/6Kt566y1OpxNvvPEG8zzz/ve//7Oe97kee7le7HoZzP+HrO/+7u/md3/3d/nwhz/M66+/zo//+I/zp//0n+bf//t//0d+3w//8A/zoz/6o3z3d383/+bf/Bt+7ud+jp//+Z/nwYMHlFL+f/TqX67/E9ZLAOyPcX2x6O1rr73GD/7gD/KDP/iDvPHGG3zd130dP/qjP/pHpqg/8zM/wwc+8AH+8T/+x+fHlmX5QxHp59d73/tefuEXfoHj8fi20/l//I//8VnP+1yPA/zWb/0WDx8+ZLfb0fc9fd/zO7/zO5/1vM/12Mv1YtfLk/mPce12O4DPG1g5589KiV955RVef/111nX9I7/XGEP9A56MH/7wh8k5f97X9+3f/u2klPiJn/iJt72WD3/4w2973muvvcbXfu3X8i//5b9823v59V//dX7u536Ob//2bz+/lr/8l/8yP/uzP/u22v93fud3PmeG8Xu/93v81m/91ud9nS/XF7Zensx/jOvP//k/D8Df/tt/m2/5lm/BGMP3fM/3fNbzbm9vede73sVf/at/la/5mq9hv9/z0Y9+lF/+5V9+24n7udZf+St/hZ/+6Z/m8vKSr/7qr+aXfumX+OhHP8qDBw8+7+v7ju/4Dr7hG76Bv//3/z4f+9jH+Oqv/mr+7b/9t5+z1v7xH/9xvu3bvo2v//qv52/8jb9xbk1dXl6+jbL6oQ99iJ/7uZ/jG77hG/iBH/gBcs78k3/yT/gzf+bP8Gu/9mtv+5nf933fx3/6T//pszajl+v/5vqThtO/VNbnak2llOoP//AP10ePHlWl1B/amlnXtf69v/f36td8zdfUw+FQd7td/Zqv+Zr6z/7ZP/u8v/fp06f1r//1v14fPnxY9/t9/ZZv+Zb6W7/1W/W9731v/cAHPvB5v//x48f1e7/3e+vFxUW9vLys3/u931t/9Vd/9bNaU7XW+tGPfrR+wzd8Qx2GoV5cXNTv+I7vqL/xG7/xWT/zF37hF+qf+3N/rnrv61d8xVfUf/Ev/kX9u3/379a+79/2vL/0l/7Sy3bVC1yq1pfb4sv1x7++67u+i//+3/87v/3bv/0n/VK+ZNfLmvnleuFrnue3/f+3f/u3+chHPsI3fdM3/cm8oP+HrJcn88v1wtdrr73GBz/4Qb78y7+cj3/84/zET/wE67ryq7/6q/ypP/Wn/qRf3pfsegmAvVwvfH3rt34r//pf/2s+/elP03UdX//1X88/+kf/6GUg/zGvlyfzy/VyfYmslzXzy/VyfYmsl8H8cr1cXyLrZTC/XC/Xl8j6ggGwd77v/0Jj0EqjSmWeT9yenmKt4sGj13nttXdx2O/Y7QecVhit6LxjOt7w5Nk1n3r6jMc3EwWLrhaVgAoo/TYO8/ZvpRSlVmqtKKXOf6eUmOdAjh7n4J3vvMe73/UKF/sRqwxhXnny+DOcwhvEqDk+fh/HJ3+GZ/ERk82QO1TuQGnAUqsBNFSFUkX+oNFVoxUolchlJdff4b1f9nHe986Ze5cJ40cOlw8I85vEdMP/+N3Epz/+Zdzc/ikmOvALKirU7DFqQqmVzC2Vt1DdE3aXE+Mh4VTg5vopSilef/11Xn3HqxwuDtRa0anw9MljPvHmJxkPPYed5+HljtEoYli4vZ2Y1sKn3jyyBMfu4h1MqyLMnummwzmFtQHbJ3xXKEwoFanhlqdP38TqijWa3bhjnQJ9t+Od7/kyrh5cUXXi3qN7HC72lArrGjHK8vu/93t8+tOfYJqPpBDRGNYlYozFWENFU9HkqjB+oKJQVVNyxfeW3WHgdLolxULv96zrivXyuYYQ6LoOY0z7Y8mpnD/3UgopJcZxRGtNyYXj8YRSCq01OWe896SY8Npj0CzrjLEVZSopr1QyxlhKUpRSzt/bdR0Aa0pkwDlHrZUQwpmhprXGWsuyLPR9L5+R1tRahVZbCjlltNbEGFFK4ZyjlEKpQq+tRUwhrOkopVBLxXeemJYz/TelRM5Zfq9ShJz4X7/+Cy8umAsVpUApjTJgncNaR0oLy7wQY6RWyLnQOY+zhmmaqYC1FmcsVmtSBtUuTC3yYv9gEG9ru1illPOFB7DGkmOh5EJKmWmacEYx+p5SElorduOO0ymiVEaZCDlDVVArlYKqCiiAksepoDJKVxQKRaHkjCKjTEVlRY6VnKGUiiqFECIxJtYQSSmBylQiVAtZUUul1oyupm0eoLTCW0PnHIqI0QZnPcuycLw98ay/ARS7ceR4mjjNE9ZajLFo41jWxLTOLEvg+mZiiZVcHQVNKgWFoh8V2mRyXvEdjDvDvN6Qy8wyHbGl4Jyn1oi2hnlZcK7D+47Hbz7h2fEW12uO8xFtDCkXrO14cO8+Tx8/RaHwrqOkgsJgjMI6h9KaECPGGkoqlBhQyqC1o1JJKRFjxHtPThIk1lq0qmil8b4jxkgIkZwzzlq6biCEgDEGpRTWWkIIWGuJMVGr/FyAcRzPX6+qYKzBZE0uAQWUoigVSs4Y7XAt8HPOTPOMVpqqFbR7zhgjm0NK54BNKTEMw1mRVko5B3TJ5XzoWGuptcr7cA6tHWtYqRT5fzvEUs2EsGKdIed83qxijGitWdYV/QUKdr7gYNbGoapmu9W1saA0VWnWsDJNExeHPUr1sjt5hzGGguyW3lqcNqSQQL1dHPC8P9YfPJlzlp1ue9wYg+oMOUa5QUKg5kJJiWoTzmm0UfTjnmW5pdSZqk6oukD1UC0K+SCqfBpQMqCoNZFrAaXRaIyGWhNKFVBQsqGW7T0HXCfvJayJkhLGZZRJqAy1ajQFVG2biEYB1IQqEXLElMI8n0ghcXW4RFfF9ZNr1nmVnZ0sG48Bbz05w7NlIS4Lz24XkurR2lIMaDTzPNN1I9pGipmpcSWVyJosucw4q8B7cghUpahVPsfdfofF4WxPxTKdZnRQGOu4un+PzjuePn3GzZPfI6fMGiIoMNYTQiFVoChKyqAtuSqc7+SaonDWAZoQF06nE9ZqjDGcTiec9Xjj8N4RwsrQd3Iy6YzRGq01fd+3w6Ke/wZIMZ03e2PM+V5xzpJLJNaKcmCqgwohZko1WGtIpZCjHBZUhbwFBdzdi1tAbffndjJvWcAWyNspTKlvO8XXdaXrOpxzxBTQWqOVARSlyPM67wkxnH/Xtgls2SjbnxcZzLXKOVZypZaMAnzXE+JCCJFpmpjnhb73aC+7o9YaMFhj8MbitSYrTdWaVNoFaifWdhFyzvL4czvx9mEptaVGFciomgnrKhtEqaAKMcgNPOgOYw3aRlw/o+OMLT2lViABRn6v0vLPqkEXUC11QE7RWjOlJqiVdYWUFKVApjItM5aMMY5xtMSgeXZcUXmkZk3NFU1AfmBEEdAm4UxGl5Uw3ZJzpHMW5wz7/Y55njkdbyTNtJpUM53pCCFT18LpdJKbx+7I9KANUFE1oVWl1oizhlQjiojSlVoKvRupJWGoZBJaW6qqVDRdN3DYXaKqwRjPfacJeeXZ7Q1Pr2/IuUI1WK3ZjT2XF/fpBs+zmxtujm9Rq6EWRS4KZyymfWaS71RqLZKGGwNK0kjaqQxQsqSnVMU8ze2+kSxvPR5xTg4G5xzDMHA6nc4BVkppmYs5ByBApRCzXPtaqmQI1qFqlY25VnQrCSr1fH+lnMjtJHbOne+/LYC3U3h7jaWUc4qeYzrfw9vrurtnJeW2xhFjpGSJKec9SitCLOfnbrGz3fdfaPf4i0izNaoqlNJoIzuMq3IylZbqbGnUbuxboEpao5Sms5Z915PXmTUXSgFr3XObRW27qjunG8D5g9rekHyIFW0KOWYolRwzqlasrmivcN6wrJJaKbOi7BGlJky+alFaaYWDnFDI7lc1kvZXJZtXKdvtiDIdJTsqiVwDymi09aha8G7A6JluqCizyEmenZzCOkGNVE4ofYtxJ7Q+oepE58HtR5z3Up/FCWMqXedRCopRODNCqRxvT6RcQVuKdig6SlYSBKWgkPpXa1jWGe87rDbkmMgxY7wjxZYo1JlcKtY61hC5fnaLVp6H9x/R9T2Prx/z5Olj3vtl7+Pp02esIeHdiKlgjGQYn/rUG9xOE9r1gCXlQlWaqgybG5XWGmMU3nkqBmU8xtA23ULNmhgSKdHS4ELX9dRSqIBWCmM0KadzEK3req6hYwx0XY/WmpSSZIKlSNAZqErKgRglOJzWhLgSY8bZljnWgm3fJyWho5AJIZBSOtfO29rS5q1+7/v+/DU39KzLer5fnZP7O8ZIqXJI1VKx1lM1pJSBivceY+82gefLSgXYtlG9sGDWWlMSgEJpQ60JbR3WOVKQN39OgdqbN8agbS/AhLXsfMdioyS5xlCVwrTaYXsDW4qxPfYHT2zah26NIq2RFCM5JVJMUB3OaYzVrCExDD39OLOEE12XSUE+YFRtp28VkA35IJVSVAy1ykUvVLRSKGPQypOTJmcFqtWnKTEMHWuasEaTyow2QZLLrGXP0AHljpT6DNRTlL3Bdyv3Ljvu3RvxY0euUsN6L7Xzuq6UWphLYV4DeUnUBAUD2rPmgqmVzkBOhUyWa22U1HnWYKxhmQMxLhLARaNUxjtNqh3d4ElppeTMtCyUx09YlkTXyal8/8EFu33Ho3d8BeNwyfXTI2996i1qzTw7XrMska4fMX5AaU8uEGNCt41Rq4LWoBXUVrr0Xc+ynpjmI9Z0dG4kp0qKGefkBMypkHPDR4yiKtnQvffn++Hu1NPnYNnS7O0ErIDWFpQBXUg1YYymc46OnhJl464xkkoBpSRQlUEbcz5VgXPtu917270JEEJAKbnuztpzoG8bjHOOcRwJYUUbTVgj1lZKqe39ZrD1nMandFc60AL5cn94scGciwQ0RctpC4JEa0suciKnFKm1sCwLRg/0XccSRFzvnSO6JB9uKShj2Pa753ei7U1stcoZXGgXCOT7vbPMpRBDIKdMLZkUAyjwnaeWSuc7Li811zcrqIhqN1phE+7LRa1Vt9NZNUBOMhBVKyBpalUQ1kSMhVIh1wRhpfY7Cf5ayGmh1Eit+Qy0oQPFPEPpW4Yhcbm3PLi65NG9gcPYYUdPyIlSMjFGhtFymm9YloWbNRNixWFxpqdmKVuq0rJhpBWnNEpVcoqUrMADGqbjDfN8Yjoe2Y0jcoBkUgVtDGtYMFqxOxwIaySumdvjkZjlvS1vnnh2upHaX3u08rBqUoxUW/F+wPYdGEcuSk4XUyklQY6oWqBmUhZg0LlWG6bI0A+UohqwVOj7vt3EhudrVgDXgmpDr2vrcNQK2tyVaFugW2vp+x6lHVpbQlyoccV6B2SUFvwhAjknwX6gneqrpN9KYaxFt9+7BdeGMG81svdyn4UY5P5EnUuCdV3P2aWczJWaM847MZyoGq0NKSdSAa0lGgTYi+f3Yq0lhvBig9kpJ7W4FoQWDRWN9QOskRBXUlhRKWOVQilIJcn35ERVCTdolCvkNVCUnHJVCSptjCGXLCmtaqhz5bwj/sFAd0bhvSGsR3I+EZMlhoJ1HUY54jqhc4Sc0BoiE9EEYpQUGiWo5WevKgCZUgKGVaSeVgqcJmRFyZVOJQaT6ChU63CdpuaCrgpdV6qrKP0M399yebmwGzX3Li44jHsOe4OzYKzGaItWmtNyJJfEEjLHOXN7kyiqw1pJ41IRMKnmjK0IbuH0OaPQqrZ6D7Qq1JC4GA4MbkBbTaqKogTnUEmhTEetSVo1VlPySiwRHcE6Sy2wTImcK8YWjC3k4slaNjmnDGAgZYyCtFZS1tQqrZ8QF2otWOsIqRDzEW0tIUNIBV1A10xnO0oLyCqFEdZ3hJggVywV66V7UQvkJKVGRmO0g1IZh5FSKyElqjbEUikloFQk5wTW0vWCiscUSCFgtcU5j9appe1Z2mLeUC1YrSkpk2OUEs5YjDaSSYR0vg+V1qgqHYlcC960e0UrtDVUBalkSsotpZegdV7Kx3mayUmumXOWeV7arWkoGZaysqjP7xrzRQVzSpLKUTc4vgWV92hjiCkxL9KmGjpP9o5kyzkV6vqOVCactxTmVvc2kMho6RDx9p4yd6XKHbq3XUQkBVlyZF4mch6hdhhtURWM1lDzuZYsDciqOM4I1/mH035XbV9pv1iVu38qDWhCyKRUcKZgKHhrUHZgvwa8A6smOn9LiBE/TLzjVcvlwdDZwsVOc3Hw9L2hUFBaU2Iih0DJmXleeXx94snTFWMGjOmpBVCt9dNSQVUKYCkaYog4L18zSpFzIU4zBkGrlTYobdHWYJXCWE8hY1BQDSHMoCyuU2gFmkwMEaU1/dBhjAI0tWoBFFGthlNMp4VcCt57Ot/hjSXnRIgrRmu5ZqpSqmZNoDBY35FixFBwSgn+YpRkeLmgjabUgmo3cEqFdV2pejv9LVUr1hhxWjMMA3o7zXIGYwTFVoKlhxQFDU8ZpQXg852V654lKE1Lq3PO5FIoRWGMQml9rt3XZW24jmMcd6zrivcegKEfqFTm5XTuS29A3FY/l1qldFOSgcYYiBFKzWfke0uxN0xA4sue27efb31RNTPtRlcNmIDadhTPEgLztDDNM7vdiC9AzlijQTu8VaxrwFqDd4Y1x+0nn1Po7c/2RvhDaukt7bHWA4plWaV/iHwAJQeUzec0jmqhyAki4V3PgVtVvQtk9dx1a0Fc1baBGHLRpARGe4xJlCq7blVQcmTsNYfxRIkLfigcrjK7vjJ2mstDx9Ap+h4qiZgztRhKWAnrys3tiTeePmNJGj8cKNWTS4HnEM3nW3RKKxQa74VgEXKglIqxHmqUHrm26FoFrLQelMY6h9aF+TSBkvYTxVBqamWFQltJF1EWrS1KGwmGGFAVllKpGDIaZUZSdajihD9gOnJu2RuVnBLdcEnnduSaySWx5luslTozhgVrwVhFzAFrPJTCMGhSyqxTogJGacFaVAPWtAZjyEphG9YQ2+cq6GFGt/v2bf3tLGCp3j7fdl91XXcO5iWtFFWFL6EdqlSCWuVezA0P2lBuY9BaM03T+X7b2kvb7661YrS8/j9YPsrv11hr7mrl9n8aYKY+Zwb5vxHMG8pcSm3thooxgj473zGfJkJMhCh9SBsCFtBDh7a2ARkOawzWCEOoKIXCUOtdS2FDCev5c1FnlPJ8YitJOa3vMM4TczmHZ0VhnML1jroWcq70vcGZTCSg6CQ1pbR+s5badiN11JYhIHWwOt9AhpIt61pYQ8FpsAVKVaBh7Dt2YyReBJwtFBW5/8Ay7oUkcnGxx1tIKRBLZlozVRvSaeb6yVOuTwsZj3U9S9LEonBKCBnbh5xSOm9ozklGJC3Cjqo04XgUkoo2KDTzKqeEsZZYNlReNgZFIzmUxkpqhAprXDvJe4x1xJRJoWC0pfOKkiIxZXLVTLGijGLYjzh/QaIhrzqidRVArlau7j+i4Lm9vWFdT1SdmeICFYyyQvRR4DqP0ZoUV5zzxBBBS1lkvJBSSiloJdmB63sqMK0L/W7ElUKuhZQLRhtKiue+8Bas1lp0BdOu4/F4fFspp5TCG0dOhZAjzlpSzmjrccYQ1pU5BLoGyOVaWaeJUrdNtzzX73btINBo1Lnm3g6ocK6FZZNT2rUsBQERtUZaay/4ZH5bMCH94Q3ls+3GWmNiCZHjtFCt5WAtuUh6VVUV4EbRkF9JO5oJ1Jlds/37eSLJmS5X75rytRFXtHGsITAvUcge1kEWwkGoGaUSFxd7Hj9JzKcJpXpUtVALqmbqBuahGsCdG81UncklupFIoCPESkxQqkY14kwuEaUMiondDnwHsUI3arRTaOu4Pt7ijSKsM8pYllhYQma6nTjeLrhujyqWmCS4jFZYo9D1DivYdnTTTgNQhJTIdaUC+4tL5nkmx8j5jSmN9R7XdaSSUUoTUyAnYUihNRTpkeacKRX6YaCUyrxmSlVo7VlTwRlFN+zZ95abKWK05uGr78b4AdMdGA5XrOvK6XRLP3RcXB6wxnAYd5SQuLiYePz0LekO5ICjUtNCYWFZF5zVhJpIqeKyoutGbO+Y5oVUCmFZsNbSaS2YSs4oY6SjkTNKa7Qx1BIl/bf2DEIZY84UzHVe6Kxlt9vJafwcCh5CIK6N4GENIcbGgsvMYT0H6pKeA6k6L1TWFKlFWrTb6dx1XWOH5fP9uxFNtkzhdDrKKaJpoFoml4xVlVrkwHuhwQyNglnvdrDY3pDSBm09cZmZl5WLCwm2lCspyymQU8Qaw9D32OOEChGtILc3uKXa56At9RzM2418rpmVBqOBjO965tPCtKwsITLPK1gD1XB7e0spiZAVShmMm9E5UatpvWYBuyThLu2hiqoVtWlQaoXSUG8k2HISEkIp8hOM8ThbyeUZ1zdPKMqR0ARj6evAOp9wulLTjDc0ZDdzmlditZjxPjFrliCpuzZgbJEgy/VtG9yWnqWcMc62NqG8P5QWdLZCSXLzuK7D+V423FolgFcoJgurLGZKKlCE8YaqhFiETKGEsqu0IRGZc6HiiEWhhgPvefVd3H/0GinD5dVD1hAJwXP/aof1lv1+h3MWUyCUCdV3lKtLnDNQM4dxYD7e8uTpZ9j1iul0i6oR6zrWKL3ipLJ81kqxH3oBknImroF5noUq3HXEsOI6Lz1tLSmq9/58zZxz5/JttxtRRYJqa3ltJZ5gD02DUCWdV8ZgXIdOkXWdW80bCSHIYD6lCPOCVZLmCH1Tn/nkOeczO2y7h51zsvHmjO+8EJMoxLie7/Vc0hlzeqHBfNfzlXqolZIt1dN0vuM0z8JXbmlyVULKcNaT1gQIs6vrPEtIgKYWg1J3O5a0dO4Cefv7eR/olBJaWWoteN9xuoUQEiFlQogoOpzt6f1Argu6WqyLWLugdW4sMCFa1CqpNlSqqqhaWrlcWohXqLn9fkVYEyFUjOmw3oBWzGvg+vEzrp8dOc0LWUM1O2IYyG5PLJmQA2kuWBLOyLVwbiAWy5I1NSliyhgNRlV0O6G0Fl72XX21baSFqiSl1lq3fqdsMtYZlCmEJJtDzhVykQ2gVlIpOGsJMRLXhMHS9TtJcXMm10IplZQLXb8DpXG9wnQe3/eUqnjw6FXGiyu06Rh3B0yOjCphd05QeqOwroKKLMcFbRTWOPrxPpeXF9weTxht2NmBiOV4c80rrz1C10iYbzneXDOvM9U2fkEphBghFwEAW92rSkVl6aA4pWXDqmCskD10Aw1tazVtqTFZgmw7PGKMrOtKXCM1VXzfYYxtGcEKRu7TbWPYSh/hJkipo2six7DRLOh8d26phRSkrDgzzeQ1SU+8kNqmvWUJGwjmrKOq9GKDudaNUik955KLgDBVAJjOe2ZjWIK0OJSuGFVQOqGM0CIVis71OLuSy8ScE7koLOCxaCCRKCqTqViE37ullLKDCmJblVAEi1FU65lCIgRJFYcqrQWrOgGZoqLka0Fsq6XES1TtUXVE5Y4Sm6JFq4Zsb2yzOwBMUSQtjJbjs5Xbi5VYK9fLkZubE298+pp5LVi/p9gdbrxPUQOYPa7PxOWIGe5BiXS7Adt6kV3R5Gkl1YQ1BaM1Bg1FYbWkwta4duPoc+9xCQE39FQUy7KQaqHvBlIu5JxQGmzn8F1PrZBiJqVMWAPdIAjpGjOlalw/kLDECqdQcL7n3qP7vPP1d9EPgxBZQsR4IQkZYzjsD+c+L/mEV5XDlfSL0RXrnWxiYUVZhbcWkwuEiNYKtRt4dpp5djxRbY/d3cOOI7vecTpeU92O5fEbzMszjAZdZfMqYcHrytBbYrZoY8mtVZqI5FDJpdJVi1GKRCWtKwXNvC4Mw4gfPNM0cVoXqX0VmM6T14B2FucdMUXURstUG5VTCf1SKbT3mBbUMSe0d8xLJheNLRWXK1klyf2qtNOUqo20pOhcxzTPGK2oWbADycDeTlbRSklX5UUGs9Zb/0bqZQnQBrdX4WobawgpMM8Ta5hxKxQiDD3CH9Y44xmHHX0/s0wRbTSmaEwVpmzRCmuFmGKKIedCaUIIyQqQ19FYXBWhVc5rYAnCBBo6Qwwr87IQYsYPVwzDSuIJHk3V19TcQ96h9YiynoIWKklLv3MW9FvIJAXDguItUnyDt54eiRSUyVTliEmzBIPSA0UNHC4e4fpL1ghVGQYvp55vCqFx6KSctTMxROYlonXBD52IRnJGt56r0YZSZLe2TWZXGqWQksm5CJEjwzKv0FJHZ7cWn6GkjFZWGOJrQFshLFjbc3H/PheXD6hVk3JhWFbuP3jAMAx0wyCfuKtc7i9aum7x1rBMJ46nW+K6UEvGa82tMVjnmJYZ7Rz7iwvpSNRMrdI3dspitCJXLf1srVhW+XyfnSZOixQ4/nDFfdfx+C3P8eaa3nnWOOGMx3qN6yymGtbG/sI0gKlUyJpExDmLKgVNxSjYDQPGGtYQ0BtNWClMA3eNs9ICTJDDSm8tu647s7y0VixpEZYXzQxAge0FXNPWUVJBK01YmtrJaEJOWMOZ5rwsi5BSjCEX2cCt8czzLJ/r1tpSCoPGmi8sTL+Ik7m+jbRxZmNtqUFLP5ZpYVkW4aAaSW2MMhhv0QWoiULFWoMzSdLFCqkWLIZcatuIlJBIGsggPdbaepdAbdI3rSUdShMpRpZlYRwd2im60ZGOiWG0dJ1iCpG9ecpgbqnFQ+lISQvRwliKVsQstXzvHU1Lg6qVXGdSfoqtR4peuTlpnN+Ts8MNV7iLjpQKfndg2N9nGA/4WMgxYsxArZp+6PHWoBWyQZnKXCrF7UEL8YaU0QhfWNuOagw5pcaaKoR1Zew8JRd0UXTWoztRAVnXEXOh1CJUW2MpBZzXcjIXGHYHuqHj4nDFO159ncPhHssaWZZAP4zYzoESmuJW2vimMQbZME5xJYYVoxVDPwKFmjIxJJawoo0jrJmb65OIKZr6LIaEN56MYYqZNSapf2MAKtZKueadwRrF7uIS0+8pn/wEcTlhTY8ikUxlqRWrwDqNMpUYV0DhrCXmTEqRqOX46cdRUlcrrMMSC6aJPDaut2t9/BgCTlnGsZfs0ii63jWNcTqzu7S1aGvxXUeqhWmaMFVJzzkl9G5HrIVYC8ZbOitMPWggV63sdjtBtlMihcgwDGcQThsjdXlMKO40DC8kmDfVCNy1i57nrNqm/VwmGtMm3pHS8wZyiSLJOoN3FssiaayqQok0GrI50y1rLXIyqtYO24JL3aHgWimcs5zmxLKKrjrkyNDJDp7yQiXgfEHrSD33p8WIQDSu0szPFFytYqxgNUYXclxJcaWsK5aM6x2JgWo6THePwd9jrZbh3gPhFKNQbqQfD7icm5ImU7BU5ajKCOfbAhrWnFhSpuaCygaDwehN/imbl7F9S4kLqVbWGPHWUXNlmieMdQz9yDTPrGFL+RK+k8zGWcPh8j6vv+uCw/5AxdD1Pc73KG0pa+Xi3iXOC6FknmdSphEsOsK6cppWuk74BTFmYURZwT9qySQKxuq2yWZyCYQ1k7PCWug6gxtFxlmSfH7WWIZO6KzrsrCuIjLBdFzf3nLYG2KxFD2A0/jOksJEKFGYt3WRjTFHOt9DLZSMaMVLIiMtIGe1sN+sYU3yvZsBwFY3K6UkiJRCG+j7od2vlbCuZ9BxWmbp1QOuBXZG+sg6FrSSz6xScU4EM1FBZxWm3Kmpcs5nRLvkDFp6J2vTg1fAGY1vQr4XGswbQPUHg/iOL11bz1nE3KfTicN+R+c6VBHq5BIWvHfk2kT/NaNLpSpHAmIIGCe9OqVoRgG0NE1OHKr0fFWVG6s0pLdUcYVYloWYRrwvUt9ZSeu0rvTecnvUKDxKOWptRASjUEajdBUARQNaPrxcAhWRxe26e1g38uQ0YXcX+N1DrB8EABovsc5JemUtVRs665nLzDRHqnKsiTN2bozC+JHhYIjcshxbKqp8U1mBtT2uH1nWWTTEFJQuUBNGSS/0eJq5vOqb+EOUoClluqHHuI4Hj+5z794D3vHKqwz9gFKGGARMqkBMGT/sqNpwfTxSitSGaEOuinkJTZInqPm6RqxxaCUof1glk6loUAatRTxjKnRWKIo5r9QcyVRCrsSiWnpp2fcDaDhSOR1PnG5vUUAIkadPbxiGC/b7S063NyJI6XZCsTRQ2wZXqyLFJO08pRo6LCYapVZy0wKEEok5YKxj7MQAYEPEN7EGRWix8zydGV7aaDExaGh41wnYm0pp942mlIptB57VQtPNSrJL652ox6zwJZxzOOeYpokYI857bOtJr+tK2NRYWbjkX1iX+YsI5k2VsgX2GcnbUFbugn0NM/M8sywzo+upplJtFfuZGFEaOmcYnGGtiqwNS0oUpeVkUxZrFAURIMgNpht5pP1f2fbcO1aNQP2FmArKeLpuR4yf5vr6ms52GJ3Q2lGqo2IpG+eajQRWqapIj9IZao1SN2bNOgWy0mjbY3c7iuuxu/s4b3FDT9d7xnGHu7rXdt1EzJVcFWsuKA0ZmligoJMg6dpo+r6DvKM6h9MKVaVet84RYgBtubh3n3U9EXOgKJjWgCqa8fKSCEzHI0ob3DByce8+73jXO3nw8CGd7+m7Ae861nXleDxSm/JLWwPOYiyS1ZRIioLy9n1/Pq2cE4E9KaPQGKtQbcOlSr2rrGbNmZoynXOMu4EYAnFdKDngnQA/a0ossVCLwjuDrpWeSrUGt9uxhsh0cySmgjGVqE8MFrrLPWGZ0FrU6PN8lFKj0XVRGu8dBuisI1fNmlcKlVwlY9INra8V3N6d0eRpms4ssI1qqlQlpJWYVmE5dhZtNa5UrHMcrGUNgbzJNY1spn3X4YwhrithifgmkVRVOO9buVJKOVM49/v9+f7d0v9NVmy1/twSgv+dYN4g861vtqUmZycQJP323hPW6axvzimTYkJpi3GOZZ1EJkfFKOnpUjJKK1HSlIJVCEDhIKVNdiavY0v3a2sv1efaXSlFYoxMc+TyQqO1QytL7wfQjsFnFpfktK1FNg9tyBRJc63UYDUJe+1w4bjcedZZMU2Pmc01i9LU8QH7q0ccHrzC2A9oVUQ4oSuK1LS5lXlepB3kHb6zGKOxWklamoIovkLEWY2/uBA2l3N464SUrwrz6ZZlnTidbkBJrZdLQnuLrp3cgKXitWXcHdgdDtx/8JDd4aLdFIppXnl2c2qqJI22llwLp2UmlUzMSRBXBV3v0cqcr/NGekgpobKcxsY5vNXknPC2R2sIFHLJ5CBBsKbS9NUKqwzeC+7hlSbUKGBdgd46TCl4AAXGS9tSNXVdPN1grWEcBw79gel0xGuLKR3rtBKiMKl2ozlbAGmvKCqjnYB/xpkzFbQfewyGJ0+eMAwDseEswvvW9N2OmiMxip45pozKEe8cu90epaWmNVpLdkFFW8saI9pbphBAebRS7Poe4z3aGrrOUnK8I1pZy/379zmdTnKQKPlcRDZbmbYRP7XQD92LDWZpDW0tGyGPyAldcUashKzW7PqRZToS15UUIssasLan8w5TxczDaQPWszhHDXLSqOYkIfS1zBoymtROfwVVNT6yiChUaUT+Rlrx3lNaj1vlREmRmjLOdVCkrlI14wxAkzEW6St7qxrCWyhlYRgND+7vuDh0XI49t88qn3isSLbDDfc4rgPKSFvIWkvvLGtamU+LMH2ayMEYYVNJQ7TivSCVOSWs1TjrUH1tp4ag1wDWmraDF9w4cqUrtzdPCWEirBPH0w3zHOlcx96N7HzP5b17XD14AM5gWoqvtSGlwrKu1Cq2PjEXkpZa8ng6AZBSbK4awgjb6jnVaIhUqRudNlArt7fPCOvKbj+we/RQvi8FdFHMKVKLxvaeWpA+aeM8T+vKaZ7JKFzLrNYQyDk1g6RK13fYlnamlAjrJPfDOrM2jMQYS3KWbrcn3wZUCdKKtFBURZSillKrSA7TCrUKqNiMNSTD0GQ0vm7UzELvHWHOVNVOYlPPHPYlZkoVzv8w7kSIUYQ66m1lWmdqLkStsFrhO0ctWUhOJcvm3bIe0wBjcziwxsTxNLGudySsimSba4g4/cL7zJty6C6IayPm1yLtm1SkHnRGXDKXaabv9riUcKngjKYai6FifM/RLVQb5SYud8qk1hzCGC/a5yr9X1Xv/JhqkTZEziLhs8axbNrSuJLXGa0Mne+Y55m+H7C64r0lTCAnlKPkjNWK3mu8lU3h4aMLvC+Mg5MTP49Y4wmnxH44MFy+jvFjE5tkbm9X1lJlIwEREWhhqimKsJJqoeZNBqagaMK6EtYknbaW8Ruj6QaPynIq5FLonOHy/jvIceF4e00tmmAyD+6/gy9/z5ex3x0oSqE7R3WKGBPeddQCIa+AaSYMYtl0ClsdbFG10nnhzGsl35urCDxAUtZaCrqCFaeBZu5Yubm5JqYV7x273Sj66L4X9lxVzNOKMQ7tOpZlRqE5jHsykumtMZJSxfc70fyGABqsUXivm6jfnnnp6yp0ylyFGhwrFK0hi0hGW0uqlbkIEcZaS65gtCOkldPphPeOoR9IJTIdT3KA6CqsMKW4Pd2ike+r9U4amapkCihNP+6obE4holxLOaFrwfeOvvNyH3hDWBLWKpw1WDO+zU5oA9ZEzGJJeSHl1HQBjZNuHHHTJL2oYH57YN/R0ja6nJzNwlDyXc+ynIgpE1NkDSt953HWCZCSpYemlWpKHQlYSdnlhjYgGt16xwY7OyE2FhpKSAPSzO+YT5p1TYSYWGNi6IXqt8RAbSQKlcVt0+iKrhksjIPh6rLjMHZ03tAPms5r+sGgSiUay8U48Nb1DfPxmgeX78T2FlTldJpRRWO8gG0bv7w2E4FUoIZyVtjEIEyjZZlpRKSGfm52rJV6nFo92lo/RTCGvrtg6HaM/QGtDe9593sZ+4GSEr4fWHNiXiO26zguK/OyNiaeRhtHzoVTI5hsyqPyHLNu22rElVQ25e3rSilKEicRXSuqVGrKXD9+LIZ1y4xzhouLS4yWlpgxlXU5ivpLA6pJDBGte8qBXCqm2nNKr5TidBIp4eXlJeM4nttHW1soxoixll434o+rFJU5TgsxRQGTjEZrEQPlUjHKYL18ZiEkSq703dDsecUYMazS3lJanQGxzafsfIigWNf1/LVlWdrX7yjHKSUu9wectQy+O2djwLlm3qiezsmJX2s9p/2mtaVSSlilMRul7I8jmLc3dmfvIzJCrUT7aa2n1IkQ0jnwS7mzII0pnP21tAZd5O9NmlhyppREea5Ofj6ga23UUiX6plQq1jjAiJ+UFjdIZRyu7/AptF26kOtCzomKxrqecejZj5bdUNn1sB89qEzvLZRCSYUcC2M/0NkTOSzE9URxBq0snRlEJK8ArZsBXD3TKLVxlKyJsYj/Fa6JTppVkbNYZ5t5oABlMQZCEGrhdDpiNNzeTLzy4IoH9y65d2/k5vaGNx8/ZT9OXO53HI/PqFpjrOPZ05sWwKah2+0kvT2Sa8V33Zn4b63FG3MWzlQKzphz2VSbDDOX0sqonnVV5GVBG8O+vxBKbMqsKXKdMiWLDdJ+f8B1ct031dPt6cQSQjNgrChdmU4nvO+gSAfi/tUVz5494/rJE8b9nmEYzvjMpqCToA7iOFo64nJCKY03EaXEikhKQyXklCobplI0SaiUMrpp1uOaMFoUUksTdGydm004Ya1w4Z+nge52uybmqDivqWXjjq+4Rvn0zhHYtA31bSpAgNA2qK7rzm2rzShQVXAvWgL5/En8vIWPyPKahagGdME4j1KG07Jwlcr2A85/ryFgziKKQq0Zo9oOCBhnyLGZ6bXve560opRCO0up4pTZbM/wfiClQgiZ3MzGu67nNImLR64JY2AYO/p+RGvP5WHHflRc7R1D1+GMA1XINbMukWUOnI6BEDXK9PS7A8Y5bGcZ9jtc9Vg6qs1UpcReyVhCKlTETwo0uquC7qYEtsMOIs2rypxba1s7DuNYUwGtcJ0hrjNPnp5Yl8B0WnnPu1/n6sErrOvEcToBibiuGNuRqiFmxSmJDtj7Hm0ccQmk5lMeYzzXbN45rBIAM8bQpINpq6swSnF7OjF0Hd45bm9vRRXVD0JoUA3PMEYslk3HMHoB0GoRIo33kiGUwjgMUg/nLABczHh9R0RKKRFiZD9KSnqcprcRh0BOt91uB2pHzpG4zsRuJK5HqCsqB6Y8IcaMCqMt67qQGrBljMXZO0+xLchCSG8jRG0Sxe3EXddV5JXP+Y3d+bkrapbAtb47o9qpFHLraT+vxQcpNUII9MOA7e42rC2QN3VcSS+4Zt7e4Pb39ga1ahMMsjC5vNZobbHOE8PKsqxcHCQQUxZrAGptVqcVpzUpV0JOKGNQFKy2aGfPKpfnPZ7u9MxVyO8oUsyiUbU9YTmSs3gkryljncZ2njXMFFVw3mGdOHgYKpf7gcOg2I8K01RhMWfmZWGaV25uFk7HwBtPV/D3uXj0LrqLB9BbYbEVS287solkFLpAavJIpYQumJt4JGtNNUKl1I2wYK1lGMSpQqY6LJRa6PoebxXk51DmmjkuC7//yU/znve+i93+kpIsT558it45drsDWo8kDIOSwy+mzDwvDahsKislmuBz1lQbDbKKztf1Qyt/4Hj9DG8s+3HHm29+BgXcf/QKNzfP8OOIUtJyOZ4W1ghLnLi4MKAzw9CjFEzL2joaYiRQkA1vHPYc0xFqZp2Eyth1Ik6Y51l6tNZyfX3NMAzsdrvzCQlQKeRiRNXkOw6XF5R4ZL59QgpCbNFG6Mc5iyjHWktYY9urhPa7hql9beNQpHO3ZttEtp7z7fF0ToO36+e9F2mmtXjbcJ1aieuKNRbXDAlz0zDbVo5JlpowyuBc97afeVZO5U0Y9AKD+fld6G1TJhDzOzRn+x9tLf0gtc7a3CY757gwI8Y6UuyFV1wHYi2EHLBaTNRQGmsMKb29l/22oG6OgvJGTUP/wFrPFAvTsnKRK9pYIaEomNdZAkJ3PHuy4DtpAXlj6azCayHBzyFxnGeWEIlRk4rj5jQxXrzK/UfvQ/sHVD/gOoOx4IpBUyhKCYc2SzsNpajKkCtgpMzACsAXm9eZ6zts1aI/puKsJutKbqkY1hHWyLAbBYnXFWritEz8r098ive9913cf3Cfvis8/sxneOutN7m6fBXjRpSSOjGkKH5XLeXOtVDNXdmSc6bC2SXVavH4SimxTDPjMHB5ccEnP/lJLq+u6IeeZZ25uH8PKEzLRFGKNcNxLnSdIxTD0HfSX1dA0+SWDMsUpXuhZPO22lNsPFvabo6WzjlxJK2Vi4sLjscjSqmzBtl7jzZOsodcWcMKZaEzI4NTPLr3gBgSNzfPUBr2+wOlJNa1iAEDpo2KURgtLMVUCzEFhB2oziyxLS3eDrPnqcybRrrkTG3um0Zrxv0BZazw7JUS7OY5kz+lFH3f43MmFojtd4UQOLUuw2ZuMI7jiw5mAaakhSKSQVogn1VNNUsaSUZZTVZFLnKzs4gpNO2vJUVx2HTWUcuCquLxjDZn6ue2aejnaoatTs81U7Ls9toYdFXC6DJaRORV2EEKQ+87FutRueKsx7mMUrDfj+KxZBQhS8thXiM3x4lUFccp8rGPvcGTJzNX79jxjnfscH5AO9fMA7S4fERxyVDaEKZVWjpVUuhSWv+1AR7WWrpmxFCK6FdNOwEo0LtOAkrJdY5hoe8HlnmSyREJnOt5+uyae7d7hv6A7zouL6/4n//zE6B23HswCosqrpRNvlkzm8VCUmC9UBLFo1oJ4y0mqlJiDbQs7PY7jFJ8+s1P8+jVh+x3ez7+e7/HvQf30Nrw5OljIQKlwM3xhPM7xsOefr87a92t1TjX0fcSeClnETo0tZExFje2kTKl4FwnjC1rMEjbbHNWiSmjjKNvY2j6vjlhxsQaHLr26BoYncKoQoqBbug43t5wcyNIcTd0pCQa7mWZBamXpjYaRe89pYqYhSpuLKoJXkSaKyN4XMsOrDEyoUMbFJm4JsFamkuN1sJSXGMk5kxRQts8HA6kGMU3b00o05RaCnznzn7cp9OJaV5ebDBLEMvFFUBK+qFy0zU2kxIj+ZSF3GA7R8yREGYqA7VmakmN4hfQKLpOfJZK0ijrSVTWnIRD3TaKLe14vt7Q2uCU/N5SCspaMgqcY46J07zgj0LVG/sD6kLE79MawSh2h577jy4AxZwrN3NknU8CYKC4mRbeejoTzYAaevzhIdV4fO+wbqtxLTgHzXo2l4LWog4quQjzrWlvnRbgy1grmceaqLnims72ebP1vpng57SwH71oXZVwoXOppBQxRvHk+g3GrnAYPMY4+mHHFFYOqogaqHPkkiUjyBVDxWrDrKXUEcRapHelmek733E8Hrm8vELpyvWzp1zcu2S82PP0yTXjOJJT4WY+cpoWtLXcHk9gFNoW+tETwtIYe7LJK2PQTrKnzluUEURYIXV5KAXb95SczzTTWqsAoEo1Lrv0na9vjlTtcV6Djgwd4tQ6elRxxGhYc8LagvEw7vZMxxus1VSlSDW2SR6Qc8RqjXeW3TCSQmBe1wb+WUrjdsdV7lW0xveduM4W8fquJVESRLFFbYb6leM8S0dGy0y1NSexJtaaYbdDG8Nye0tOmcPhgqo0y7qAqoz7AedkgzP28OJbU8+7MTw/duPOm2rrlaq2Syk6PxKnW07zzCGKd1TnvTg+KpG0WC3I4rrK6WGMwRRNopyZZVu75+y0gWwYKBnNorW0XqwqeNcR1iM3tytaLxjdifRMjyhTyHXi4nLPgwf3KRTWBnIYawhFs8yRZ6eJORZOqyLhefDqI+698k6GwyX97iA7bhOWGGve5iJhrME0ZDsVqFrKhg00OZ1OZ2DDGIPTSk4HfefNDM0x0vUMWNaQZExWXvG2MN08ZRwdeYncPH2CKQesFq15jGvrU1rCmpqdsQaVpc1npP+dogwj0K6NeFGKcb8jxZVXX3/EuqycpolhGOm6kbfeumY/9Fib+cwbb1AUdMPA0gCcECPWGnKWfvA4jnegZTOlhzuBwwbwzMsirpoIfVWbuwFqtVac9+QimVQuAkKF1pqKsWC1wlrTrjF4b8kpomvAasPeGjyZx28p3nr6lnxW2mC9ppYBjZCQrJNSRJvNqrec/bG7rrvjY88Txhp6b5uZBtAkwMJ1T0JsaVmYsdLyKnWbb9ZMCBoe5L3DOYt2XrIZynMKrbvZUy80mJ+frbPl/VtwO9eQ6eYYQhGAy9mOOd+yLJE1JJY14J2T1pESqxvfqG7zmsjEM5CmG7ur1DtXyvMGUiHXNi5Ht8eztAeGoSNQOB5XXnm0Z42Kmzeuubq44PL+axj/FKWlBTRNJ9mJG6L89Gbm+umJhOZmitzMhav7r3Dx6HXwPVNM+CSoZNfsdGobTZXLNlJHABfjPapUREgpwMfWV9yuo2wA7dK1VHsDXgAh61dEm1xktszx6ZsMLpCmG9ywp8bA7bMbfNeTUyLGzHS8IeWeJWeqFR+yUuW0dkb8vSWtl5tWpmCI0N53lnk+klKh7zq6buTxm0/Y7w88evQqH//9/8lpnhj3e6lXjcE4uWk77wUh956+78+mdbXWszvH9t43q1rnPbYFQa2VsaHYG81SiDgibUy+kkplmWe5TlVRsxwkfefYDV27B6VW98bgrab4jrHrudztOK0Tc4jUdjD0Xoz6RB8u91tc1vP9tnHUN4cRZR2qZanruiIy/+Zd5x1VqeaAKvRM571co5yp+g5Qiw0bENpsIeSVlKJsXPruni+lOS6+yGB+u674boCW3Ikbur3JEm3rMWmc7QghMS8rh0Zd09aKDLG1Qcah4/Y4kXJA6U48mLQVlle9s8o5k1UqGGOB2mqeSk3SX7SA3/UM48jt8UakgdNMzkpM6Wxm9I51WZmXwO1pIabMsgROU8baHbFopubsqfyebn/BeLiUoXdKaIHOaAYv7KgYt83NSJvHSL0sgvlthpE9ZzKlSLtmnmcspmER+syHPqvTEgKwlIjXkfn4FMdMOj3l3tUVOUW81q1NJMqy5XTLsydvMe7fgVaS/qVtcq1WTPMipvOliENlhXEQ8kSKgZSFsKIwrGvgzTeecNhf0vc9n/jUJ7k9nbi8uiKkREhinGeMBHDXdWdkd+PPi1GCfZs45wwaFdFtK2POzpvPT6bYNj6UQmuLRxB6sWeuMnLHGPEUQ9h/us2cHroenQPrsjAdj6yLyGOF/itdiw382+7v+hyNdSPLPD/EbXteaWOLhcqpzuNZadJF3TKOM8mp/a2smEuEEOisbY8bQsqcloVhGFjDQkwyBUasjgpxmV5sMG+WpXJt317jifGYWIJWOF8syTZlnGXcLHitZaiS+pUccaZpmy3EKnZApbRT+bnG+t1J1iZD1dqM1jOajLWV3dCJvlbp1gqQtHMYHF0vti3eepZpJebCs9uJZ7eTTKTUBmMGUoJcDReHhyg3sL+8Tz+MaCvG5WENdOMAGUpQ5JTw1jGVwjTNlKoxnbhbhvKcSETdzSnaDOGstXSdkPK3xzeGkLVWpoeUgnEG4zzTk4n5+i1UvOHJdIMxex7cu48qMnPKOcd+10NdyEFaR7VUEhBCFomitbDJ9nKW4XJZ9NTOWbzr28mm8U7jXcc0zbz1+A2m5YTrxYnVKkUqWcBAY8569q1ttJEqpA99R7zY7p/D4SASxMag8t4TY3ybefzWpsrLIvW9c+RSKQW6rqP3ns4anFcYI/OtKglUIZUkN7eR7sHt6cS0LhRViClTSuOgh0DaMocKuRTWNVCB3W73NtYZjT+fcyKsoX2uihCi6LDbSRpibKw3AWM1IiDq+jZgPWV8U0pVCusqk1TFK34blSNjnvqub9jDCwzm5w3Mnk8FUZw5x0pt4gcNpaIwdP3A7c1MaClgzkLnM8qI39Fm3EybOFE1OVXyOV26M74/9+Bqo3OWiNGV0Rsu9yP3rw7sdyNZVZRxlKqY55WQirSaQiLrgem48uw4sYRCyhplvDDHVGU6zeSSuLh/xcWDR+wfPMA5zbpOhLCKIH0Wi1fWCV0qT6eFRVmWNYD2+F6I+lXbM/1UKc4p5zAMAHeTBlvG8/y1TSmhKGhT2Y09XmluncE1tZkFHj16wDsePmAthiVk+r6jlhVnYZ7eIM+W/vI+1nTMy0KuGjcexGq3ZMIiQ+V248jQ9S2ZEhRdUO6E7xxdZ7h+dk0/jLiuY42BJazN3UQsdKiVZO4mMpiGE2zBXFM691i3xzdK5JoSy7Kc5zRt9fIW5KWKy6s19k7iqhTe+qbGKninQbUAq0n8x2LE1IwbBrr9yJRF0lhbZ6ZkLWyvLaVN+XwYmZYlPd8adV1HLGCxLOtM34npn3JN9dfEIiULLjCvK3FdJUtomwJA7/xZ9yyt3buhcX3fkas48ZRSWJeFLzCWvxgArDZBuTn/XylhZHddD3UjnpfzjqW1oe8Hbm/Flrc0/nEpReoro5sdjMz9DXmhVEMxRthddXP/F8OCeqZyFlFBlcx4GHnl/hWXh4GuM2gtm4o2YsdbsbBGlHbEVLg9TXzmM49lRK3xaO3IWZNTFodeMq7bs7u4YndxD+t62YBS4tmTt7h98pgaZlQWSaC3Hj9eoHf38cMO7SprLCjt0c5LCWIatbLINdIm4K2V3jpNK/VcGyS1TMdaQ9dbLi72dATyOx7w3gdfi8sz0+nE1YPX8GOPzZo3Hj+mJNHaztMJaxXrcuLxZyacG9mNV+yHPTEmlizc4v04QBXXzHkJ3Nyc2gaimU5Hhl3PxcWOWhLDzqEUpJyfS4flPtBWt438zuppI8RYJ+YQtu/kvbWW3Nzq3t1uhw7hfKM/vxFsEya0MdQYqapgrSGlTIor0Vp0OwS0cmiVMLY51JSMhFcl5iz3ozF4I6/DYMlONhGNSE8zQmpR1orgpI2J7YeBFKOQnrRm6DtKowjHGJsxh6UgYpRiFFaJ5HU+zaw6onNubSyZXhljYo6RcRxFmloSu70w2mqqIjixltRGE7/QYNbN8B02ccDdTairbjN6mguIUijbRrJi6fqeZZmIcYJqRS9cOmEE9T2sC1Y7yBOF0lw+FKlonBJyuwIoCacrIawYo7g47HjlwT0ePbxPP3jWFFhSxOhOzABLIhWZRPjs6ZFlLcxJsygvNx8tgxBSGbkEbAfj1SW577ktCn27omtk6C1X/Z5p+T1u3vg4JkdKrsxuTygOe/GIV975HvwIgYAyEe2CpGZGY6zH+h6Mo1aRyGkgp4RCCCuCdQiVr6Jw1vHo/gMu95q8PKaWhY9/7H9y88anuDgcQDseeIuqhrFTvHl9RLuO2ylS6oqzjtF6Spw4fvqaRRn2F5f0nSUnRS6yoZnxCmUcZvC4ruI7w/5q1z7jVnDngnOC9OrWiVBVQZVRv9VBbfPD5HOvxByxXnjnNBbcxrKSA7uyhgWtLV3XnUuP5/2mQ5KbLWYZFL8bB7FVKoUUZ/bDQT7HlLDOYNHkDKokUlyxzjJ4x1FrbKF5wLbPOya6xtDaygClpdPiOg9asUTpdmwji6215DbvWSndDjBNxTA6TwyBNcnXKYreDw3Iyk3gwnkARCqVTmnGcY9VHZ1zzDmTUmXc73DeEpRruoMXGMwbAHDmiz4HVqA2GaR87s+3kZQWe9bpNBHCRleTWb5KK1IOjUPsW2ohbCR/VmIVmVxQM0YJ6X8cHBcXe155cJ/L3Ujn5UTWvcNk8eJOMbHEmTVGnlzf8vjpiZINWdk29UBAtJzKuV2yriv9bo8xDqM1cV2auL6Zrk8ncsoo5bB9xzBeMAeNMT3H44lnTx+zKxU77FFak2MhVygaXNfmctlOamTa9XFC8ytZgqbvujaSVLPf7dgNnnV+xtNPf4ocI5/85CcJtzfEmDD9wJwq48U9xt0ee1w5zgHrBk7HwDotTEwY4N7FgZoTp+OblFXq53mJpAwoobg+evQKihFVei73B1IuzSXSobs9yorlbSkBYy27bmCJqfXXXQOuHFCl7qyFZVnpfEP+G7BltAGVmzJos02+u682U7vyHLWx73sZIFcrh8NBTu2wsiwTvXd0Yy/uJzR8p4rAZZombm9uzqKfUjK2eWrHJjd0znG4uGBeZmJMkm1oScE3EG8YBrrm1LllHRsJqBRpcZacBAR07tyCpL0eY/0ZFEwpMQwD/dATYkQVsV5alkYa6a0YaIQoGTEvuGbeXtjb1VJbTXvXuoK7YN7+3Q87pumW0zQTWt0ccxFHjYI02634R5FTe0y4xNsYGU1Cq8rlYc/Dh/e42PcMnaTqzghls1pDWiLTdMMSpF98fZy5PUWy6sRSNycMtLaAQWHIeSUGmW/cdRdY08nJqSvaVFKYeXx9w+3ja7Qy2P5AqQqze8R4MTCMBy7WW54+fcrN0zfY5YDxwpF2/Yg1DkMjZhgx6kt52+xEuG6sadxkx9B7+q5nN3aUMHH95qeYb6759V/5FWKIvPt9Xy6jYR69yhtPrjHjJTGtXN+cCAXuXT3AHDxxXchpIcWJp8+ektOC1RWlxJC9yLQ9YiysBcrNp+jHezx8+AomHlrd7+iGS7TrqWbDNdaz00aKkUqzF7Jys29pcinPiTraNMMQ0xmt912PB9JzQOe2NoC11Ex6zq7qdDpJG8homZahpHe7rAu9k7ZRaamj8x1Ls1sOMZELrEvA+o0TIFjFNvxvXpY2rM824UV4W0Buh9rG037edSeEwFrvhBveew6HA6fTSWjHWeZQe+8JIXA8Hs80za7zpLi2udD6bC9trGmHwgse6XrmYj8HRp1nQnEXuM8DVRuV0bRhZMsameaFsd/jrJjAWe/RGqKGvvcsccaaSsgyorPWTA4LvdfsDzteeeUeD64u6DvN2HWiKFGKVAvzunB7OjLPK7e3M9e3M0vSaLejVMMai7hlsG02d8aEpVYKBud3giAq0cgarcUepWZ0VeQE2B0xV27XwtWjK9zQc3nRMXSG6+snpNNT1ukobS3vGVwvzpUt3dz607kBY6m1iUBMHoyG/djRd4qbx9dM12/xmd//GOvxyMXhgDKeaV14djuBdlzfnFizZl4TphtYU4WoqdXS9ZK5HI+PybWwTCd0iFAEg7Ba4a1jnWfm22vm/tNM1/+Tvh/IyuLGK159z1fS7e9TqxVwqM0dXpYg/2+1oBj9GRmr2xB7ZzW1KtGLNGZRaa4nQgeWHv12UGwnlzHm3Me2zonXdAOR5nlmGHq0kTZQ38k9xPkUF+ujdZZJmOJRbUUWap3U3A2k2vrHj588ERKPtWKy0To2vvWJ13V9G4HDOXc2BOz7XkqjLBvVuq4inmkx4r1nDXe87C2OtrZXNkmIL9ZSqqj+SpHRuNZ4yh+HO+fzu9PbEea7D2L7OgjML31Bhfcda5w5zSu7YRXvKGcwXuh+8sEpjK6kmjAY1rRScuRiP3J5GHnlwT0u9gJ0dZ2RXSxBTJEpJJ6eTjy9veV4M3F7XLB2jzaeVMTGw3pDb+W010pmTXedBQLeey539+h3IyHOeA3KWiqauAa88STfMZfK5cWBrBS3p5llObEbPZXC/XsHdJ2ZjhPTGtHGUeNKTY5UKq4XYoJugJiiit7W9yLWKC2l6zsxTyBx8+Qz3Nv1vPdr/izMt9zcnnjryTNCTrhhz2vvfA+4nie3C7uDIikh4PTK0o0jNS/kEnCup+ZENl0DCAESukjd2PU9kLlJTzndvEmaxZ3z2e9nHj/9FH/u//X/ppoLUIJ6lyw94s1HTeo6jVJGshdrZRNnk/rlcwZnzJ3t1PMZ3PMSwOfbktvQt7OvXEtX+65v7agixB+txFstZjpvoSn4QsxcP7sRQEsr4TkYTZxnCbB2+m48bftcd+FwOABwPB4BaVdtqfZG9NkcTHrfnTclMUJ05/ScI+fujGkklc09RZVKjvJ864yMWFL1zIZb1y+Mz/lFDFtP5x3zecUN0Bz3325YABufW5PJ9OOO5cmJZQ2EkJjmBdM5vO0EhNJK5hFZxXSaUcrhrWV/dckrD++z6z1XFzvGwaOV0DljWkghc5pm5pR5dpz55JtPiAHEeN5SEVWVWPvK7CWzaYhLpeS71MkPHYVmNVujGNhVi1OOZV1Z1khMlVzlRLg4jOx2FqvFBjellV2nIUjqGsJMWhfWSWO7yri7atTHjFKm2ai2dlTNDJ1lHAb6ztP3nqdvfJyP/X/+B0xH7o8dT998i8fPjvj9Be96z3t435d9GbuLK65PC91gGKolYYhrRDcKZFOAU9GkoqT+HTQ5Spsmzrcsa+XQO3Zjj8ka63suBktOiRoLx7c+Tbh5Qn//gmlZWIMMMtDGnduRSolqTCFmFTk3na9S2HYabs/dUHDJ5DbRfn6bMmkLWN364JtU1LVTWurUBa0quvPYzqPI0Mq9mJPISloXoetH5lkcTMhF0vQ2hXFTYW3mhdM0n/vkt7e3Z2nmJr+sVSZOiG+avSP5tNR8O/RijGc5p5IoP4/l3Q7EYRhw2vL4+oi1iYcPH6I6qfVLrmLs6F7wFMjzFEKlmsjg7iTmD4DnWy2xvXHVbn6tTWtpiZH6NC243mCUIGdGG/HLKhOoytW9S97xykMu9gO7wbHrPX1niSFyWlYJ4mnleFpYCtwugao6tHOkrLHKU6tq8HuR39NodRlxDg0hMU2zbEZ+oBhppSgyRVnWUFgjlCIsJBlVesXFYY/vNDFM5CqgiVEiMbx3uWcYFL/ze28SsuJe59GdEmDbKEY7AIXOO1KVk0rXRN85rBEyzdPHN3zi9z7Ou9/5OoOqhNsbvuL9/xfvTJnh6j7vePVVnPNkxKbJ5pWu16gM87SgEKvfFFdKTIQ1QjWEMGFdJJSJmI74vqJqpNhCNYbD/h6WgsoLu2EgrCfmtVBDQlVB30vOqDYc3HY9tSHczspMrNzcRsZxPNsOm+1rpaK1zIKuYjYiLitZ7pOt9ZmL8Aw2K1tVZNbXOA6MQ09KkVrWNqIns6wzzmiZ3dRqV9lwDMYJAFe2n9WEf9Y4wkkoxNZXUsnkNj1TaU1qvICzWX2jmU7TdE6vtzTaGMPtzTN24yh0ZC2xIi23u5nMKSec83Te3ymq1shudyClyPE0iW1RKk3PLdjAiw3mRjcsLRUxz9XGuUgtsKlvZHi5gBfUijMapRxD3xPWSAgZNxiWJbNLBtc5jK7UdMRbi9eJWh2GHc7s8F3Pbt+jqYSYmZfENAdOU2ReKzdz4fq4UpVDV2lV2GYCAJJVUAWQQVeMLo2Kp0lpRmmxmh06L+n96YaiCrbrSNW2Ea2KWFe8HsghEOYZbzzeNeuihPQujcV2He957RG//8k3iOlEWSN0ld53DI1BZYxMKjXG0/mOsfOQV0qaycDTt97klXe8wvve806xIq6F0/GWksVBZFkWIU44iymVbDXlFKlzFp8uXVnmEyUFchTvamsUQ+dI85E6zXTaMFiPxqFUZb+/4rDfk8PC5eER8zrzvx5fU53HdBatwVSFQeH9QKlNtK+0GABqpH8uWyOVgnGaXLOMjm30Se1k4HlpzicbRVfliqmKDFTlmeOC0jLWJS0rRsNuENDT9B05O1GQtTYfNTeNsvTDl3Wma33jRG1twSq0YYvMvrIy8iamAiahraLTrRTp+3OGYFpPeQO/NoLLBtTlnOn6HdZ1WKchZ3bjyLrOpBjO7LvNmuh4+5zgxhowYtk7rSsxFckstMFnhUkvGAB7nlsLdyn22RWh/Xv7/92cZfkaWnbdJc4cT7d453Gup9AGqVsh7JNht9+jtGcYOsbdQNd71iSgTVxXTseJ0xIxrmdab7mdE7lalPZyT6k7ueRW6+cmEldK0uSKsIDG/YHr62sePHjAbjewTislrqwpouZA0l5602vCWkfXwxIWut6xrIl+NBgrI2fWZRGiijEcl5nL+1fModI1gGQ3jm1EZxWqpNV03YBzHmcUNWoZwj4H+q7jcHnJHMFZzzB4rsYDJUc5MW6ecXHYc1om8rKitYgNStXcGkVJkRwDMSyoGtmNA6XIrKfjpBn8gLOauJ6E0GPg8VtP+eT/+iTvfddrHI+VT7/xBsO459VXvxxre2JI4pzhPbbryFVqxoomE6m1iOl+u96ndaFWLaYTJRJjklO8pdY08Zw2BnLjRqdEqhCqnM7WCEhWEcWUN2B7B1Wki513Ms9Li57daM5jgnO2PH36lBgj47gjRQFLta3Uup4zTOc8xmtKjeScSJGWRd61LTdm2wbybkaD2wimbdKFavfVBpBZozHas4TmNe8saZrEhVPLJA4VhXTi+55+6Bm04fb2SMyVmCKX+/2LDebtjTxfE4uCqZ6T7OdR7Dsapj2TS5yT1GIJM7lEejcQc2g2O0rmOM0rRclMxourHf3OM4eZlFdKSuINpixPjkeeXr9JqYaQoFbbTOJkbI1qlD0hs4i0KScxpDeuzfrJhWfXz3j48BEPHz7izc+8IbatJWMQM7gSKxZNbztM70S5qTLdKHxypSvTMqG05eZ4y9h7jstMKBrVdRz2O/pxz/1HDxl3A7rNueq9wXsBwXqrqY3g4p2jKFHgFCxzVBSlqQEZihYzpRiMH7G+p5ztdTRqXVE54U2lVAW9J4cTYZ05xRmjK95o7l3dI4dASivL6UhJhaEb0MpyefmQN9+4JsaJJQQCnuJvefguS+c8TlnQllhksEFTe1LLVn5xBr22mjlvM8asPVvyGCOEixgDBY1RGqxtflml9XsLKQqFtu86OictzJKTMPiQA8KY5gyLbORVgVEIy9BacvNPP1xccn19Q+8sYamEEPFOSp/SxuAKNfntVE6l1DmtPuMrrd6epolSpO10RqeLjIg1RtxYfecwWeZ/xyBgq5g3tFlYTpNSwCSDNvbcK1eqiJbgRZsTpHJnpncO4hbUmxk4PDdMusHw9VynlDMwEMJ6nhiQGl3PGoXvO2KudF3BdQO2syxhYVknKoVlWjgdF7TuuD6uLEm3+HVUdUf9LDWjTTM10FXcEUPEOhnbmmRvYZpm8TDLhc988pPUHNn1A8V1HI+BYdgzqI6KZYoBPXhJR3cdpSw8e3YkhJl3vPoOCqKl7fqOdQlo54i5gpM5VoeLPX3XUZTCKMvYO8beCZkhixvLYTdirWKZRbl0OwdyWNGzSO28s6QYcEYzdv4sENFaYyjUNEOMOJVYS8SoQu8tYYqNrFHpvCVOi8yB1jJ1UXkJkGotMWSM6+m7Dj1PlKi4/+AVxuGAMmIfXJWwmLQRJhtaoaxtvG7pYpxVdG2TF2N0QZ6FKGRQbS6VDE5DgrgWYhFvbGfFE64UwTeU60RHrAolRagCpgnOkMkpyARMrTBKZJVD1zH2A9O60vd7ui7x7OYxzrg26aISl5lSMuPQN4cYdT5xgbPKy7dW1SZn9W1W85Zmm3bP5Vxa3900MYccMsPQsSg57LpOwLNcMp01nI5HtKoy9SILXZmq2I17ptv1xQbzZnubGri1kUVKLbiyfWCythN6o+1praSuLoWh7ymxyITABCkV1pBRViGjKyMoi/MdKSfWUMlFMa+Z6+uF6RRQWpw3nNPE1q/cWFU5RZQpTTix3VwKYxW6aqyT+bwpBFKYKTFy+zQ3k3JDjAbfX3Lv4T38cCAnmOcF1gRR4XtD7xXz7ROm6cir73iFmydPmMPK0PfUlNqHUQTUqBbnxSUEJdzrznk6rVEpYZSkX0M/cNjv5SYwhuPpSMqFVEGl2vqvmbDOdN41eWjh5vZECBMliStlnG9wCkKNhPlEjgtazLSklRRXUIVlXcgpkKu4W1oNYZ1wdsA5w9hL7f/Kw/u89vrrMoa30V4LBWtUE5CUM+CzuXCW2uyRtMwmrlqdn7MJCOC5IYQhUVRladlSDBFrfNNYi9OqrkUCOyeZUdU1cLNCrVn4382YgLJZ6kJpHZiSYM4RbXuc3aGIhDhR84pWGWphnWah0TZU+861M9D3Pa7ptec2OmZD2O+mSfpmXAGqiJHiuk503qGdI0Qts8y1ktljZbOOyjLGVt/147OzzPPC6XSk8y+YznkeaFVk8t22G1ErWSFHXVubG4kEc6UQpdZLAe96Ys4sp4IdIrofWOaM7gy5aMJaqThqMRxvJ8bdwBojT69vublZoHrQGuNk9IjUwpLqKcSgvap61gfD3fgVpRRrXBoxI6NrJMUF5zSd0uwPB/xwQdEDAUNE4QbL6dmb+E7TOcvDB1fkMjPFCUfhzU98Amsd1lvu7XdYYxj9eDa1u51kyp82zSLJepxWeKPEOUQr9vvd2Rt66DvmWSyC+1RZY2qprBJyv9H0fY81midPr6HNBq5poaQVS+L2dCIlIZ/EHBmHDq8hp5U5BOZ1adMpEtpUfKdZ5iPOWIoqrCGxG8UB48HDB3RjRzQtnUaQ684YMO6s4S1ViaTSCPt5k36ezSW0TIRcQxBbpZopVVxYtNYUJcDXmhO5ZPpehhsYLSm4VttUCBm5KjOuAWpLsWsLaEcIKyVFNDJtIicZOp9zZQ2ZgrjBaG2BdCbQlFwxzpOeq5E3X+ztXlrW9dwaG8fxPGtZvi6cC60EJyg5sxt3jGNPadryENazS2hKicNhz+V+JK0r0zwz+J4QhfXWedeQ+RdM5wzNab/mcgYvzjZCcB4Vs71x2dWKBHKNIhrXGqMM/W7PvcMjbuNCLZp1zRyf3bTB5A7vHcsSsRZOU+B4OnE8rtTqoDqM9pR8bKb74J3wuMW/K5HPksy7+j7GiDZaTm4qJa0s8xFTCqo4nPHshpGgDLGA8h3dOHI6PWOJRx5ePmBnB0ZvOZ0iTsPjx2+yHw/sdwcSBQvYJk2w2oDuYN8z7kZSc0KpjUhTlChsus5Rc0SrXgZ3J5lFFHOSNNgJgcFoUE4DnlpSM9g3lKxIMTQVlwhRjCqksIj1V1jQVhRDT589JeVI1/coVZinEym0TUArQkroohh76bcrZdhdjKSS0F5aa/J7Zd5TViLM11bGq9Q21pQ2EaO2bKCeR/QInyAERYriYV2y6MZCTCzrSmhApdYaZy3WysRIjXQfaJiMbCr2zEBUZBlltGWQKbGugZTTWe1EVVSViamyxBWjC1oV6TAUR5xXITnVyrjbodrP6ftO9AQhEENs7afauiSidislo5SAubkUmZ+VZaZYziKyCCnRdf05O1FthM50OmEQ5VbnXVNiydikmBq9+UUGc+166QuWBLk5GlrxdlJxM03XYDWxFHROckpqhcbwcD8yGMt8nFFW+q6D7yWVOEasAec1RUVSXljmlRx1kz9WmRpRKqWuqFooyElu/SgMsirAlNGOdZmaGYCksDRrIaUNSov4PqdISciIEjq0v2TJ0p7o3AjaUUPm9OyGwQsxpO8iMdzy5PFbPH7yBOs6DpdX+KFHpwC14ruekA3QsUaDHfeoTY1TxI1TOYMeevnwrT8rbAxaTBDWgNeGfdc1lRKUGhprqrC2SQ7eyoiXXitU1syxkNaIWRcGVmrOXO4s6ypDyUI6cXlxgari4pJTaq4tkh4rhAvQjSO66xgOVyi3o2DRSgs4B1Trsd2e0Hj1Wgk4Vxr6bDvDuizonOmwAuBlKRWstmgLsUpAhxAJVRMLhEWED31nsSQ6q5vDhcIZjzEQWwkjiLFqKq0sZJUqqqg1JpZUWFJhWotcl2qYQuTZaeF0nHAsHHaai8OAKpG4ZLTrIYNKiTqvKKMoYaXvDjIFRSHIWskyg9pZuccbNefZzQ390OO9zFOzVuZY933P8RTw2ss1VwZnHKkm4prorBh0lCoouml+3zFGfO9Q6gWTRiqym3jT2ii1SlqUIhYZSaMaFVNRIUYOQ49yDmcNr967YO8tp/HIk9uZJT4D1+G0oijVrF/EN3hZF8KaKNmhtezIVglLqOs8hSqOIOcTuL3IxqpyTYEFb6/fc8kYbUghcntzg9aaV155DW0HTlOENXFxNbKGgNMDNSXSujIOTmpEXVmWuRHwLa+9/rown7wj53huYeQkJ0cuwgXXjS4YYyDHgnc7wV41Z434ltaFNTRgyktLb1nRBmKQYezawCmcKKlQ4owqmf3gyCqDN8zPxNHz2RuPSTk21FjURdZKtkSbDe2NoeosQwSUxii42O8kgzKOL/vy95PsSFCWVBSxFDAWjCUhNNxtgJ9GNUBHPNW8t2AdJMUS41kBZYwhtxJNgtKSligkiSSYytj3dE7hDGgr+IDRqrWfnv/ME2IhJKVIrYXUfs+0rNweZ27nhZAqylrmNRCzTHu8GAe8L5Qi1kvVWkAoobnpwm3bTEIIxBzoOplTnXMR8M4YYiOWGGsZxgFnndgnu2Z7VLOosOqWRcq43sF75iW16ydnobWW4zRxmmcxx3euXbcX3Gc2RYmBWm0UwSootkXQ41zFAcSUhK6Bw8Gx6zT9sKPrBi7HjtFr7t07cD8EbtbI09sjMQtPeg2RsAbxsiqGoRtIRVBFlNiuVKUa0ii2Nhui/rxRXMlFZHi1COEAuYpbG8DUyPH2CWG+5dV3vEo/jNyeErForvqRHGNjqRVO0wlnDeMwoFQh5soaEr4fuf/wEX3fsywLV1dXzA3ZNMbQObkhvG1c87hSvSesK+u8crkf5fUhdb5SUtdPU25EBNvQUEVQCaMUudX3cY2otOC8ItWFFFeW21um2xuW2xvWMHGaTkynZ+3aARRKjFAzy2mi93tqSVgjr1PXjFVC+PBO+v3vf/+fousHQkQsjNFMpYkjSkanhDWIUqlK3amNESUSmZqFX1+VDAGsVQwetoxRG8Oyri2lhhRDc+mU+hfaALsmQLHaNi54pZYkrpqqYhAxDkp+5mY9tKyReYmUqmSqx+lGxukA4zBS8sK6RDGH8KYZBzjBKLQVUkrJLFk8tqFCrgydwWpzlmgWZGyvsZZUV9kUtXhr953MfA5BuhHOyBhZIZxUliLpdFGONShUysQoA+1TyuQqjqV994LnM3tlhOeaNtcGEahLKVLJOUCKeJO5uhx556sP2I8dWnVo5eicjO6IJeGVw5UIBGouhFyZ58iyJIzpoGpSFdRUDOPECG2zlEmloJQ700bhDk2vVexlYsroUs8zhpXSGAM1nkjrCcpKSUFuGC3m/jEkbGfwzpDTglaZvhPD+5whKjCu55XL+3hnSCmcyfa+6876Vtd50ikKrZREWAt1GAlpIccoLSxn0LoFtN7MCgs5I3a1YRHdsErCo15u5fWmlboeWdfIs2dvss4TYZ6Iy8yzJ48hZxnUXTK29XhjiOx2I8s8E0OkmoQ2TTXWBt23fJZY4Ku+8qt55dXXOa1RzAKDlhLKNDyhFpyinbCJwYkRvIyvtaSUMUahq7QKqaAKVF1ahiQbrbYyQznFIHW/Ulgj+IC3BmcQtVndAlxUXgUtNbQqQqElC8e+yjzj0zSzLIlYFKUdNsZY6ppIKRLnCdcbUcBVmQVWyWhTmY4nUqmEkhjGUTIQZTDWE1JBIbJI34hA0zTJIYPo441WpCy69M0b3HsLKdM74eDT0unOG9a1TbJI4gxqnBXswjpyO4A2F5YXFsyqthGUXpQwqlZMS5diWiAHOgv39wMXu4794NjvOmSCRY/RTogArdVzezpyOk1o5ZmXSIyViiUVQ840o/J0dmjY6KObjK7C2fV/6wlugZ1CErKKUrRx4c3Ct5DWVdJkJdMdOm+xrgOiyBBLxhlFqAmlxDnUKsXaTpW+82BEVjfPJ/FtNprqOzFGtwbfd2jXE/HcTJFIJaeAKobDxR5vxUxB2mgyEKBWQw4Z6yzrsnA8HqlloeaFdT5R4koJM5TI7fVTclmZpmecjkfCOjMfb8kp4qxkBrtxx7qs5KLYD80utvQEFSlR9NvKgPMDtSpqMfQX9/izX/cXOOx33M4B6zuMttiUmdcjGI11g5yupVKQyY+dFdN2MViUOdzedILyFTE91Ep6ynMIrDGQSpEvN3ufnAJrzBz2QyMZZUkBq6S+SlVqTtB62zFGQkl4b1nXSMwVZSo3p5WbKXC7REo1xJSpylCViCmccywKahKHk7QW5rSidKWzhr73hFbfryG06Z0GlRUxFpyR1+E7z7KuMi6niIikFFFsLcvCeHmBMoZ1najVYLRhXlbGcZCW45xQ2jDudtzczuI60vXkKhwLlTOqSLfohftmewORIg4Itc3oraBqxuvAYd9xMfY8uNxjnfT/lHX0Y4eqihASp5C5nQKnObMGzTzJyVCqJuZKrraN79BQS+u9uTNJXWvVUElIQdg3GytnG7olSze73juJptFizVuMx/c7TiFyOp1YpluZx2zE0aRoQ625zQQ2gCDGh8MlT+cg9jrWk7KIK7bf3fUjOYkvuHeWqsRW57DruA2JuC7shwuuDnuMhrDMTNMRYwyHw4Gu6yg1czzOzPPM8XiLVSuqLNw8fUxNgTQfmW6vyWGFmpnmo3h/t7GvnZPywllHSgGnK7thwFnP7c2RXdfTW4fShSUaqhHnFcyAcQdeefXdrGrHobsizjeoqmRahCks6wqLw5teKKsN8FRKk5su3GohcGQkRdZoSpbyK8d4drlMJRNyopzFOpVx7Ik3J1IIlF66FgIa5vZ7mlBFq3aONpOHolhTJaTKMi3cToHjUolFBiMYZ6kqkfMqZhNa011coGIHaaXGiRQiymbqIgb3XomYx2mD8l0bN6sgCxHFeSdZScnMQTy2u86itTjcaK1YloXOb/xtz3xcqKWwhFu8d3S9x2mp41OWknVZV5bWNUIrkZCqSlrnFxvM1IRS4siAVqQ1kGOi14qrC887Hlyy7zz73Sh9Q2fJaEJLZY+nws2xcFoyp2nl9riSsiMnDVpGX1ZtxZvaaGqJ0iZ4zpoopYRuAvI/aCZ/ZwMsAFQIdynw8+NnizJ0457pNIkO+nSLNQ6LJqVKwtJR6JyhoIlhZT8cuHf/ITYWptOtoOJVpgoOh73UW77j9vZGesa9xxaNjlBiJZ1WatHcv3zQONL53JpRysv/Uzwzh4zRjMOAoUKKzEaYdacpEacj8/GmzSVS1JDIa2TNgdJ5yZwULMtE1w2EdWGZFkRrLL5izokJX1CGXCxXj95DLD21u4/qrpiSxvkd1oFzGj0HTF5waUSHKJ+P0Whv7kqEsvVDC9ZqUi1YRB1nW5spFWnPbKl2bp8fOdP5jqtLKwBdLVAyNSuK3jgE0sdNMaCRbkrRhmmJpKpZYuL6uDCtiVA0RTlKqedpK/Y55xKjpLWW4tqwDSvsrHxiWSMGL9MwjUWXisGQcsYaRzXgfCegZsNvUk7NALAQworSimVd6TsRbEzTRIit20MRxDzDElfWsOJchzaW4+2tmP5vvHUjRJIXPtI1FXHLtFoTlomSFw6j4/LQ8+iw47AfGXpHN3RUudzEWLmZJK2dQuHZbeDmuHKcVzG46waqlt6jz0Uka0XUItpacmw0uY0ssDmcaI3R4qBYEQWL0poQhWZntdAAZeCXMHI2NlpRjmIGdLcDMmsuPL55xjBeyIfqDHVZpDdYNCEZ9hc7iu25f29H+UzEOYNTht73KKVZiqJWx5IhpUCOE871nHKkJsPQRAreaCC1sSeV/WEHpmPN+qyz9q5DkbnYe2rWXL/5jOPNE3ReidP/l7Y/7ZEkS680wefuIqKqZuYekRnJJJPV3Wg05v//kwEG87WXKrJIRri7mS4icvf+8F5R96yZAapnfIIgCGaGL6Yqcu+7nPOcB+9ff+dxv0MTd5RxlhAstonK7nHfqLUQFk+rjtsjkYtiOX0iRZmY2qKIxeDPL0wvb3T/idfljWk60Y1jvpwwdceS0L1B7nikJ85px80eq8GZzhws3iIHxAH105auG3spyP90cGKIKECuHaPk5drjA+PUMB5Y0p5lblDAOC9+5l5pqtF6xtDxKJw2bKWy1sbHbWNLjTV1ttRErtuk3SolH0xFOURKI7csyR4aVLBUBU0ZUI5eReVoraMOpG/OUbjWZqznckdbw75FBC0t25zcV/LQ9RtjeIyDGQw4ua2NVWgtYPt9jwJ10B3dRUn3xBR5SxnQSP2zRSNKd3oqtNIJWnE+v/DLL2emSfM6zZzmwDR7wjyNvqFQYmFPVXJ7Y2Pd9pFoZ4dZXmBu9YhLYWi6e0E1yTjuWktOz6igxXGjUBVhf+nvU207PKcWRWGodgbJUX4GhdYe2zvT6UzPkaoNHUPu4Mefp7WGNE5bZfn8p7+iwkSYJ86XC6YXnNFo5URR1BRNBdx0orROzkm04ggwPe8N6wLT5Kl1xLc6gzaaWAUcUJsSSaT19LpRUuRx+8a//uu/8C//5b9gasIpUZVuRXb3NW2QCsZajLM0rVHejf3+xFYMr7/8A59//SvT8oaZTizziZhW/u2PPyholvObrJLCCecE5L7HyNlrnAn0ktBIfrCdnJSVFBlOjQomWI22BpQeKyfZ9zcF6EalkEum9IabJmztxJTFO9xEkJSLhO91FPuWOHsvpgc9QAa6kWvGa0XPja5kPfZx3VhjRZsFYys9dVnJHfTVPkgmrbPv4i123rLuD3QvzF6Gul1rdLNYA8Y6gQc2nrB+Me4MPbm1tJEo2nsnxkIiklNiCmLCEJhHHTCGTiuNMHkhoZQoL661gBb8kpJYmxiFfmIkqwBnPNv9J5fZ+/YHGsNpmvn1bQD1JsMULJfJMwUHBvpA2257ZNsSW4bbfed6e5C7QmlPr7I3rYOBfZg3fsTIqFHC9C4cZ+ssIKdXzhnbJH/5gKwrrWTU1QcilO+pCnV4l7XWeGPltm4n7u+R+2Pl06c/kyvct4xaLME4iaMtiddfP+GmmaotvWnO51fW+zu1i4ZUGSN675hQ2lFa4+O+4zxMl8+k65XeFJezlOO995F+IJnNWslEuKPoXQ1iZGLfb3x8+0pJkXleKFHEEKfPf8FeRFmlepb2Y/ClG+CDpzXD59e/8Ntf/srl9Q0XJrq2NBTrtsL6jVMpPGLBTBPBz8KaGs59NeJLR5eD856WMpMV7TvlgepO0g2TRemJoCwaMzTyI5yONrzY+mkUuT82MUYMebCthm46KSaZJKeMmifU5xdiTixGo5H5zOF5bhVSk1u54fB+ZtsETUSX6KA69r96bCqs/p6aUUsRB14vEpDurJT9pTD7UVmOqXNMUdRoXuTJpUrPnHP6Po8ZM4TXywW6OL5Ml+l2SRKop61hXiZS0pSWBm9sojdFybKC2+P2dBwaY8klCjrrZw/ArE54G3Cm8XKe+PPnT2hVWRbPZC3Wada4idd4jTwemT111giPrXKPVSJgrBd7YZVN+RPJq/4+T6oNy+Sh5KqljO2IGbJDceG0Lq6sloUsobS4evT4AHMuTxVRhyE3lV1j2lYe9xWMY14uPB6RtWi2kuW0tIFweuHjsfH2y6/M80J3FlplW1fAYOcZ6zxfv36BpunKkVqhRJhfPc55Umosy0n28qMCOQ4xahWjfqmk1p8l62n2qNcXTEtcJoHDaes5vfyKmy/M80SJG+u2E1Mag5QmL17VWD1zeXlhmieME4PJtm9MdqKYC3Ot3PI7BTDIGmkOgU6m98Flo5CKUEJUaSyT1DypZ0zfxoN8EkfdniSeVmvs0MFbbahaDzaXbAvmycs0t64oGs4aSq/MIXBfI7mIrHPbI7PXQhRBBC6tSulslGVLla0pSjXEvZFyJ8UqtBAqLQkVFCVB6LkKFVaSLMRXbazEvwrkwTCFCdU7ygz6bG+ktD9nL8bYcekMkkmTldeyXKilYJXsy61S6HFwGGvlpu5SHTjv6IO22VoVNV7vQ+8tCN4jzK9WTVMd97P3zM5aMddr2RkbrVimCe9kELDFwvt15RET10dk3Sr73tlzlx9E2xEtqqV0Gioa9QMT+Efzt1gZf4AiHL9mCDM0sn/siFigDpHIcRCglMR8DDMGw1vrrXiIDYZ5XoixkXLjn377J8zHg99//0IrcnK+LC9UZdhzxflZxPrdYEygq0TFUhpsW6INcmfpHjD0Wtm2QggzPgROp0WcN84OdVqToDPVQEFXjdNpFqQwAnCz5zOTNTxuV5wz/PbXf2Z5/YWmPV+/fWNbLaqCUZ7JiZk/pUK3mh1FXu+cdcFj8ErTTaGlnVIr3k9Y63F+wocJCuwx42wTiqnSo5ftYj/UllSyMNpuN1FH0cnRot0C2qJaHetAye6WYDohzXRkTRScmBuWkXChS4KsqEN7rZUi5sRtfaC1UFK16tTcSDFRShtxuYrHLmKf2gbIwDmZOheJD9JKPfUJzoggRmtJUVFdsMedjA0GrRqvpwstJ25xF+eTVsCQUqpO6yKfff/YxRZJp9fG/TEUaKXgrHtSPq0T/voeo7DYrcaHwHISsVHay6jQDv62DARFBbnK5aVFSvtTX+bz+RPeeIINzMuZeVnQprLnnZhgi5mP+8Z1i9zWzOPR0HaW5LteUMaQSyYYkcc1KnaI8+E78fO7XE8NUKAwkls/0Kxyk1vtYFgen9nRQ+ReapVbYpS1R0ZurZUwz7JPVgoXJqzP/PbXv+GnE6E63gg87h9yeL18woSFl8+/oKyjN0UIsyT5lSvQBq+p8HjsQhJ9/UROEaMtqUiuVG1maG7Nc8BxeH69NeQ9ssyByRlyjBjT8N6Rk8IbR6+VeXL0mnjcvuGmE1MwbGvFB0fvhbxncqpoDDhL14ZcIl8/3vFO88unC7O3qBBIEfZdVke9NiYfaEOKsccrThnU7MklssdESRljHY8tczoFnDMYEr0ragKodCdoXq0NtSl6ObzuEuIu1ZUkLDpjwIsJP2XQSpI8QUACJUfJfS4WaxRTcJQm9sjSIJVCrLC3htJGwuQb6N5lnek9NTdUV+SiRlRNH7Ja8SXP/sIjb2AM2nRq3mUtNgwSMe7Ptu8A9gE4L2CL1sUhxrCFSsyNxltLo5NafSaThGVGawEzAMQ9PhWMcZVwCOGIS898lNnGDiFP/snT7FYDyk388qff8NNCbo1UN3LdWVfF7R75WCNfbw9Kdyh/puDpXQY+YQ4Q5QYqLaO0kPtFCdielsoflVxqvNQCEKjPm/fwLjOmhj8mH6AYnGTzXbStpLelScllrOBMU5L98Mftztfb/044/8J0lh7TjpvdWM80n9FaKCOlJtCyitpyBd3Zk6Q6hGmha09umWmexBY4EguNNajnoSWEDK1EjNPt0Wd23l7PaDK95xGW3jifz6ieKWnFqMb9407pmhRX0p4pudHKwQQXcEBThtasmGKMJd4qJoh4wWII1mG1YbuvTHZhdsJYC2FCWxlQHQeovASKPXdCAxccQjuNIsXdr+QUcX4abUSSFgmoNdIYSZ/G0oGYCxYLXr4vSYRpNFXpSpGiJZfEfV1RZkY7LUkaKFJrbLWRusEED0g8jvWGVkQIo9FYbaHJlLy2gjGS8+Wd4+XtDasarJqtrOLqGyB7PWY05/MJlIhTahWVnNHCeU85UXIhDnB9mCaJY42JVESHrpUSnXiTOU+vUl36bKldONnee2qRGc++78yLBNF578TnUCXf6qf3zGlTvL3KjbyXndu2wlBoPTbDYy/cIjS1oJSlNkNt4L383xxlbUTvGG2HdFFKOAlmt0OyJ/u41hst71jnxg/UoIkhvncZFtXxnwsCu1NKlr2nQlYdSvTkJSdoijnMWCeYmVg7zk/oCvv6YDlbXk+BmDPBeRFfGMvlfMEqmIOkJ8Q9i2rnsXHbbxg9At9cYD69gLFMpxN+ckzeQe/YaaYoyYf2SAnqrAMMcUt47/AGjCko1ccDISKZXDNhnjBGFEf7GmkMoUTq7El6wW40e9yZp5McHE0J+B2Ncg6MyBIFfyx98fl0pqmNbV8xKGbnma2jlJ0tZ2Iv5DWxOInDTWkjBTs41mIDDC6Q04NaG2uSQLrdGHzweCfoHKuNiLm0pnYlsAVE4KWNGCi8rhgnQ7LkDHGT3lb2vloMOaWLN7lbvAmyfNSapiup5OF/tpQqUtOuwDor/vuaBtHGyErPaE7TjM2KmDZy6Vh3wrSM6zthCmLJbBXnhw9bCaWltQHP1/Jsxk2C40/z+XkolJwBwQd757nfVlEx1o5xmlgyxnbC7DFWemgRKomiUSOVaUmRln4yN/t8fuF8PrOXjdZ27o+7aM8LPPZEyrDFJisWNfS0vYolzwpG98gQUsPEfRzLdjiLVJfhyRH8bZWIBWqVSTFDJ4uy1KHFPcK25VKSVUZRiGC9axm2lYbTVpL5xqqr1E4Zp2LcHryez+ia8MpJ+ankYV+mwHkOBKeprTAtAa0tfloIcQSKO0dSGj2wQNY7TJgIy8z9fqM7h3KOrpQkEiJDr1ISreWxNxdlU85dsqtRaGtQuhNLYnYL0xLwaNZtY02RPRdK0xjvYajysqq0lkg507oGNPsT4ZQwSKl66KOnMOF8kAenZshQchbtdlPPKXjdI7Vk1nXnT3/5K2hJwdBVbixaJ5UETVNSZ3vcnnEsWjtOpxeakoPdGjHOaNn30FvBWI1FMTlNDY7VaNLIq6q1UVIdQXVGRBcdcYG1Rq/iJT+2G1prulGscacqeR600TjjCW7ceqVQ0zgolKcHx5YjtlfOytBLxShDLU0STZSmts7kJ7wLPB4PpiD0zoO3nXOm1UaOsmqquY7AdM0yLQQn67pY0oh/LWAqOWZKrsxLGIablXkJhGmW9Vz8ya6p82ugtEi6Z4yBWg29a263B2nI6QQFYwe8u8upqNqYPX2Ho8Hf5z0faq6c87PkFjD89+QMM/yytY9SFZlUqjEcOA6HVhuVMQnv0PJ3sJwE1YmJAfSzNPKDrng6zdTuWPfINM1MU2CagiQXIqX/siyUIgOLt7dXCcN7PIhVym3ng1AWzyeU0dhJsKkWT6+FltNQUBmc1ZyWBUPG64o1fewzLXsSBVxtMvjpaOb5LA4d59AuU7ii4rgNh+Kt1Upujd6dDE+sQ9OxRrOcPC1H9odEvZAzMUWMdfjJC7WSSm2FWCIl70y6E1vn4/0bl9cXTq+/oOxCro2uA7dtZw4zLWdaE4nskaH0/v4OwMvlhbivEm7nJvlZrKYosdEqK/qA3mSl1ZtMl6+3O1sa+U+j7cqtCWvcmrF6HA/yDyScAxDQ6hiqGYkDMsMcUoYf34XB3y5jD14qzmrsQFY1KmGexpD1INKKf1kbQQnbYbiZl4Vp8tzuN+ZlGlZYOUR9cMzOo1CkklEVWhHnnx4cNm/AB5kRhRCoVQwWzjqq+9kpkCoRi6bkQiqZWqB3Tcqa2sQPa12gdg1GjQljPZI//i4Br/f+hKH9GDnynS0m/fDfpU3mLF+csWgjX2YdYLKGEvucki81OMlEKrmI11WcIcLgGqtoYQV8XzN4LxPn0h159NXOywSy90qt5XvuUCos80wqDa0N+56wFu6Pjdq6mOT9RDZg/IktrhhjRWhiLLVXJie9kdURO/pGTWPyXgLMW2XNsjjqVEkINJn5bJn8RGHnXBrKGPZ9p7bvlBdnHVSZGYjFUmG8k2n+NDE1Rbw/ZP9qhAe975sMwlSnGQXKopTjsd7ZS+Lyyy98/vyZ6fzKXmHbBr8qVmrrGC1rv33fnymHSik+Pj6I28rkDftjYTlfsH7C+YlpCqA1XSuU8tISoCm1MwX5Hr9cr+Qkh88eEzEXcu94J+FwqrfngCrn7+Voa405BFLNVIW4vQZ4sqJGcqXIAw+TTnCBVlbcNNNTJNUdY8QbkHIegH7xF09TeA6+lFLEuI1b2j+TLMJpFjDB/S4ViZa86tlOmKRJJYvibPzZWskWZ5rEl4/q0JXEy/7MlzmVyL5ncm7kAsaFATGX30L1PuI5u4SHWYNG4SzDFfTdnH7EYB4Jeofb6ZBrllIG10sk9U9RCQpnzDMdzwygm1KGnAUFmbKkRkJ9unWW0zLsihLjKXIyOQi8D+RcmeeJ02mh6cAWd7QG54RbJV7oAsgJ6ayjeuhaOM/ny4mwdLY9sG1ilEBpwjQzzxMxZYIvGOPlIFKDANnHWmpITY3WcmiEGe8cuYALlT1Xkbc2Qeh65wkNTm0E3jUx3B8T8tYVNWVqL0IysZqYhMJRRsCas5bAxBozxwCG3jHhqIBkdmGDlyC7ywXvw1PcElORvl4ZHuvKMvln5XVUWH6kNuz7RkmNdb0T08anT7+wrVfmZeF8vuD9hLEOlCHlRnBecLWj6rreOr1U8jj8c1eQEl1rnNXPS+Go4kopqN4JVqbgY1cmLLjBG2OUxUYrjJUwg5wi2nq2XLjdHs9DQtq+CgaaOqrFhnOi9opxf4bDGaPpWOZpBvh+UcVE7OBCIA3csB3CI21G2HuTvv8JcWiZx2PDqp+caLGuO9fryjS9iGXQGJoeFMRmhi9XTrpWG7VmjBOrYK3fV0/HB3+83MD/i2Ck907wHoP0KqV1ObVHil9HtKsichfvbLBSMjPwN61VSSOkSYA7nVzSkNBJCUqXL947x8vLC2GauK2CAZ6XEynv1HaWaXmtHLlHjGA07QLOeUrJtFbYNsvdS8qh1giIvkjJl2rBd0HAWDcOrVopBnEWDW9ziQVskfQF1VDa4sOEC4HT6UV8rk3E/jbLAzxNE5XOntJ4qDVOa1SX9Udv8mel2lmso1RxMMWSMcYSwkSJid5k6Efo3G7CBmtp47e3Vz69vaKUlvD60ricT9zvN0pO3G9Xru+JZZmfoLrb7SarN+/Z4o6TgTjrsHeGEHj/qnh7e+Xl5cK8nHFhYfIL1ntKlUPTacPJWb5++QI+sK5ZWhBbKa3hrNxaafCoj8CDHyGAqVVBMo8NR+udrgxVjZmHkvZQuU7JWWYRvdNzhpgwCk7LiVJF1um8DLlUHXRaLy+itUYUdgpS2glhAsTcESYv4AxnxppWpKxHm1lrIUxSnsconGznHMtJc7+tP/dlzrFxWl5ozbFtBTsb8Ibas+x0q0yRhQOGgMpbHfvX+j3h4r95iY9IzUNlc0ABj6m3scJZalUYFK2Paa+WUDFx0hSMUZIdlBIp7WitmeYArZBTEtzpKP/lHzX+TIcxjtPpxBQCjz0xLxPzLF/Eut7lhnJh3OIZH2ZAdtbee+7Xd7wFf564nGdyFSFKazCfZmyRuBylRVVUG8ScMHScdsLHGj/Plirb1w9cWAQN1JEsKeexPghFRQmUXaShgbbveOc5n89s20ZrmpYbOTeJgjGG2irX+4OSHU45pmliu0uVYowhnM7kfWe9P7BOdsEpd3mZpolgrPSRpTL5SQ7ZvPPv//av7OuVkoUueTqdeHl5obX2LLlzqdzvqzzYrbEsYtqfQmDbbvz+7x3rAp9/+Y0//eVvvH2eCC4QnGHGwnLCd/jy8cHdRdYYoTZKb/TgnkKiA4t7gAUPdnvKmW5EgZWrMNWVUnQllRBGi83RGO5lpyvpm2kN3aXq7F3KZGWh03DeDgGKpDdu+8qRYFmrQBm1kUGs84ZTWGTN1bqoGqvc7DFlupXq7Ha9DpCCGZrvRG/fZ0o/7WXWdkIrKygTa8RnOkL3lFYDqMfIExIca+9y69Rc6FX4Wyg5cY/SGcCa75GatVTmaSI4TyuiWc4pigVtpNJTLJ1KqQlnPdaMfZ1SWCcZtyCaZ4XghkrvUNoAG8ihQJdev9VKCI5pmZhLZ1rOOGvZYsQ5P/A1xwEl8ZvKOjRtRKhoLNLDWS8gf32STGplDLkPzvWIX+lFelltjQDqcqUbMQBoM3G/3fBFgthbb4QRDN9qZd03tHPDldbYtp3SKy44YVSjpf3RDbS0PiVmTmePdXJr1kGyEHWWouQI1mGDxTSRXjorwhNnZ5Rx7IcUMheuX/+QVWLe2O8ffP36HxijMc5zv91YHyvLvGCckXWhUrgg1k9VG+uehIltOtt+ZwmO1iK//3Hlf/3f/oV//h/+Z/7Tf/qfsNbj9YSzgfPrZz5iw4aM3yu1Z6qG1IVe2bscPHooEFBGDsMmEUlaG2kDG3h9bFs0rWlyVpSWCc4yzQsxFVBNfPk1o7u0bNM8SSTP0DbQO8tyGDH6kHwaaimknLnfVp7xSOlOijJs1EaeUXWwwJtsfNYtCcFHCWbJWYd0CT97z1w7rafv7C9tMBhx73TpS7TWtMH0oo2VBZLvc6j2QwjPkrqN/y25PHseH8RxYrVlcgtVQUCDbWANuXdwFtsFwu+DpzcFulFyJZeI9aKBzsMojjZUpXDWk3N9arWdEkvny+XEL7+80Wpjnk945wVWTh85umNYVjNTmEWGSRf6Si5M3pM3UTdNfqLvCa0NPggJdNKO3jWPRxp566KhNtaw7St2pGBe74nZW5ybUK0LIld7vA8syxmMJfXOWiq1tLFPlVu+506pYi/cth2lKo+tYO2ZlOSwupwCItkSc4ZTihwjyhpKb2Rg8k6YXFFC0ubgcacziQa1cHvc+K//+X9nssKefv/9X0SUYSe06oOUKi9SHyYLNWJ1jo1DrYrbCIufQkArT6tDgrvt/D//H/93bh9f+V/+l/8bTG88YuRRDGq+sHxSxNbY9gdJQ5FWW/p3jsoPmlJkbYT71S2qKnR3aBMwCnqVNVovhm4HNmowqrUOTMGhqfgl0MtOKeC9prXpeaALU04Ns0QbbifBJKVUSEg2V2sV5Q3aevx4/gFaK4QgyrDaGtMkqKFj8Oudlwup/WwF2Bhu1FafSqNnVM0xGRwGglI7vSGBakM/fayH8kgY8N5jtZYHsXfcyOY5hmC5VlqVFMA6/uxj2GOsHtAB9fzP5fAaFM5aBGNj9POQADlsvJesYAEeSIi2gudJeV5kcBGTMKCcc2LRS5lcKvu+UmrjbTlJxZArGGkPlmlCKYYFT40peMVQZeI/vqQjf1hWbGK5U0PrHGvDWC/xJd5hXcBpoVXkJoef0lI2O+fwVRRnt/uVxxrJpZNzQWlZFZYmQImO7OWX5QS5C7LJGFmDjEGc0VKl9CYzj9oq3glr/PXlQi8bX/YH9+tX7rVw//jg/f0rv/7lT7gQyKWzLCdyGvDF0cdPRqJ8j/IRGOsXUfWVJt/vkdUUpon//F/+C8Y4/vZP/xN+fqEUack+vV7IceOx3qRnbg1tBUrRqpAw6WN5gWRPWfPdBy+Jk2NjMi48CY4XcECplV7lsFdaQuWUM4Tm2LeNjqj3johXaWu+f6fHEHCe5qcENOcss5mRILnv+4BQGFpLTGGCAUBQiKEENNuWmJzDOPVzX2b4vsP7MUDuRwnm8TJpLX+x3mTCWtsox5WYuI377lPuMLCm9inpfO6W5VvCIjeospbSZejmjGhutbEUVSlDW9xrk3jM8eIc0/NjYn70V4erZ14W5ln01qd5AqMopWKNIUzLIDBqAa6ThASBOGZS3Md0tz4Bedu2SlBaLeScJJTbC6Tvx3mB9HPC0Sq94bvBKkXLkWAtwS6cXz/JZ9FFipiKTLbXksXv3b5ne1lr2bYPrtcHp9OLTLFrpTQorQwSpsbqCa+dDJlag1IGc0v2uEbLrl71zjRLcsb6uHOeA1Z1DIW3y4n3r1+oLfGPf/sHLm8vdBNQWiJ7jRUiZe0NH4Iw0Ux/gukOv++yLJxOp8E7a+JH753HuuJD4H/7z/8HpcL/8D/+zxg7c5omUtO8vl643a9s6x1yQRmHtYaS6vNm7mWQanoD2lO1VYsMt1rL1CxlN0qgBdrKnKbRRoumud1WjKo4Cx0RshxDxzwQP8d61Tn3FEYds58n8NE5qTj/G/KNvFdA19RBpm1FnqXWoWqhev70l/l4cI6d8I+h6vJSDw9xY6wIZAKsnHC75Nd1apO4mNqrCCC0fkaCWOeG20QW/aLFljRH1ZuYJOjUJND5ErPA+3obPaAB+/eriuOlPk7K58BkiAfu9zv7vnPujd6KTHWdB9QYWBimORCcZY+Jx2Mj7isxZRmcaCWRrimKwECLbDKPILPe9ZOpfazejsMr5YKxitIg5whNQPC5SKKEc5a0ix5cwrql8vFDlliSPETlJif/NNdRLUkC575tUuX0Cs1Ck+qjtu8xQzklrLWkmNhqRGuFhLV1ptMrvVf+/d/+KyeveNyuvL9/4+Pjnd/+8htumbjvKwahafYuNj9lNDFt44DbUejnc5Jz5nQ6Ya2VHXmtz1ur1ypJHeM7+9d//xeWy4m//af/kT3v1MzYPrzSrKzFSkpoGyQ8ro2YGW3kRe513NKiFJNsLOljey3PyrJUybOqLUvsLl2+gy6kzvt947TMWGfZt/3p7vvR6Xe8zEcU7HF4Hy/6oRI7LpjjdheZsvj3tRbfwDQFQfrmNKAKP/Flfva5PzC3fiwXfywpaIcOWJr540FuvYkEE4lLPdL2gOdEWxs94iz1dwPF8ee3kVFUiqiTQsCPIUFMeUwInUTFWPs8eI6yPucMned/V3JBtYYflUFOEe2EDa4Yh0+TSatWoIzGWSNRMcOLq+ikGCVgWyGpBICxMhyr5egV/34NV0oZWnXkVuhiENDaykrGeurgaPXOEOFIooOY53+ojsbv9Xg8SKkQvGddE1iL8Z798WDbd3T3GG2YZhlaqq5H2Shun6pgr7KesVazbxtfSyJ4z+//8e9s9w/W2weazuvnX9Fh5o+PK/40kUrhsX3QKhglN87bpxfu68cIthdxhrX2qTM4Po/5tDzBiLXVYf7PpD0zzxPX6zd6+ytp2ynV08yMdYHXs0I3ucn7oLF+/7wZQYB5bEb0cwddaqaUPuYpWvDRvQ89vOjZwVCKrCS9ExJLa42c4nOPfsx/jkrjeAem54opfn8GtUTWfocPmGcIXSlZEEVaCYO+Jba9DNdVE+TIz3yZv9++39PxjhP1RwGIc460Z1qrhCkM1Km8uNZ79iTySZrs3Oowa7SR2hhMYI07zvpRfgzXUfse9J6AeUSGCBnxsEM26dNLet461tqndhYkLKxkWVe1WpnGafrx8cHL62cUnTx6xm40zgW6lqnsbI2otqwhl8Zj3YU84bxwo7WCxjjVM2XA+o+25Mf+PaUESCXjlCEYK3RLBXPwzD7Qah/WEz1ueZlFoAVa2Iz64cASKaCs6SrOn4S91fJwFCnxKxvL7X7ntMzPm2TPmfv9zjxNMsXuR9JC5f3blbivcqAah/ELU3BMwfPxuFGNY+/SrxolpJRuDN4HPu53fPDUnEfQvZScp9Pp+bxs+z7caRY/1GypCNut0kg58uXbf7Cv/8x6e2CnN2p3OOskNXGaWR8Pckz0Ub10pWCEmWuEDmKQ77B3eVVLa7JqOi4QN6o/IMYMCOopN3FNWWdIOWONwZjpeRAdVNijdD727DHGp/z3UIkd4AFr7fO/PybgxeShPZApemsV5+VQOQ6+n/Yy9x/0sc+Ux1GiWGuleX9qoDXe+jHJk5I1F5G4zbPsSsuI+lSM/WuTKa9CTqQ9FWpXBGeJRfAux9/hNC94Kzf9HiP3+10GO100tsqIQkwfqqpSoXVKyjgvWtjgPTWJUqjVxsfHB//YGmjhNillRElVG3TNMk3Ynr6Xg9uOMYINtF5idKR6EatbLlHIEiFQ6tCaKz2C1L5bNoMX8b9WnV7ziKZxzPM8wHTymdYiOJqcM32UoXWIODpy06YshE+tDEaLFLW0htOOTB5Dpkols8XIy/kMWj9JFqlkcs3iMe9yEHnvMVqR4k5rnXk54Z34eMO8YOjoYKmmkjeJPlVIH4lqxL2KqknL8FQbPSB3gyU+eNiPbcX7IJoFZdi2yOQdysjn9O3bV3mwu6wkax+ziiG62PZ4JDI80UVtyFsPcZE1UlWV3keIg0zKupyQ47vuqLHeU9Zg/UTND5TVzC4QjMIYzb7vTwSRtQbnR3qkUXjt0Fqx7dtYzQ0P/wgksM4+V41lhK5rq+gNZh+IkbFZkbjYUn+y0UKS7qTE7q3DMZ1sbSjBhrKmK8xgKvVaMKrTS8QbWWE55+la6CDGWR6PYdRu8oHS5aVe94ydJ6ySQGrG4KnmRK0ZF+axW5Sy7Xq7ssUdP8105WilipWxdVqSvalF44yU8ClGYZyMVVvNlff7DX96wZiZXiUdATLzaQEcxsyEETOjlBhJqm4oa9C9y5c65KbrmmXlVBNdT2A8BjmF6QVjNNbKMEj1jkIEHpfTwhwcdja02MmpSMtiDColgkKCy5wFK2DDjiBslTa4YCWR4fGQiqYATdxTjUZpjftjxyi4rzvn0yIc71bJOT5LSd0bujUsXdw/2qON6JKPWNm5e7Z9paQCvbHXinbCHZdnpmONqLKUlUGnsKTFEltTFF/v4gnOsq6Cvi1JYHkaBw5KhzVm5knEE9qIFr+OKsVYy76/oxAijkD3BONcEKpsrQXVBZTXWqEbS1NjrVUrqTbo6pn71LqsY53zGCI5b1gHk1voreGNZgknspfsqdoqwWuUEi1B643zeX5mpwUb6FW44n28nB2wWqOdIeb9qTAMfqKUSinSptWSfvLLTB+Jf/p5A9cuod1BTWPM3sdJ5Z4qG9U7tWtyTBLo5pz0Kc9TbYDdrJXAtTEwuN/viL9GbgkdHJKiIsqdvUnJn0tlS0nIDssJZYxMcHOWAwdZU/hR5uVSac9sJIsPFtU7275zvV55cZMMMZShZKFTuCG2UNMkcEBr5OZsO7lXKYe7lGvTNIscT1lZiziP0pYQZlrpQoJsBZRQQbQ4VpiCY55mSdAwAh5sunFbhczYu6QJqqH+Atg3MVh0FNu+C1RQOZRqOB/ow7frnEUnxbquxJTGg6MI3lFLwfgfQ84qqjtylBzrpmSqrQGj5fvNJUnszUi+NMaQsuyytdZMYRFA37rJoanFX95rQSP77JqlCnFOjC3HkEieeCk/tdHklskZcm5YB71UCpnaBcKgxzpTIUxtoypGWXJV5KZpiNCpAfsecbMXQdMokTXyghkthpZcJasKrWgFepOURtXEpIHSbPsmUsvlBMuJlBKPdSUsgW3fxImrNY/7HTcMRa02UQNa+1zBuTHhjkWQuyJwkXxxYwxxj+IJ+NnBcdJb/BAt2WXJH0KQmn9MuHvXg4UkPwTaiEgihKHTbtQsMPvW23PYVcYhYAZK6OXlha4kE1craH7kORUpJ/sQqFQ6dp4lwykEccOkireO3hpbjHhrsf7C+njgtETWaCsvmxnl+/124+u3b9j5zDxJmVSr2Of2bZf+vgce64qzAkhXHbQscKkIl6qhSaXTlVA1lHXMXlIkUymi9lENpTs5rSzzLGV1cHhrmYzsz4O1qEnzWON3pdzotbTWMgysXYgpMZEH6K40mCbPPM8j3EzQxM5ZcfpoRvayHHj7tuPMgncWowItR2JVcsPWjjcaNyB4xgqf/LELH7r3KsmWrQ7NusZ6zb49oClO80xvnTB5lBGaZ4oRUMxhwg2roryQjTDNtNBJsYgfXcv6sSLivSpOB1Hz0Z7upN4bwVtyfMjhpBx7rcRmEKBfx2vJlCq5Yrwll4LVmjaeuz5WqYfLrI32SwM0zTJfaOnGx/UGQJgF6m+MxTiPdYWcKiVVYsw471iWCx8fH6Kp+GGFdeylU0oD+mdGUkvHGHEMigPOyCT+ZzPAXAjjB/w+BANR2rQmAHtlrcTCKEvvgt1RKLT1zxvYGNmnllLEoN0apWThEydZ+ucs6iPZQVthAA67GarLIC1XGUhYK9PDKmaMbV05hRnjNOu2ckSI5lrwy8xj21nXlcv5QvBeBjZjaPLl61em8yvWLnIYDJrJY31wOp9JtUo8b5NyM3hH6chawxiRnhYR9bfBNospMo8z0CrxC9MrzoANgcsSmMcgCsScgbHEXYCBR6UCPF088pnJGianyuO+jmmopuVxulNpQ6xSGyNwr+C8JXRHipFWCjkpru+RaZpYJi8rL2uo2lGSrO5ECFTY4yYI3VoJ1jPNEx8fRbKgtPjDjTZ8fHzIVF5bjHXs28o0u+eUWaHIubINXnRH1mq9HRPdQm0ZZZyErmlL15bSLaX0oU+QwVTKUUr9EpmDoeYIrVKbIRaFtQKhMMYzeU9NkdojmcoUAr0KrkjQxR1lBFxYa0MZ+Xv2nJhsYA5nlJKtwf2+Mc+gdRmHWUOpLgTXLs9qtcIJCz5Alz37AWz40bcfguR9iQClsizLcGNFwhRQTx3HT3qZ+3gRj10zjJWTEVxpRx288fGNidxSG/EW19ZHmTK4SKWijMg3e08jh0hKpE6XQYGR/GChiyhak8lkzIXWRIWrtaWkEbupO8E40r6PdYujZBmIPbYNH2QnbJyTGxkpv0qtaGt4v9/5448/mKYX9OIJk0R15iqT5FwL2irQ4LRQOFMe6yX6iFQpI29pzBdqpeYd0ys0TfCGyXuM7TinmL1h8Q4/TU+aRUfLLT4+82PyfewuxT+7s+dCTILY1doyTWIAqa2Ri+wqtdYj5lQzvjbCUN/tClG9nc7MU6C3whICKgjCKaXIut7Z9vW54qlDJWVb5/5YKbWIHr5IyF4tjZfLhRwzrWTmU8CYQC071nm0D4PwomUeAEyTG62DUC/D7HBeWhtBLgdyE0eZtRbn9FhXHgecQuvOy3khbg1aASNKPNXjQORGqpacLVG7GWou8ow1MbS0UokjhSJl0Xw7oym5EfeMUxZrx69tMpBUSuyjehBTUIzBYZCKIUxs2848hedu/UeffimFkiuliNuvlirAjHCs78zPN1rkWtAD6/NUgSE9i0kiM6xVnBfaGqyRkkxpIw9cyVhtWNcdo5QEzymFauoJKmgCcpBVUu3oUQrmfaMNJK0e9EVvZKps0BilaEpjGqSUKTnRhhg+psR0WlDGDEWSoGV7Hdwo5+UL1KLPvT8efHx8EPwZ39uzDPLe0xAbnbUK1RpaaSbvmZTlut2fUkEn5APpZ1ujFU2uolM+Lwsvl4XWEtaBMaCdlLVowdTU2klDYHNUQaWU5xrkcNTsKZNLQSuDNZ1uDMUUmeoMo0nO38vRaZKWaH1sIhE1hhQ39nXFac1pCcxej/2zZFTX5kE1fHCkLCkfbgpj9deYz+fRf1sB6nUhjm73O8Y4eitMztKs5/zyxh4zMW4yLR5/z5zLd5NCLcAADljR08+nE8p6Spe/m0NRqwTQ6ZHCqVQjRoEgbOuKU4Wzgj0/UG4htj4+K+ilYY34wxk+g1blxU5dBCRKKQHyNy3mk9zIprJFmVPkURX21gjTJKqvLEaJ4D1TkDVUjEkO2jA9Zy8/evqlh+7s+4gVChPGKG63m6j61pWkf3KZrY+YjVqpSm5E7530O9ZJ35Y3nJXVAEi/WxBrorWCGC0xcZpnjNGywsn5SXK0xg6Mjx8AP0kZ0FphnKch4HKrrWCZhkrDOoebNHHb2NfvlEPjBK5XEbjbQZpQY4g3hWmYwhvX9w/x+148vSMZx4gFczLTKFcr1UpgmbcWrYfayzq29JAvRzUZOKFoQ6++nGbZP1cZdFmjadrivcFoaU/Q0pbsKUm53qTaqANRdOh7O7CnKAO58ZmhZEAUvEEpJ9r4ozIYpZy4huRlbFVMJEfsT2tdUicNnP00uA0CTHDO0rqVvKmRia21GAJaqyxOTPl+6OX3baeW9txh5xTZ1oQLhqVKuqYxZkxyzVhHMm6qMuYok6xu2kjaFIMbXR9mful9U4w0OjVFeu2kvOOU5bQEAe77zpePjS3eaE2I5M479GCct9ZGDjKUlChKjfnNTq3S2qW4M1lFjIU5SJVJKzgrdFUTPFpBCJ6qD6KOPBd+WFa3TQaPSgtpJkXJrZqG6CTnKKEMKdGaxA2FA13U+88PjmOoWHpp4nRSFaU7Wo8HRnsuZy+ihh/+UVXWUS7MGGCtldIHkRONNw6j5AcEUF2huxHfqTMYFUg5IzkY4JXcyoIrtbQqMTIKZMLtDLl1YomcvBcio9ascccYTVBOyisvg6acMylVctHYcMKGF3IVVtPM0HO3DLmAdZQKSQsgzhroJdE7zH4azqpC0BbvxAfrvEV7Ad7p1pkGNhZtSUWBM6iiJZcJGbqUUgU83xwWYaqV2si9kWpiLTvKwtkGUi6UaoYNtGF1ZU+JNaanDzqNn7E0efnnWQnwoYjNMe4rJW+8f3zDuxemyeOdRXeNbnA+zcRdC2QiV4HWDbdQ2jI5FcIpsK+R0+kssw2ENtkRZ1fL8PvXD06nM9p0SALUP5I3tRL6xzQOwhQjrYHxgdY8NDksluCljTHD6tkVqltqFsZ4zknC7axsEuapo3Nji5WYZd04WZlE567IraCUJdVGq4XZe3RXmC75yEoLMqgaTUKzhJmXlxOqZUraUKITYtsl49mZoyqSm1v6ZZH7dmWH1l905Gl/cD6d5HC1msVPbLuYOVBCRpmmZbDBfuLL/NQV14JVRthNjedCWzvz9CmXUp6Tuj7WROVwjgRBySitBJTX6yg5RCDvncS3OO8pXabetgu4LwwG10FtPMgSj8fj2b9fXl+fP5SfZ3KRAcVT7AFMYSK3zOOx0lBsW8I64VyjxEdcSiHlnWV+FQJIjjhrnzdZrTK4yznhjGNe5GVWvcptYzRWK0LwdN2hit/WW/uMKsm9fhe2DGpCKXWc0A2NISeZ6q7bLiOtw/ihO947nHdse8IP1+u2R7qqNMQ+15AZhdZKjBy1UlqhDjviUaUobfDeCARhSGtDmKA3tu1ByZltSyjUE9oXY/yhjzdcLme0UlwuEkCn73f2GLEotLVcLpennNENBloeeGTvnMD2h5hCobhczoTlE9otpKY5nWQwlNLG5B2vlzO1NtLaicbQWsR6g3MTp+U04BUbbEIBCRVu9w3VM+v9A7+cyDnRehKmd4N1XbFW45zQQNKe0Ro5ROOG0tLrWwpLkO1CPpJEEE14CLP8ezkTaxwRNYFSRTRS0mCEWcvH+wfGS6xva98RWaUUpmkmhED42S/zId88GvjaRTlzSDhrrU90y+EcAQnVOgwPIYS/h651oYaU1qGPMl6Lwmbbd2orT+3rAWw7dOBh9CQH6vR4SGqt+NF/NXhG0xzZTgepI+6Rbd+xNrAsF8CR29hrS02M1UII6a3S2gAddJlW5yKSP6UtDTifJuK+4d00lEliKjfDhNGaiC1QkrQgEcSVrSSMPj1/ruNn6h0ajdyh5UxMmdwKtWaUUThvoYvCaZm9qNWa7JVD8MxR0ihq6yyTpXWBz+ckov1exf/dhqRQ6xFmj0Si1JwFemA9xWZyzGyrAAuPodrxLMQYiTFirZbpK/C433ncH1LWDpLmuq7y912WESh/Zzmd2FJmTVFu5H1jmSbO5wVrLMs8EUtn8hJi772lVUWJ+whl8wRv8U4T14qx8mLcriuqW+LYjBjnuD5WLhdL3euQd+44OyAaLaOppLqTWsc2IxE73tBpWCVuqlIaPmjB/o5WZJ4mfFDkkvEujBlHe64UjxY1xkgtheCcXAxNfO1bitTen7bIaZqen60xmlJ/dpkNw+nDECNY1NDCHjpTY8xzD3poUXs/4jhk9H681K3JEMJpT4qi5fbOy1pgl93lEaR1rGeePugfvMxyUqfnn79tG3uMOOeeggKUek4eUTLME+WQA2VR2qHwzMHgrLht7BAitCHHs8qT44bqDbodsAP31EQ777BWiSEDKdmslkPkyFTUSO4StZHHTvM4hX9koMkqSoGSSb54wOWYETOGpBpaLd9F61KWOx9klZdA4YWjXds4LIXzKSD6YXLQWvaoytJiFBjhJGYIuqBqt7hxvX7grWGaZpnqD+fP8V0vyzIkrI14e2CtZd0i03wajjip1A632PV65eXl5VlVMWSjkw/EfZchVav8+uffsGGBLQ0Ja8GaGW8NullOWqGVoemOernwe7yx7xFFxOlJZJ1dhEv79sBQCbNFecd+T8zzzD2mMckWccbkNWUMD611+BCIcRcBS4p4beh9oKEHUcR0LVlbA517IJPs2K3X1vDI8LGNQeb5dILWWB+PvzMwHS+xc274nhvT9JOn2SEEeei0BKnXKtayo/w+yuvj3z3029u6/d0q65iEH3bHMqJdWu0kEkrJcEScVgeR4bvJQm559XRtAc/fL4QgVUJK5JSk1B8IXhk+GG6Pu+hvtfDAltOMsyesmQmTwU9qlKUdZ5VkPLVOTjuld6xRVNXRxgmoXskgL+5RdqIAaHqXKqDVSq3xuUPt7djTQ3COnNVzKHTY5J6OKoTj1Xth9prWZNotB9nhwFd4Y5nmQK3y8toRS1zkmmXyFpSwtW/3h1A94GkZ9FZTAWsdORU+3q/0ViUza6xxegc3wA6yGoukYZ2sAxUFwtsyRmB1e5T//iC2HM/QwQg7XEe5ZGpJ2HmiOw2t8vZy5uWyYOezsMeboXbNPHlUS6gm5a9zgV4ti9OUsvL163/FOSVDOSc21C0+hLPtDL0kqIqSN5TpLFOgNOgl0lTDWemf/TRhrAAWTDADamGgy+zocrpQ0krcd2KKtC636jzNT5eUUGa1oKmOymtYb9sPbkA6z+rzeKa3bRtr4IHl+pkv8/FPGzbEjkyGn3SIUUIft8uyLBzEhVIq67o+X/bDwfTYVppqIlLoErtprWi2JaXePMu4Y996WOicE5vc4/EYBo75qbDxRqJEnyHsA2pwYE+D99TemeaZt7fPeHehN8c8G3xoI79XmF0piQVQqT6YTaJiCrMdGl5Zr21rRHXNFAYdUjvRRI+pvOpS1nZdqV1REQ16zvVZjsURbgfDuD7sns4ZTpMjxwIavDPCNYPBNNM478ml07aN3EWCGC5ncmnkUokpo1qT7OJusFaPVI9CKfJgSX8m2vN928gDj6S18KnvjzthlIA/3iKiABTTv9LSax4HU22d4C1vby/cbrfn8+G9J4TA+XwGOrfbjfVxF9aW98xTkHgfpfBWMslCmPDWULSmaXk+jFE0ZcjdcD6d+PpVxInTMqE6pPvGvu9cLheckhWoC+JS23KmU6VamhxVZWpOnLzn06fX0e6txCQ++vNpQVmNoT4rwde3N7T13B876/pgXVdRbI3WLuXEbORzut5uso+fZtnSINXu6+srbpKUDOnZLfM8s20bKWX2+JPpnB1GWarIuVFykfJowAV+7PkOGHrO+VmKHl/e8/frErsyzRO9jzIYJXtaFzBayhp5AX8knMhNLT7Q78qoo1+OMVLHLd6qGAsEd9RIJROcSD5bh19+/czl5RVvz9AdSme8b6jgyXuUZIe4EbxkLQk/W2SLZZAsTBWvbledjQjDcNFaZy9FrJFK+N+oEWTWJZ6lVUPO7fnZfX+Zu1QPLXOeHVopzpNFBUH4GK3IHRKK1hFoX8kjhKyLz3q0WdqPQIBWBTOsoGVF2qJQYHqj5cIpBJyTQVzOBbocgjkKCP7xkN3wQdwEWJZZKjMQg33rz8P2IHAoLQfN7Xp96q+Pw//oI3svLPPE2ipaWS6XM1MILMvMxyOx75VY4GVaJFu5V8Svplnvt6Gy8hwuCe8D1mlak8iX82Uh+JkcxTdsOnQKSjWWOWCco5VGjpnb+we6Vfb7jcvLmU+XM49VooS81cTW+LhfucwOb4cv2TqmibFHlhd921aBJAzZshn22X6QQenCgdOB2iXZ8sd509F6TdPEHn+yBbKpWabPraJ1oted4D1eC5bGjYA358wzAkaklIW8xdFbKi6XiyT0oQlVIjSttZg5kFIixsQSZBjQMhjtmCeFsUqms73x5evvzNNCCBN9IHW2QX/oHfbchBVdxNAvhYvGNNFTdzrn5cyvn//EMl+Ypwu9QVUTuUVqTmAMSjVKjcSkRPetFaVJlGnKkY5mnqQvbBZKV6x1OKGUpTXRIIcGNVe8s8McgKQ0WEftesDtOy0nDBBUxxiG4QLmZcY5Q+sawbzK+oTU2WOUmroJHF9bWb3N1rKXxloamUwEaky0JhEva965xwedjqVzXl45ecf18Q1MJ8dMijslJ9btjtHyck9hIueIXD4d5+TzlKFYFZwTnd4EROesQ9XMefaUIkzxlPMgjHScM5Aryjhe3j6RS6YbC8aQsyQ4NoRCupzPGO1wprKnO0Z7SozEckOfZ77+2//B/vEHQb2AOoNSfP70aeB3G2FyOO/Zt5W0y/AwbndO5kxwlrxHThehsV4uE8Y0SttRRsD80KhxxWpZcTl3wjgp0z8+rjjnOJ9Po/VkgBXBWCXrMqPoTwpNFALoAGVYq4l7kqSWmjDayzNgHbX+7Gm20qRSx8nYRaJZC90ZlDU0eZ4ow7fsgoDwrDYUqlgjlR16bZEpttTY1g3rJJVeazXKxSLiCSX9amsdNfo8ayQkPfhpxKrszx5ddsaZuCVKqZzPZ/wQpCg6xrknzeGXX37lfDrz8vLGPJ+JSTy+eS9YF0TeWBJWy0S+1oJRQqQUA7pYNnXLqAalNlqF0gv7pjF2wpiJlhvKa7RyxNJHUgM0NCUnHpsMuYxCkjiUoIwvi0Ss0gS52rvov2d3ksFLKlRpioW11jutJEpj2Bgra0o8hvx1i5EeRYf+2DauH7cxrTZ450ThViuPx4PH7TrSMjU0LVhhpSipSAVQxcjivBlxqZqUCt66sW7sGG+oVcAQJUfmyZOyRmuHK4X3640pLLy+vGBbY8tRInZqZVs33l5euCwnWhfBC1qx7ivWnsdwU5P2HVol7itf/uNf2LYbf/r1F7y3Ahhsncfj8YTplZzQRgnIv1asVczThKJzu32MhAs9aB8Z1JjvGJEmW2vxxeL6oOqUivMjm3lUG9Y61lXK4jDWsDFGQgi8vLw8p/jWimwZxROCf3irRQufh1jov8/++H/pZY5DneJGv6qVcKTRmm5kVWUHmqf1PtY6ZlgWFV1rSu983O/QFct8AtVRwYsrplcoY/LnHKVLcLZSsPhpmL0lmBoEkHcM2Y5++liHSXCXGX21ZE0dMSM5JT59+sxf/vJXPn36lTCf6Bi2VORF6Ao96A4hzDgtucnHl2mtI/iA6hKIve+ihCo5ycqpRGKV6mWaG1057ll2pLWOMDgkZC6myB4L1jjWmjF0LsuMNTKxdsaOaiXi50n2nnkDpVi3TMmQiriK9lzJjWEJrexZXFqlFpFUBkuYPNt9peQGVeGUQZfOy8uJl9OJuD44Lwvb40qJEee0zDA05BhFDdaqhAsMwII8j5rgJwlK/4F3deyhtepjDXWWIVspz5brj9//oKedy6c3SUlpjWmaiPsOKPaYwEgOVa2QcoEmcPl///d/JfjAvq9cb1dOy4w2inXdMLXTUM/J+8GtS4Mdd7lc6F3ahqP0P51OAnCI8dnKHQah47I4Bq/H/OVf//Vfn5pr0cDn5+xIXujvaKHj/z+e0x+pM08uWe9/R2I58sN+6svsp4mcdrS1dC0UhuFyZktJjBXG0BXypeY8XEmVPjKTpRcbpcMQM7TRAxutxfTQGvfrVRIavPRfaqx4vAvkMdoX4UZ5fmjHF3JMW6WHLmgtK4Tnnlk7/vSn37hcJOqlVNl1565AWzHgN8kFbrWSEAyrdxpqRrVObmKgmKeJFrcnojbHyL6v5FpwfsahadpjCPTW2XeJvnHecr/fBeFbKtVm4iol6mX29N64XR8ifDCGj+sds+5My0LMhfePDx73SE4iIIm1s5dGHRbI2BRFz5Qs+9kpeCavCVYJfeORJIRddYxu1G3l4xtiUOiVOXgeOZJTFiWYkkwnuUlEkw2d3jTWSLqhNQxkkXkerkd4HL2ilGiwQ1h4fXujf1yFsdUqfgxL7+tj9N99rHc2cmqERfphOwLrnbNcLif+ozduH1+5P24IosGjARcmmpIY4ePvc/C55HmSdZq19nlLHgwyrdRTtOOGD+HA/vy4iTlEUd7750FxbHSOjK1jrfqjViKlxLIsrKskYPwI+jt+/TRNz/mP4KF/cnCcMlpuYeSWtkbL6qUPm5xSpH3HGUtOaVD9C/rwcuZCq+Ii0co8Te2Cw8m4ZUEzCCTWooCuGtu+0lrltJzlwS8jzhWeP/B3bjd/Fw8rH7QMTCSR0vLbn//Cr7/8OhhjwupKTVFQYKyIOjR4r6CJkaENdFBWnfvjQU2RZZ7YV4tRilglQ3hPK1111vud5aTZWal1hX7GW0WOG/u+ofqEahWnO9hhNigju6gWSpK9aK2V0+mVPSbu397RVtDD9/VBSZ2SFLkrmrKkpujW0o0bvuKJeZ6xvRBMkz9GNarqIoDpldlbXs8nnIOPj98pJRGCo/cq4oySB9JnxxrDcj5xUGF6l5QIMVO0J1/rEL0cE/rT6YTR4J0i5XFza835ckEry/u3rzgaeQw5JTNags5///13Lp9+5e1lGevLiDOWORhs90xBU7Pgh7QVzXYdfmTGy3cMXo84n23bnszuA/jwd4NUrTmfz98FH1o//51ji3K8vMcqqdbK9Xp9GihSSs/b+seX/yB3/oiTPrKmjgvoODyOA+jY2vzUl7l26TlbLcPSKCslbQx9K0+u0frxQVp3nBY9sr2c6NaQU6GWxnmamZcFoy2pROK2yoeb8+g5LHsXQmROMjirFb69fwiJZOCKrAvPH/YQoRynoCjT9KBsTHj/HQn8+dNnPr1+prZOaY2MoXboSqGNxwUr2umWqFnJwKxlUmnkGmkl47RiixutGcklro2UKzHt+MnzWCWzWqsHl/MbvVruHzvbvqKNppfO5MC5iUdq3G53eXGsYX3ciQrSvvFxfXC974MlvZGKKMFSzrSqmPwLFY1yBj+f2XInZUU3CkPBKsVkFMFYes/sMXJ7PIh5xdrOabYE29i2K6U82NJG3I1IKkum1YL3ljl4jNYy0Ue8zVoZSRBJG9M0Pw/Yg57x3CFniZGZ/IRS0pNfrBhq9l0EOa32oa6qhElWflMQdG4vKyeviEFzv6+YZtAVKCu0RG8Z74XBJfJVOF/OpJSfL+SPysHWxPd93NTbtj1v19471hjcND0viePGPsRRxzN67NePl/C43X+8WI7MqUMQdGwrpkmAgEdLckg4j9v5+PeP3+M7l/4nvcylFlotkhKohaVljGZdH0I0XDec0uQtkvddTm4F8+VMKhWnjLC7jMGhhGHcOi+n83D9lGFLLJSxTxbWswzV4p44LWcEGFDGy+meH6gxFmvlC2oDHCcsKInRUVn6ldfXV+Z5IeaK6DI0jS6pClWQtxJWhyQpekdJO6lGWlPoAUtQw7B/f1yhdfa9UnuhKkl8vH77grUzxjhOE+zbg21fOV9OGFVYlokpBG5bZNtWFB2r4H67cZonqWwSXO9fxGlTRWO+R8ndcnamDz+3RDoY+TmqKM0sBdU6BklDTFUGfPd1e65ZjKqUEsnxAaoQ04qpnvPpPMpUccD5ECg5sz4eXN7entVV3CUOVin5nM/hjPee2+321GzLelLjrWKeF6w91lEypf/65Q9epsDkw5gLiKvLTBOqZ67f/mB9e8U0RTANVSItNtbbV3LaaL3w9vZKTImwLKRaaB2CF7JNq/X5kgGczudnT3q/3+WmHKWtHnOe42I4ni1x9smQ0Njv4YZHSSxT7PMz+fLw/B//ztFnHyXz8fs+fcqHHrtW2rh0jovquL1/6stMyvQmDqjWBFB/f8iC3IcJaxutVpY3x+WzyARba0zBsX/7wuvrZ5ZpFmZ2l/zf2ioYSb+b5wVtrOBvjOxjRTIqhvB5ERN6LQIAqE2znBYe6w7pAKRp9m1n9p5lnkE38bAaTUPx9ulXLq+fqd2QKsQiv7Q2kW96g2ByrEZhZX/pDLUu8iKlnVJ2cl7pOZI3GfBsa2RPgotNVfai67pjbePdGOZZcb1+8FhvKKvpShIVvHfs651as2hzi0Sq5mLoBXKvxNbIOZGKfL5OKd6WmdPlwlYte7PsHMwzw9mJVrw3hbYddKHUxLatXG83HvcHxoCfNNNZo1rHJoVugdfpF2hglcV4zbo9yLWPeYOhKSvhZipzmmdazzhnoQkhpnQxKvy3ijxapcTCWjcwUtV9PO68vr1h3TiMMNw/rhJrqkTb3AvM1vH1P/5gOV/Yrzf6FCir5suXr6AtYQmyAVDSBi7TidY73nkRfawbqSTp942SMLta6bXz6e2TfPY5U6twugmB3oHeyHEfzif3pGTuKaOVROhIzlcVtaBz+PF8i4im03IGPTK+ax4s9oJ1ntI6MRecC6Rto9cuJpehKziUceREsOb/42v5/9XLvIxy4cktMgZ9UCMPCaYETFGVwniPapVt37g/HszLGWM9275LOkNX7ClibOd0WjhYTtaJoeKQW4JE3Fgr4D2aLPtBS+KANtTWR9h1Zt02lpFC31ST+JeccX7m5e0NrS33x8aWoSmRZBptCM4yO4W3DBtbw1mFd4ZatRwKGmKqGO25p5U9x6efu8YkZnal2LZIjFnklTnxfrvx7f0dkASLdl95PETfvm0rMe6k2gEj4XZ7R9fOXjeq1uypo5TF0PFec15OQkDJhb1AsV645EZh6Tgf2KkoxC1WkqBs7/d1VEwiT33/iLS00nPDmoUSx6HYxOtsRvXVJFoEaz1aWWLacNZQS8JZhVKiRT6fX3En/7zVUkrc73d++/VXWslitLCW+bTw9vpGTIl5melF9rTzPJNTJpxObFsUxZVqVBTX65WcM+u2StvxWOk/wACP6F87uGKlZFLuxJz+zi8QPz4wyuCMlw2FlgZhmmfseaZ1WHcZ3n7+9Inr9Srl9cBYXR87e4wCJMjlyY5PWcICL0Oq+vHxgXOOxzpmPpNQWI2TNeO+R5ne90wpVS6/2tFGeN3Be3Qy9JoJP/tm7l3WC8CzkQeopYi9K6VhmxNZZxkN/3w6cZr/mY7BWDdiz2WifbInUIf1rwj5QxvpobrYDLF2pEmK3fJpobOGkqJgXcpBfuy8vlwwTlFbBM3gSTVeT5JrVGojV+mRSy10JXY3q8FahfdW3E29o1UbjhqegWryUGhSynxcH9TciFsiDiVXa42YEqkU8WTfH6DEbVNy4svXbyzzhNZwuURKEnuo2C8VMSa2uFH2RGqJqqF1zbxc8NPM66c3wjKzpUTHYq1HWYfRAas0pjacqQQv9sYUV273K79/eydXsN6j+45GiBs0MSvIVFX2wtePd5RmqJYs+y44HJHTfndN1VLIWWM0LMuJME3P5+JYtfzyyy881pW3lwthmfm4Xhkyvid00TsHCENrmkScYYzifr9xWgJpkw3GkYzinEM5Ky1Ha5zPZ/kMa+Vxu+OsJcyT5GsB0yDZHKue3sUdtu/imjrNM61mtiQuszBLznXO+bnCut/vw07bOc0BaxSvlxMpC8ZZsrygleF88paU4g/y1ZMcVlnaADOeIeWgpDgMOtCNoldNLUgQQynkn51ocfRAx47tR4PF+ngQh1Mpaz2+nAHLd4YUswjfB+MqTJMADkrBO/GEbts2AtyALlxrtMH0/vTXpjJWAFpjtBoZPOIZ/uHUQbIQwBmHLrLj/vT2SdRnZiJvFdWU4A60xlqFNf0p2ZR5g2T7tiIHVimVUjO1Fa63G7fHxmNPxC3TiqRWgqi/yBlt7dPzuyUZDpbeWXcZrCzLRG2SVW2VGEJKyxxsrBR3CpXb405tnU+18duvv/Ly+lk06SmSmhKIIhqrkHDyJaBawthGTDuPx433j6vQKL3ErupacBaMcnTT2fYVpRNdGW63D2qvLH7COpm0GzvcQAPE571BK8UaIyF4ci6s24M2JKCMF0V+zoWu4Pq4SxU3dr6HBHiZZ2KMvLxeZFXjpSddtweXy4VwWti37WkaUc6RWhuxvjCNYdQ01kFGKT4+PrjuO2GeuZzOzym2M5bzIre+QjMvE2lf2TfJxJonz7ZHvn75wul85nq9ciSi3G43QUsZxWmZRzBB4eV8En8A/clUl6pVBE6HiKYDt/udWmTWY7RmGSW99l5WqDkPSep3150dmOOf+jIfo/hjCniM0GVsrig5PzOFCjz5RvSCtoZTmGmHtHIAANJWiPv2g4f3O/VTjbLosJOBgNNbzkzzzLreZXVzPrEsUp7FlFDqO7ql0kip8HJ549dffsOZiSoR6YgnqaN7kQxh2ZZSaiFn0UZ768h7Hn+HlVge3O4fXO8fYk/LjdL0syS17nvsyDR2rD54ShWhvnUBrUUtllJh23eWMMuD6OC+Z+m1AO0cphsul1fivvP50xufP32iYYi1UtVE1/IVBiP7UEVD6YIxHVri+vHOx/XKx/1GCB7rNHG9U9IGqaFqEgjd6PO60vRqcH4YJ2qi08R8kcVQM08i59TWcTqfWeZ5qJfkoT1WNN7777dSCKQ07JJBdPeyL3bklMYqqLKuGz54tnUV9V7w3B8PGWQx9AJaP9dE2mhh0w0HXrCWfd0kGZLvHvx935nn+XmAKBC4I7Jm3R8Pai3889/+yjRNXG/r08CTcybG+DQObfsuJomhCixFD/kuA14hP+8x1Rd1XBJ+ndZPZ5bgiytxE664Qn69G1yxI7JH0lD//3Az/xgad7xkxhiCdegg08DLsvDt2zdKKZzOZ3oDZUE3MAPyF3MiF+FPKSUeZIkOsTIgq0VYx2FMBcd023uPslaInnS0kWyklmUfqocwhD7MSlmIh3/69R94e/mVXi1pfFBZqG1MwQs4XYM2onWuuaC6ourKvm5C/9gfrOnK+/Urt/U+IIVQq6ReOtPxweNGWHzJWXp952W91QU/45eZVhJdaXJpKC9rmPUmOdEiXay8vr1xermQcmS93fjbP/0Ty7Lw5WNlS51uA0ZpvA04I1xupRradFotXD/e+fb+zm0VqaHVDd1WXhdNrApKo1cwyoxMp0RTAi1ouWKM5nReSCkyzdNAF5cx/AkiM2xtAAdkn3y7r89wuKNSk+yojJ+EtFGqZFKFEEThlhMp7aScOL9cxl5VTCCoYZ30Hje86ihxnJWcRRwyYmKtMULwAM7TTFYQlkXIq12GUWr8Hu1pUdW8vrzgxrym1ooPE59/+eVp8TwuMKlIM97JPEWjWKZB4Jwm1DJxvX5IFLDTnE7TWEU1wmnmj2/vxJg4n84icU6Vngtea2ywVDXMSangvJfMaKvoXZPrT15NHVa3WttTjvYMvtKChQHY1lVYYVr6TuscuRXWxwNrPcvpJLdil53xZB2f3j4j1AYzeiKFNpamBCB4uEk0ihIjJRfR2FaZbIsyRwBsAAphg9XaWc4v/PLpz2g8tYp5QhnoOT530looSNDboJuIii1ukRILdVg497yy77tA6zo0RHFltcU42MfcoI0DowPTNFNL5X6TQYp3QphIKfP+7YMwpvvbutKMx7jAp8+fcMbhfODycuZPv3zmcjpxvV7Z9ya3cjcD9TPhtEYjKqt937jdvvH1jz/4uG/U0YZ417G9kvcH1IbVhlwzLnhoMtCcZk/ZM3HfBUnkLNrA+XLidqucTp6SGtPsqTnJnIRjp28wxvL29ibqtpSe+3/n5fBV2kiW1PD0ftw/JLKWSkeAft++XZ8ZSzHuXJYzlEredhYf0MbwqG38OpjnGWe+55AZGARZ/eyzjZa2rdbKPM/C4UZjrDxv5/MZ7x21jLC3eSbu+9Nb/sQ4acXlNBMmz+12xzvDPJ++h6gPoU+rhX3fRJLrzJgrOQE15kzZM9447Oj/TdBUpQRq0RrzJFWD915ic/47C+3/CzdzEz5yk+whDdiusV1uGPgeZWmc3E4oKV1V65yns3x4gPWCqP349kHrInaXgOosGJ5eMM7IaH6Ejukh5aMIAURZQaRKsq0MFEpucjKGmVIkzeK33/6BT59/pfZOaZk2cpyNljgZkLhPb8SUrvRMp7KmK9vjPlIXElt5yGCqtSc9EWVISYwBrTl6q09krw+SdzU5S+6dOQRazpQoO8uSG/Yc+P3bB2GeaEo/SRXzIiuOmiNZN7zzvN9W1i3TTcAFB9YNUmnBKUl0KK1xva/88eUrHx83AdN7x+Q6wcgevfY2NgWVR9rwpwmqISUZ2CkkjialyL4rLi8v5FToTXrEPe60Li+8s5YpBEorlD1BV2zbPg6GgPX6GWmkkXJThUmknRSUEb1+14pShM9ljKVU2HfhpnvnBEnkHY9tI5fK5fIydA9Co3EdYk54Y2gIVnOaZ+q6CX+8SjbzFALLNLOnRCoJoxx2CjTVyFVSS7QSisuvn1+53e6s64PPf/6Fb9++4axh9orT4rH6RK2dfVulvXQe5wPvv/+Osk648FrSJbNcVeLky4XgPF2aPLpqlAapNab5zBQ8zupnyH2NO1X/ZNeUDGaqTF+TAACCc9SYwTuJe7EH6iQ92VyuSg7wHGaUBlTHWMW+bwQvg4Ja5eQCRinfxDB/lD9doO6y4B9B7XRqyc/gtZTSE4xeSwal+fz5F/7xH/+GcU7wOaqhOlilqEr+LsE7nNFyGJRKzAJ/v94f1BIpDe7Xd7b1ThwKHes8fkz0lQMmEVD4MdhwThC6yzKLuWJYGy+nk/iBh4b5/f2KMprLL7/w6bcXYsx0JJfIWMvbpzecsVzvK6V1mvG0kWHlrMJbRbCdYMDqzPX6wfvXr2yrUDGNanjTmKxhcprHXrDGck8rznn8Mgt7S4s0d1lmHo8PoA9nWKXkwvV6Fb1wKczzJLtkxIO7j62F6prL+UXWbGnDBcdymtl32O8PgvaY1pm9576u8pIPI05OhWVZxrxCeniFxvnAt493gUMYi7IOOtzGEFEhsIXTPFO1wjpBFN33lbo9SLGgugwwjTFYbdi3bdBV3PMimKZATBsx7Uw+yL4ZmLzB2zNKdS7LxOk008qG7gVnFMG5EUdUR9pL5+Xlld/+/BspZx7bNio4xfV6p6TMsixPCai2iq6kgnN+Yprmp8CGVpm84Ipj+cl+5mkSUFqvmW7UM9nBGJETxhyx1aANg8YvTORc4rDwNdKesM4QwoJSO8EH6QmGy+QoUadpIrexH7YDw9oa7cmKNuKyAklZGFPuOQSMluxkHzyff/kTp9NFQPANeheca++N3so4hf0wEcjvlfaV2+2D9XFD687jvvLt6x+i0BpT9WMIePxdjXGoHtnWjeX1BR8sJcUhpheo+qE0SmN4Qxda55/+/Gf+8Z/+GR8mHo9NKJxdcbm84Gzg43onV0NXFuMDGoMxHqPtc4LqdOVx++B6/eB+vVLSjjOIi4jK+rhzyzt2cJ1/1AyDKOP2fefxaKNXs89+8VAxHaonM6b01lq+ffsGHEmWipwTpaSn/HB9bHQqIUy0WJmXhZQz0zJLIJ8XDLAZZoMpTCQl85FuRui7kRnJv//+hZeXN0CxxYx1jnkO9JzZU8L0PqqLjPUBhaVrwQIrI8EMuQ1zTMrYIf/c4k5u5iml1MZDL2zrNkIDZMXknEcpw3J+HZuVBzFljPPEPeJ8l+m0c+RNnFg9Z1S3khUNvL6+il6iiUHJOSeB8E1CBK/XD+bgqd7yuF9Z5lkOXfuTb2bVG1PwqN7YVRd/6xFN0gRUX6ucaMc4XmtNzZJQ0BGA/bGjPXKlnA9PveuP4nanlQDs1DEp78+E+14ruQoe9ehRnBMKSm0NrR3TfOHzL3+S/W4XkX9HjYmjzLSNgtkbrNGkLbKt93ELP+jjlrhdbxy5UYfi63Q6fWecbSJNPKbYMuVWtJrF+2ykR6ytoazF8V2/PC0L//DXf2SaL5RSMS6gU+NyfsF5z/v7Ciowny/k0tDO07uA1J0GTRQmWau839759u0LJe1c5oB20HshxY1WkmQhj5fYWPGJH4PM3jthgOucNc815PFSHi6e00nUVcfa6XBF1eEgq7lirBk38o4xlt61VHAqY6zl9HJhi5Hr7UaYZwDmQR0RtVjjfr8PEkkj1kxKEaP18Amrp6XxepMgQKwZGudOGZuFGLPgbmOUifQgx6phCtJWU9Hk2sYMR2Y8MRXJ/vJNNPu9YayXrK2U6UqY6XuWfCmvB1tdKRmy9YE0zhmDIlgHzsNnzeMh6KwSExq4nM8y+G2CP17micv5LJG6xg6RVcKqn/wyS6CZaFefI/7hpGIMjA5L1zH4kBtMku3kRZeb9/EQ5CpKP8vxIyjruA3quMm0tVhtiHGjt8YyTeMhU88DYz6dyDFJH+c82gR+/fU3lvkCSqJiS+1PtZjqDU1jCQ5v+ijTM+v9Tis7mkrtcqNt2yaOHCUvvNZChPDek9PO/X5HazPWg02iPb3lcl7QdLY9sqdd8DnOM01SpiqthiZXicZZG1JslKqwbsJYz/klUIoM+lBymnclUECawAxaK3z5+gd/fP3Cut5ZwoLWsK53OsIeO8L+Ypa0kJzy3zl3DmOE6I8lk+rQEfyoU87jJT+4b/M845zjfr9LtaMkbPwJbmyd4Cf2beM0TzRkFbTtu/TnRSyHziyCx9l3sZYOV5PSI3UkeG6PFecnHutKZ0AQnUMbcRXdYiLnyLQspLwRwkxtmdIkFNAYQ24NM56Zdd+efuxShBFeSiHussnQw0s+zzPOOj4+PogxoqyswMIkLZMQRyxxX6mx4q1n6hNmcLz2lIR6msSZVQfnLjh53rNSGKOwToZr3smfq7Tj2/VGipnTvPzclzk4ST6orYkMzpsn8RKQ2r91lIaOfKlKS17RtMzsWyKnzGk5MYUZ0OxRdLNH9Mq6rry8vDzF6Nu+QWss04wdaNKSktjhlEwvH+tK854cZbpaSuXT5194e/uMUpaR0Cy7ylEKagrzZHg5TVjdiLGwbhu1SkB6bpnrty98+/iQl1AFaitoJVNy4x1GO+K+Yo1/8rt678zzhBt2vMEOlf4yJbpSLMtCmGXgt+47f3x957WKWmuLCWODKJSUYZoctch+tZr6/UUyGq/hNC3scePLty/c1zu1FnLcxSM8MeAJOyFYahXUcWwJZ8OTNfWjZdQYSVEQJdbE7XaT6S9wuVyEJTYOgQM8KGaFyvV2xzmDQgiVMWYUmnvaoDduY1/suuSTLacT2giF43a7iUW2SRqj8UFe5CkIJG+T5y6P9M51j9jmaF2ks2+XMzXu6Fb5uAlBJZfhrhs+4icQ0nti2ulNggjXx4p3nhjr8Ns3lsVzmmemeRK/e96xPnBfN273jYZsT7aYpAQeW5TT5YxWhtQqPVbJC6OTRqCc0TLZNlYMFPs+0FveoenEbeV2u6KNJ5VKGjiln94zp7iNRf336BiA1uvYjyJDDS028Vob3niUFvfIclqIJg4yx4534mpZBonzIHoeQEDvPcs0sz4eVCNDr7iL/DFMkwwPRimolX5qt0+nE3/7239iWS4Y64lZpoY5V8lgqhlnChoNJdNpxD3x8f5OLTvb+sHH9TYGdB5lBIlUWsUNyuJx+BwkjUP1NC+LwO/HgOP+eKC1YZpn4u3Gum20cTNIMuXKv/7rv5GSBNpp45nngNJW1nRKFEeaTjfS7y9B6CtUUQt9+eN37vc7Me7kfcfaTnCSO5yiSG0PAc5pOdG7Evvp6ImPgzPGiFKIj3kkgCzL8ncOoPPLC2b0lj+a7o/wA+8tIUzsWyT4QIwZrWR20npDGWGAt+Pm13LDttowo2o7qq3Pnz/TspBSJFSwYl0gF0FFoQ17TExefOlq6P3LOGxra9zu9wGo9+zbPiociR5ywWO9wyQ3ooIaSlly3kVvrCT+5rsFshOmGWUd19uDVgs5J8wsgQrn00yu0mbs+451jse+yvOjNfu6MY3vwnvPvq4yszGG0yKmFa1FIZeyBM7FLNG21v1kOEGKBY+RMtZapmkhl8JjfYzQabmHjBWDtlaDOWztSIIU6x5GsZwWtNKSAKEt8zCP5128u+fTCaMkMaD1OmSFjdIKxllMsIIcUkNJpC3VGDLw21/+wsvbhc7ICEJEKqlkWffUneBkJ5prY98jX/74ynq/klLk4/oufuERWCaqKj3C1YWOcjxgzhr2faP3Ji9Ka0JVQQl+yHjCNNGtZkqSh2y7KFqs808LpdKi9JoXSVQ0aIIL8tL2hsINw0OTUHA6KXU+ru98fX/n27dv9BKFIUYhZRE1nEfuU9wkVsVZP8r7jnOiWLPW0qLseZVGkiVTkpXhPNFa57E+mOeZuG4iz6xtxLJkfPB4Y7GT53r9BlWYZcFPjOBVjJUqzBox5jRg3cVV1hvYaaIqcNPENEmJXYBUK7eYOZ3P6K7po1+2RjPP01CdwW1dmayjNo13MykmElF6ZK3FXgvPQ9cZNxBPjZfzRUikRpjgzJ5ehbu+bRvruhKmwLwsrOuG9fI50bpIUEvi9fMn6YWr0FRSbWx5AzTeeIIWT773HotichZ/Wp4ecYHsQyqNPTcea+T+2FFKdB21xZ/7Mk/TRYZcZRggPDgsthm5ZZ2cSM44coxofZy0Gnv2oAx+kiGXnyy3252SE04r9scqO1qliOuGOV/Ekug0l8vCtMiARFkp77QRDe4UJhkcKeFk/+W3v/CXv/wDxmisszxSZ8uRWIRfRisoCsELwG/fMimuvL9/5X59F+eSdmgDqimsVmPAJvjb0gYWZ6RplJKZwjCdDAGN934MiMQuWkbGb/CW2iuTFThd6hUXLFTD4/5O75XXlxf88ODSOsYd4P9R+TRZc5RSeewb//HtK7f7TdR12mI8tBaJccfUwHI6o7WUvQereo+R2qVk70V68VyixKd6i20OUOTSKPeV8+nM6fwyjAyN9XpFKc1k3cgLs+xl4xRm7OsYeg4qyLIIqFEpwQq1JrlapTZO04l13QSWnzN+nmlKXuCYkoTk5co9N+J9w1uN15q470xWcx7AyNrh9rGyN6Ai2dxKY4IGiwAjB5saeE7nnbZPMqbMYArOKdbHxuQs8zwRswy8rHfk3rhvd5bu+fz5MzkfSSYLfl5I9welC7jSh5NowZ2TREzv8ZNUPWfn6Sny6e1C641c82idPKk0qtLEBl1ZVNecpon/zjXzf//L/H5/DM+xBmO5rRFtNG4+oZQQDJdFoHVCmZBf19EE/52eSf/OCJuXBWulZ3vcd1LOaO8ovfHt4x1UH7Y4eYmCF0KDAMWvkmrfOhrN68sbn3/9Mz4s2HCm4NjSxpYrubSRk5w5eZHxbeuduO887lduI+CsNJly9s5z+PPf/nNY+w7us5jIZbB1TEuP0lXIFpX7dUX1xrwsxHXl/PKC1Yp94JeUt+z7nRQlvPyxbRQlOUsKkRken502mrhHvr5/4Y/f/53t8cBohVEj6/rQBbfvQL0DPXMYZNQob/0AMB43Vq0j5sZKtnXJhW1fmaaJZZnoJXE+L/Teud3vnKaTfMNGkcvO+Xzm4+PjaaRIKTFNcjMG74XGEnemeWFLGaXh8+tnUtqGQWYklig1tPJdKpmccHbiFAImeCZnud+u9F2A8Xm9SqVYC6kIrdU794QQHNr/A/tztGfH93u0HEfrcMD9DxegsZYv799wzvFyeXlSRlLK3G4Pbtc7y3JiCp5ti9SSUXRRyZUiVFAnh3TVFTXmTm08I/Oy4MLE9cs3bo+NWkXUpBporZjnn1xm++lEbg07euBaJRtKaUtrmcl4nLPMLmDdwLMoqBVqzsRa2daV0+nE+ngQnJO5wSEiV5JPLIJ/BdowB/Eld47hUx/Gjk7aIn6ascbj/cSnX/7MvLxiw4JyC/ctEwvE3Ef/IzLUT+eFkndu1w/u99vYr94FItcV60NMCbXKOiMMY0AduKLjJT565eN/c5EdqxpEid7rCCdPmJFBZZ1DnU70cdBpBbOV9YXujS9//AdhueCmC/dUifEEI9g75yKGBsSR9PHxH8RNLILr/SopIzWhVeB0OgnVkiP3uD25V9u+44J//hxPY4s6+teC1gFnDFY7Uk6UrFimC3YKzEvg/f3bCIrvWGfJpTHNC4+HZFT/+uuvf7fe6nS66vjg2OLOx/UDFyZeXi5ivhjOKWetAAeBOGD7tjcup7PEuO47PgjsIDhD0B3VM3/7y69CO3VaguuNVEH3+/05hzk8+Ac55NCPt9aecuHWGsZ7eqtPCH0ZpgpjDCUL8abVLnr9nOi1E1NmnmCPK+fTiff3d9SY4zgbBn5ascwzk7G44AV13qVVbK1TYuax7TweK8Y4gg2SZLJMpLr/3JdZ7HmCou20EbSueGwPrIbzeZaXLCVKVc8hSq9gjaPlwuQD2/0hgdUGYtq4DlO61aLkUUriSI7d5pEgn3MZ+lhRjXnnmcNELp1pPjHNLygzgZ6IuRNzJVfpd+lC/9Q0rO58+ePfuF6vpFxY14fggLWYw48eJuaEMZpSEtoLteIgLB7CkeNFkFWNwlj3dAeBTGOnyVFyHIqp/HekxzkEvFXUKhrn+/2d//x//K9cPv8ZZQN3NwlBA8nXOtR127oR4zuaRO0Z1SWXqw2gfin1+fc61n77vj/NDwd47lhJHblG0zRhleid4y6UjfNp4csff/AAXl5mtm3l06c3brcbj/UxQtUFsiBBB9850j9O+WsttCZxMDmL5VOSRipuoIeU9+hjUl4rSwgsPkCrWK3EspijhK/3xtvbWTTXKLQJ+DlQrjeJokXR+/c++Xh5D0HM8QIfBqKD86W9H4BC0QGgBNovq7hl7LAT81gXpS4Jks9d+1jPnk6nZzU0z7NsU7J4qbuGWMSIU1LB2sD9/mBd9zETELzxPDly3tHuJ2uzrWFwjBjT64ZWsMweO0ro1ipKg1USz1JrZXITvYnw4JBcgtwEwQdOQZRVRkufW4uQNMseKZ0nOO4oi0KQEij4wLauLKdXluUF62e6cpQmPRsgtkMj8kpVO5OeqHnjcXsX98wwoxz750YmZbkRzOBuH6mTdUw2f8zM+vGl6L1QasN5830CXCVKxiDe35QzDVE6aUC1Ti3IIIeKs5rb9Sv3/cE0L5yXM3MQT3Qu5emrrrWgSTjfifsmf4Yx7FnUW+uA1D2dZko9CZMK6RsPBvShBzhAc95IFXEePt1pClwuZ5SC6/WOd5ZvXz+ekIBapBw/AO/HyzLP8zM3++XlTBsbjmmZxdPdpffXSrNvG29vb/IMGPt8ybTW8gIg2VGlJmJJ7Hmn1sFwn2f2dUcZg1WGOcziVBqJlQeN84gELqU8p/THi3as/J6Bh8bjh1bifpd8raOSOc0n7vf7WM/Jz9S7IsXEMk+UklnmQIqSeCo4Y0mZLDnTtAZtiDFReuW6PsRWiCXlTJhnQvCcpxldGzll8v+bdu//p5fZIIkO3hmalb4t50rThmbDCDR3eCsm8dNpkQ8vF2oemFIjezY3HjKrDU5b1vVBH/0DHWidVAqPmAdArT9PUmMM99uVOVimeeby8sbl8sqyXHDhhFLmGb0avBF0bBOAe0bx/uULj4fcyko7Gg1nPBxDof491AxkS1yqgOrr+O+Ow+joC2Pccc4QnHzhj8fjex+qFKpUvHNULTDCdduYrMUrjfInautYq3hbHJfeRw7zznrf+PhyqOoEwK/paAs17fSiUL2iukTRtueLO/8d+vZ4ybz3kuQ4VkApJR6Px/NnTTGCAasDMUe80zirWGYBEFCtRMLkSG8Fb2fpS0ul5Pb8fY6b+fgzvffc7h983G5cLq+yziqFYDzGWG57ZAkyD6EP4F/rhGVhVwKVX/d1kGE61jviXritGyZXNIqXaaHXjjOZ7X6jNUntOXzJx618VEXruj6rqwOHJX98AyUHFePA2raNNe6CDT698fryidvtijWe1CXlY55nSk5YIwfnto1hYFXPAdcSJrx11CLPTDgtvH3+zH/9r39wv32AMSxOUNV760zGELyj9Z+M2tVGyQ5UKdbHTs3y4XgrZnk9LHBquENqFVNDbY0wLwO5oyStYvRTwUv5PYfA0HShVacrse1t43bXg/l8RN94H+iq8XJ55XK58PLyyjTNUspmSaa3RkrOFCPnxeF1J68SAWIHO6r2Om69OpIqHL36Jwmi1Cq68N4pJbMP5Ze15tmD7nseJaVl36LA5YyT3amRvKRgrVhEjchU29j5Lj48Mb9hObHvGyntGKexBvFYK8O+7eMAgdfXFyFx3BNT8Pjguby8kHLBBol1FeGHlIcxSR+/x8hyOrPHzLY/eHt7Qyv5GdyQ0s7zjG6ZbV0lfXF8V2lw0HNuOOcJ3o8S3XO/3YTgYsW0/lhXyUjWlm2TldZtXTmfJs7nF5Q2Q18vrVPJkfvjwfJ4yNqrd94/rszLTKDTFJhJDiDlLDFu7DljrKFpUcI57/ny7ZvYJQcQYs+Z0gXo+P7+zuvlwuy9/Bwxjb269M8iZZXA+CkEcI6cMvd1pVfhwv/2659GHNKK1kbaPyNhcCE4iamtO2q0Q0eb4Z3DO0cqYq2cnCXtjeW04KaJ+4AGXi5nMIbzvFBLQdUKWrh6Rv9koF8znkdupH2nl4LVHmucUBt7x7uJPOR5NIUJitP5wn3LPLYMVIJ3+DChTGKPKznvpBiZ55llXtDGkPZMbhltAs5bXpYzuUi+MU0cViFMLOeFy8sbL69vnE4LSo+SpxWBuiH9gNIMCgfkuFNqQzlHGCWmH6ullDM0wdB0Gt5ajOpDvqpYt0gtie60pFK4gQ52Eo9qlMNNnhQTNHGKWeNoDbI2xFyxg/10OkteUu5yoNTaaAm2Xfbb1stePeVCb+C99L2lFB6PjdPpRJgnTueZddv5uN/oSnE6Xfi43tFGU5JYDLcYcdbz8vaZnAvz6SRIof1BCDNTmOUQqh3dlaQpNhlwnk8n6R2955ElD1mpwjRrWtOECab5xPXjKpbDVslZ1FeuSpDe9RE5nRbuDxECPdaN03J6lvlWGz79+c8o5/kYA7SqFB+PlaoUXVV8kH3xuopHWCmLwnBy0l871WlWs26CurWTRhlL3RPnlxd6LszW88vpQlw3PoqovuoPg65nskTK/Pr2SdosPV6uWrHGYhrUkgjzzJ9//SQoISPaipojmM59XVEoTtMkTPUukUupImV4z3SVmSa5UPZVRDM+eDEVDYfg7XZjWSSLq8afvGduSbBAdSiAjHMY7ymtDQC+QmnhJdUiu7N92+jao8130HdrIipQNOIYBjknyRhpT88veQqO5eSYJs9jEzdPzY3eNJ8+f+bTn/4kELmwDCODJD4eayVjFdZbjAFnFGlP7HHn27d34VGNP9d5T+8yUNvXHavMgBFsXC7CpeoolFacTgsdRg+myVlsjinl4WaSW/QYLBlt0KpSmog0FGIWaaWghjFEUK6WnNoYJk2kvDEv4Tn4OwZt58tlqJMqqjfSumLQKC0bgOu3b5xOFxloWYPTQv14PFau1w+892xrJOcNAO+COLuKJI0Ycyig1HPQI6WiwBTOp4uo0OaZVCRkvOYuhwEyDD2dX/j114X7upJzwVgveoMmK73TIjvY2+3Gr7/+Su/DpZWlgniMCXQYN5tSmvuHWDAtmvWxMo30z2PNdrveRJk4UkyssZy8ZXGTeNWtxSjNOmgqyho0jZjkNgaehJQ6qsmObB8YqCD5R/rf80myk1tNWCP008JOH7p0Z638eiPJLc45nDpyu+X3tdZRt0StAiQ8nwUieOCzjiplG6aWn/oyz8aAdcSxQupaTNelN1HTjB1o6x1rHaWI0yXXgsE8k/QkOkTUMPM0wXDsrOv6ZDVZa8VMUBslZryGNUZ60/zDb3/lH/7xn6mDxNG64vbY6Rg5sY3FO/mSlQKtGjntfPn9P/j67SspFVoB6y3ezzI9bXlMXDvGabR1aD2UGl0A+R019LX6ubJQSkoq7zzW+O8ebueeSQZtJA4aLSIUHzzBO+iC9ym9oSjQpZ9z3lNbemYMb9vK+pBUwdYGH6o2Xi8ngjZ8+/YOXUD+BkV8rECX1UdrMu0tmc+fP41IIPd/tveevbEk2ZvfL1zaKrrbPT36ywH7/b+TtBCwY3r60lSlC6sXJyLJ3oWAhXAXkAY3B41xJIvMzIg45zmPIfZa8q2TAFCNgkiBzkA/TGzrhtZOEiguV16ee+bLhbf37/zx+sY09wx9jz92un7AWMfT0zNaW7ZdWrBxGgXDCAGjObng3nu+fftWddIjypRzdNimGK0imPueoVo6L/c7D/0MQAqZUCIhBox2aKXZvLD7Otez3VeGTjbUbdspwHbsTNNMqhtI8/VqMTXGGD6OD76/v9H3vfz/1rBsG9Y5Hq4zl9Gx3N6x1nCdR56fn8kp8/bxztrsreo4U2vhwIUYWf0hJhrXoVYXcBw7OSWenr+dQqMQwsmH/zpC+6GL2VST8aEfpJkzhlgy1nSQGjPLELynmybG4YpSYGLB2gGlJWnBKFFQtZ4iV8J+3/cngjkMA5SM3xbui+TyDv3A0+Ov/Mf/9L9hu4kyDIKIHpGiLD5kUDIyK6XQaYUqAUPi/fad79//yVpPC4kA0RIr01DTGh37FWyLMaGNg5JkRGDUqQpreUNiMzOR4qeBXEtyaHpnHSPjMOKMLM635c5lnnh8fCCWzO221JJCdvLnlxcgkVPgOk1iVLfv+Moq6qwhx8htX7i9fzCMc7UwlozmROH9duPl27PEqfYduiRKSZAUPnjEKK2wHzu2mkoYY9jWg6enB9zQs2wbt2Wlq3EqatsZpwuxJJSxHCGKY2dlhl2vE64zJ7+eQn05e3KSiu7t7e1Eq621LOsCShRYf/nLX7jdbmybVEXLsqKiJJ1cr1eeHh4FdKxRviUnTGW3ienefD63aRgZXMe2b6hSOKoC70gyFTAn84uzamzvXkpiNvBaf9cjeLQ1eB/YqDnbKWFdR0otY1kzT5NEHnnPuh88XC5cLxdyKfSdEaBsGBl7y/vHh4TWOXv27I3g0pIyGp/hh8fTKGtFEzr0oBT7IbNTAaRGxmGk64zs1J2DkjmOHWXFz6mrSOyxb2gN3TjiD+mFG1OpPeCUkmiWQ6wKKzE0eHr5DWUHiuoIsRByJsRCzIqEISfIITN0CqUKRiVyWNnXd3KSsVDKueqPvcTDFrHJsdYxjpIzHFMml4A/PF3fQSmEGLkMItVrc8njOBiGge+vr5D1KSv8+oKkKFZClML72xs5RZ6fH4UBtm5gTSUkyMhvWRZSCZQSmccBZzr6eWCeLtxvN3H5MAVTFJnC/HBlGGcKsG4HyhqmfmCYZyGxKMVvf/kFZ2Bb7hzhOCWRsWqUj0NORGsdx7GzbPJ32W7g269THTcdbIeHo8hoJSTWZeXp8YXDr8zzhRAO9iOgKmCjtWaaBmIK3G83+r6vn2PP+yNhcVIZvL6+njPa19dX+q5j94H7/cbmA09Pj8RDnC5jKfX7jmo4rXDW8be//Z2H65XRdsTD09XetR96tkP+9ss8s9zvp0a7VVltmtH3Pa7yulNKUvYPA8u2AgPbEevUoOe2enLZ2fbA8y9PuJyJoaaFhnASabK2PD49ilw4Z/whbjy//vZX9n1nXVcp3es9aXE2X2Nlf9hiXoKXXF6lxbjcGI79AKMxQzWiJzG0EK6ckMG9iLtDCDxeZ8ahY13udWcVX6aWrdzyde73O1ppxmFGGc3l4YmXX/5KNz6Q6Fn3xFFqGLYMawTp0uJmmCnVFWXn9fe/8cfvfxOaYU0u9N7XRMqeYejpur4uQAjxIBVZjKHu5sZapnkWMkkdcTRqYPu9h3E6iRmna0UdzxzHweI9Vkt8ii6QQqylvNAo980zjhdAydiid/jdk3bZ5JQWumx2hXEa8f4g5IM9BI50F7cOozn8IWmQWeJSh75n7DtK9vRONNPGGJwxxCBjK60NLV94GCau16uY+R87kvRoMabj/e2dceoJ3tOPHa7r+P79lb6bZKN3MmnIBQqBolq+sDrpvG02f7/fqxdaQFxFzXkSNb10KbCGwDA/SImcFbuP5+LLKaKUIMoy04aX5294H7B9j6Lw+iEy1rHvsYLgiXNqHYU2+m3LiuqHAdd10oKYKvOtedFdP4LpxHooRYru6kIzaDey7wKMtoxloftQEzUMx76TLfgiQQm//fYb2jmW7fhTi9ZM91t29A+PdPUpkfYDq8S9Yep7dIHRdqQQ6CZ39oeqFIyRwLKEeHKlHFkWsLWkFZHCgDYOH7bTjsZZy7Lc6YceYzv6ceLbr3/l8vgLykwsa2SPhSOL0kcibAxaW4mKNTXKxRiOzfOPf/yNj/fvxCqiUEozDuNZ0uSTnZRphvr7sQt4Y0ylUMrf0/cdWklUjSwweeFyzmz7RvDhXMA5y0gDxFqJVPga21nqzNkfnoKAdc0LzWhD8LIYsgLvY+VNI1LSQ/SxXT/QjTNv7ze2Ktqfrw9SOmt7EnFuy1003H3H88sz/u1Gqr9PIXOZZ4m62YWvfb/f6+lgGMeBfT/Y1pVlXU8FlLGK56dn3vIHx74zDT05RbAK6yzrftQYXYd1Ftf1dYYr46BxGuUzjExDjLXM00QLoiu5cH145O3tnRAj4zRzXxZBqzsB1XKMTMNQn0ciZ0G7p2kk1YqvFajbtp2n8F5ZafM8nzTONqJat41tPz6/53IhJQEMS1H4sIv/uxFfuSMcdJ1julzpbZYKUGmcdeybgHUtBnfzga0E4UD0PdY68eFuRhFKpMApiq66d6KV/uEAmLM98zihteJQFgpyUgMqR0wRZ8eSM2gtgmol7bUIhXT1WG62rB1RGf72/V0okGRiKTirmK+j0DWHCy+//Mbl8Rd0NxGzY8uBNQlLLGVIGIwFpyWSxWgoWRN84faxcb8dIBNLctanfC6mwLYtlCIPF1WwRoApozL9XK2MUkapjFFFfsckGuGcM/vhpSpAycKuN77ve0Eyc8YqhRk6QvBYJySKtWp4lVa4cUAyr++oEtEhkUOhc45QInsJrOuCNRbVGda371yuF2xRhM1zuV7pjcFqTQKMLjUoLeFzQqmB49gFsFFSJfSDcKE7I5vGHlZiiLjBoZ0iVJeX5CMpHDWLSxNGR1YJN/SkmLm9id/YOHRs28rLyy8y4qs5YfvhGQYDMVHQ2M4xDFKJKWvY/c44DmJ2YR3GKIKv6Z4xs617ZQwWuVe2Ez8urUSd1A0oLT7bYgVkSDlwW29MboBUiD5xfZhY9537IqCfsZrHx8eT+fa1L00xVRBvR6GJRzzFKt3Q8bFI/A0kjn1DKZjHK7rs9Hqs+VOFkD1WO2JIdK7Hx1Rn68Jz6PqJt7e7+N+pdoYX4Wb4g95ZMqIBN/34YxdzX72PtTZM43hmDVkrrofBe0wnZVNWCuuceCXtB7Za0LQyq6l1/L6Ts5gLzNPI9TKTouf68MAvL79wub4wzg9k3XFEuK8r+3GglMaYTqijWPFlUtVdOAZ2vxF14V9//BO0RMB0xmC7HooWWuQRUUqzbive78yXCYrkLo3jeIrup0nQ9eB3rDbkw2OtISUpHUU5LKeJNoZ+6MR+NoSKLeyYzojCzLnzFJrmnmVZOA6P64RYoJVi6HrxbAbRFWvZKDJi0B9jxHYOnTO9NSffOtXyP/rANA74XRBUbSowlzP3da1RsYLeW+vo+p7393fmeT6/TmstBhTViHzfN54eH8lWjPFSfXZY6S/nacJog1ISdTPqEWsVJsIRNspeMEp0zONjj9OaIxyMQw1IsxJCWLLwnGOMTOMsZfb6gTUaowopHhhd2Nd7DTC4kFJkGHpQGddZSrGC1Edxke3rs3DO4vqBZV1O5VvOMhYax/H0NWtZYp2TErq1ftIK7czjRMmS/KidRWuwRuGM6PM/3j/IOcupXx1nxSYpY7tOtO65sFZf7lzXhet6OifV2eV6JXlPyekUwPzQxZxKROVMCAmnNcPg2DehsnWdqGuoqh5lrcxQlSij2g4InzTIZlDeguYUYgHzv/4v/zP/8R9/RSmLNgMZgw+J3SfWOs+01lJSrvNf0ZV2BmyOpOCxSvKRPz7+xTD1gp5Xmd6+hpqcwdnLjeNYPaukbG8SuJTSWU1YI17fj8PI4RP73ixqO1L8zABucrsGqDRO8DAOp31NCyVLKdEPQwWWxU4nlYyrpbbJYi3cqpmxbqIgIXrPj4/cVxGuDOPIum2CPxgLRVe9d+Dh4UEyv/wOxrLcFqZx4thEoqeVpbO9+JVtC5f5IjY72362BsuyMDxe2I5dHC4rr5n6fEM4yDnSOU0MB0PvULqXMWbILG93VOc47gu//PILH7d3rFUEHyqg5lG1zAQxRDBKcxk7jBa7J5LQYq8PM6A4goCgOUfGaajWQDvGKnrT8esv39iPg66X3yOkiOsMwedTArpU5tnXXGlXEeZ2ADUppLQ6UVD03jIOA5d5Yt8WgveQJFbpepF8q70Sovq+51g3PmrwYt91xOOQnriTVjLGxHZ4oj/oe0fvpG/PhXPt/LDF7Kpo/u39laeHB7w/xP42Z45DuL62r/xp587UCnHk/HMS/O12O5t7oxQYg7OOX379ld/++h+kLIHnsWju91UW8i6sMGNkBm0q6FWK7Iy9KmR/cO00m/fEsEAlBpgKDInzhHCHURlrm5jCYqwmJzh2f86R28sqO6O4Uqay45yY/Utfm6o6aBNgJUh6x/VyEaOBILv95XI5F0XbIIZB3DhKrvlD1cq3gVH9ONAVUTU19LfNREsnIyjqYhM3FIMbR7SxxCjldkPfjenxQXzYjLY4150AniCuDcWV1mm53wn7wfztm0hXp4n7/c58mbEVcY4+nOkTMQZyDDw8PZ5uCgWhd/o98Hi5Mk0j49STvGfsOg6/kUKimEKKkvzYbIDlnTOMzgkDbVmEjDMMaCWn23YIbzuXhA870zSircYVh1WmgmuQs5gRHkG+PuUkuvqUZKOrIGW79630/mpJ3DZoJWwVNMI5yFEYhwrJHEdrlm3jcrmQSmE7jooLSJi6tfa0W+4qF0FpRS5UvYM/N+8QU/W7+8GqKWM127rUREDF4SOqlBoMjQj0p4lcCfzNDynHVG9+PsuVU25nxIbVjiO//PoXnl++kYvwnI9QOKLn8IGMEtDBNiWSsKmMkRGU1WDwHOsb6sjEvPHx/Xdx6+zEKCEXQXdjCHRdjzYytB+nka53HMcmZXZtCb4qatoljpESqtZmiyFz6mKv1yvkwv12Ewpg37MsHl0RTvHRlnFIG88k72vczhfX0/pCBO/pK9LaAtBaJZNz5nb7IKXEtc4zrVJ8vL+jOsXDw1Plngt4s64LINTQdCSZoWvDNMloyh+emBJuELvXbZXva+SKVmZux4ZWmm/Pz/JiHgeUwmUUt8ocEsY5Ukg4Zeltz8tv39gXTz+NmM5Wjbcho+R+BjmBYjykLE7C+57mkRKi+Ig/PnO/31i34xSzZOUkXE2JM0oqiakfeX55ZHu/YzAcu2RAJwqjM9VyScz1WnXUKjGZTNj6z6cirp3OXdfhj8DQdUx9T46RBHSdOTO2lbVQMiEnQhaq7mgN/TShrLSebf4eqtddymIOGIJ408Vc2A8xH+y0If5oAMyHHW2VcKs1WKehnhQKc5bPudq+KF3zZ0vBVQlaWxxtl+sr0+t6eeJ6ueJsR9+PFDQ+BXnAGSnZXXfO3pwxmCwOF9YocjwocSXHG3//299kRBUine1QuiNn2BePHqtndRBSwDxfcM6SUqgLOFWv53KqilqpXEqm7zqGceL9tlQWj8I5i3g5y61USggw3nu8tVyvV9ZjOyNrl4rIllLwh2fue67zhY/7nZIzH7cbUxbg43K5iDFCRd4bgb+hwZfHB8iCfgbvSUFICX+8vhKSyAanaRIEd99O15b58crt48Y8XfBHxGgHCDCYinyO0vLyrqvEr2hr+e2vv7EdgtoLKi/GhEPfQ8oMtmfdd7QSnAJjGIeZmEF3sHhPWG7M80QuGd13rPeVzg2UFMm5VPWSxMhmMkUbQlYcu+eP9zvOOu53uYeXB5E7GmMZp75ONwI5OVxnGVzPw9OV+7LgOsOyrigtJgkac6LYe+1fxRkmkyrBpf3v7Z8YJRLH+4PLNDBfrkzDwLbdazhgqe61irUSfEIMlK1gup6ilWARShFywjgrYQ9+k8NR6brZBOw0ihZfa6kGfuRiBmE/GS0lKxXxtMYyTMP5MvtKadNNI9v3uC9eS00I306mX19e+OXXv1TBecG6Hh8SIRWOkPEhY62m6xwtxlNO90LnxFLlWA/8cfB4GdneNUUZNBqjDPshnmF9N50e0s45TP2ZMUZ2f2Aqu0uhT5uddirHOiqYx0lcJIyrJS+k5Dn2A2uFb7stK0oJj9u5jmEc6Kae+3Ln40PC456eHuv4JZ/3Yp4mMvD09MRawZislFBiK62v+Vg1m9bL9ULwEjIeqzje74doi+torZXox3GQSQIyaSHkSEqDWBz3vfhp+9ScNiXEvWVKpSz87BgkvKBkoYymlAhak32it/0Z8p4zXOaZw3tu97uUlNpSdGE5drrisFaTgRTlXl6vD5QiyrZMqhuJxWgnZXwxZDTGyaRB6L8DSitZzCWzrHfWtTC6gZwTt9tOSKKJNsaIBDQWyOKMudfKYhwktVF3Fq3d+eybwYJS0t/3TjLFlmWhc4YlSQhD4TPGuAFbLeInZ6HaGivyRlXdVXKVqN5uO65zpBiYp6lOhRK3+yIGmeYHq6ZUtsKtLkp0nGGn5ILpNHvwECRBQFfpnK22QLGxjaJEVrYSM8ZIKpmiNDEkjLZ0dmDbPG/3hSMVUK6qSYxkK7nK77YKlwu9A1s8dW6P3xJuuPL376/sWXKQNeaUYuYszpZo4QGHKAjwNIq1jEJIJY3F1fjCMUZxkcii2JEAMM8wjhAj16ln3TdiKFyuI50TI4ZSy+U1SP7vZZ55en6UXq6IsUNR8H67nda2+3FQnBPXjfoiNfClLWRjDPM8cazbSYEtpbDW0PphGplqwkMz3e+6XkIFtJAsLhcJyCtEJDo0sR9iDQttY7Vc+gf8IS/gtmU6N/N4nYjHKj+/t/Sd4SN4fNyZL5U7nRLLsVIoDKPoo5tePXqJho0+kkMmsOOcZbndMEYxjD2dtZInhiDcz8+PjGMv0xFbgbJcUCUyDzPTMIKC0XUVuDxQg6MoyzD0IgEdhIorK08qqO/fv8uGlwtP1wc+Pm6oqpsXSKI6sypFSZI8oRQUrfnj/QYUHh4ewPbs2wqplurK4n0ihMI8D+z7xjQZoUXnQkmVN58ig5M+XZ9JlGJlNAwiAirqBy9mo2v5iegrU8oiC7ONFy2mcqaCOKejCJxzvMvlwjzPspBCoGTN3//+d3rb8fj4zLrcue+BPRe6cWbonRgeOOFwa0MV4xch1BvFcWyEY2NZ7vz+z3+wrAsBxePLN9Zlx2ixqT3CRkwHtgJym2SPSJpE0bXMkrFEs7pp/zQWTltQXc0MVkoJ4SIGfLUZEvDKy7hnmuW+aGESGW3Y1o0UI9d55tgDKQlC33y4u1r9lCI5gXvdCNtp/PDwIPe13uOSM7ZaA63rSj8Kt3iYJt7f30+Hl4eHh89NIcu8XMLCJWJIekJHrkkhDds4KmcbrWsQOKL1vd1xlso5NlyvV/aQuK/LmV3VMJIWAiCh6rlWeKYiyj2dFZFBDJ6uE5NHY8XmWBh37qwwus6RswCXOR6VKyDPyWqL7a2AnU7oqu2+NhmjVnIfx34QJqNzQm9FAuba79q40aqW38LXzkAWfYIWYsswjIKUB6H+llIw2hJD5vv3f9F3A1mI8/g6RmyVn4TOC3K+LAslJy6X6QxeFIPB/wFh6wVIWYKrta43NYXz4VAXQTO9a5TH1nu0GfNX6uZ6v/P0cBUovnP4IDTMcRjphh5nFb01UDLx2OrXiWMJKbCuK8v9xvv7K2+v3yvqLMju+/s7++bRyqI0KF1AJXKSWbnRrs64M/smvfE4DafjxFchhbVCrKeWxa2VaBXH4Q+UVp99Vc1xilEiVhIJZcRDep5nFDB2Pf7wrDVkrFUDIgaREl9bI4SS4+B6vUoPXV0yLvOMr6Bbrn1a4z2HCto0UUgD1s684grmSAKHjOX++c9/knLm+eXbWVa2lJFpmti2nXDkuqlYht5Rssc4x/XxSi5w+/52mj22Ge3XikLmv/F0JGmOoznKfb1eH9BGVUWX8An2PTIMnH9P/PK3zfPIU608vr++C8pejf5jzlUxJfY9LTKpCYLu24rRpnq5S250DEEsmted42MX1VQWxp6xmslObPtyjgcbaNZspGISZl6icL8tMrZ1PSH6uhY+D7bTcRXO5x9COC16W3k/DgPhR8+Zj6NKuLpmtaKFydJ1ZxTI9XqtTpJ1FtrQui9KouY1pRToMvGf/tP/zl9+/QWFYdtv9J0VMYcGS4bk2bcFYxSdtlgyKmfW+ztv72+sy8K/fv9dNos6Vnjf79zvO9N4oWQx0de6oIxIALUSz2efPCkmSpETNcWMdar2kJ/5V6XIWIq2ccFpLXSrJXI/Dlgjox5hMVVfZddJoJqyxCh+UVpr/CH952WeJWK0E4Cvhaa1bCf0p/UrcBLxvT/ORS+c6oFxHE+ZYUxiqNhe4AaeDX0P9eVuZn6NE0wQnyqtNcsiLiHN3dJaS44HQ2e5XGb6oWPb16oueufwHmO6P83np2ni6emJ2+1+5lI1u542YlMocpQY34KYyB/HjusNKeZKEDJnm9Y0y65qgnPOopfX8uy/v4rSqdTF3DartskcxwFKoSsOECoxI+YkAQaKCoqK8aDSWqjJukXz6D+JRNrm0vfCSRfRjNCDX15ezr+1LdgGZLZn81VO23zb2iYoarCdHH6wbZD8MmBrEHSKQaxHj4NcxNi8gTnt63PlxzZHylRfsDaQf7xMPD0+oCh8vL1SssJYmdkqbXD9gCJRws7D/MjYO2L0LLcbr2//Yt92UkxcLheOEORmG0ufM7uVG9q5ASlYpTymQIz+5Lt2nRjQreudfpQgstaDNk1yShLBE+tIqJVuX+NZ1nUjpwWQdAQpJYVb25IvO+O4fUhkCikxjTMhhVN2p5QSZ8wWoJcFdTdGVEVt/jmOIz5Fhi/Oml8D3Vy1RfLen4SHxiJKWRwcmi8WcP6MEAL3Os9tFMavYpFp6LBGcxwLKQe6QeJijLXoVM5KbFkWXl5eKKXw8fEhEH/9nHZvv2qXh26g6xzbvtb5aiBmySVTWp2VXKs+msXPVx1yrLJFMZ/i1JS3+wacVRdKM19HYS3W8Vq7t7I45XdzrkOopIVYEe5pGk+UuzlxthPauY7r/MDb++vZYoTomWfxFxfKqjkXdNuYmrikcfrHcayKM9FbJ/ODy+yW4EBRpCDeWtZIaZmzWJ20P+C/1memqkdtIoNWcvd9L0kP0ZNTZBhm9lRQZDFg97IJTGPP4AwqR5aPN/71r9/Zj4WYE1o7lFXEPeL6gcN7xmkiJtjWo36mRelW2ux1xCXjJucGBuOwTontUSVztHagLd62STXZ4/miIuWVD4HL5UrX9cQgJvCpKseMtkjWVa6JFZmSxDQhZOFsr+v638gDc85MswBKy7Kc/ZaYx4l/ePvadsUY60v9mXnVDAYbQttOhPZsWuXRXEjdOP5JitcAS6c/43pS8uTi+LjfGScxeWgLrj3rJm19eHwknrpfdUr9ACjUxZHPvKtxHLndRe8bk/C2myNNcwTZto0QEzqm06FDKS2OLlpO3bZIvJcFNQyDVI4pnWKLVLUEMQTJhYrhXERKyVy+Peeu+4webou5rQ0BzBSvr2/E9Bk24IwlJg+lVrPWnk6p7Vl8/ZntubWDMMbIOPU/djGXklGIB1fKLeDLSElSNP0gwnqUYhyGE8Vu6Gs7eRqw0nXdCSTFIibhfe9QWZNqX+iXBQ0MDzMfb6/s28L3738IT7o35CSJett9I1O4Lwtd13PstUy2PcZ0GKu43z8wTlX+bqbvbO0Jb/Kguw4XP90am2XsaRT/ZUwlf4s8iEKh7wcJEFdS/lKEWFOySPtUgXmaKEmYR83TuY23AKZpOluUdr+kzxQ/6oeHh9PCtlFPRTQy8vH+gbVS4r++fufhOHB9f44D28Js/bVGTqm26JqDZ0oJlKZzTnjgIZCShL71XYc2iussoN4eAoVSM5vbAk/nidiultfkuv5MlmxlvDFi0ZRCOo3m5QQzvLy84H3gOOI5+28/t92jnAv3ZT3xjWEYTnPGNrpSSmGNlXFarQhiziyb5Jq109sYw31ZeLheGTp7torjNAq/vraWza639eCtB5bRlRcF1Thz+A3vD4axx1hDqS6dMcbzdP5aTn8NI9i27YxO1laT1A+eMw8OfBa1kqKQciTGQt939K4XS90sSJ+t88eu0tSou2q7oapAOjyqaDTCiZ3mqzhkOkdMmd1vbLfvXOaZ29vvLOvKsYlndVFw2yM+JgaV2Cu/t/F6L31PiklGZqZQMAxTxxEOdC5cx4nHx0deX18ZrCWlDFm8rZok7XR5yFnGbMbSuR59MZSSQBW6wTDPo1gKZSM+ZTEyTaKRDqECI4eY5HfDWBdN4DJPODcTUyTTGEHSKnSqZ7pI7E+qgJo4dRaxBM6gUAIYHp5+uNTft/D0/CvjKFE5h9+rVlkYVT5IADpai7a6c+zrhrOGX3/5JtyAEPH7gfIB1zn6qvSa55k97Bw5C1OpLqZcW6foI3boCT6yVJ+uBngpbRjHK/vuKUUTY8DajnXdqyABQk5V3WXBWC7zhXX/TgyBvRJuSgVH/bGTU8b2Ehw3jCPrslKQn6F0QbmedT0w1opeXWlSAmN7VIk4q1m3asnsLMu6kXORRAk9YWsV0FxWU0z0fWs7zEnCEYB3E/ujXhiJy3oDYJ5ko7NarIV9jBhdGMcJpTTRB8kJc5YtR+ZRGG8xRo7gKVphnIWs/h/X5f+rxazJdE5jKsiT0id6Ss4MtXm/3+/nfxfPYTFwl9gQRYoJSkEBOWX+j//z/8IHz1//OqBLFndCvxPCTlGZ5Vj4L//4L6zbyjiOXC+CnG6HRF36KFa++74LVU6B0YpYspTvSm6m0qKE6ZQi7Adv8TtTVUelJKWaM4bkHKWWcUZrUpEXNlSmkdKKYRxlQWthKoWQSEG4zY3P3U6gcRiIW8QYxbGtWK3q7u4pJeP9IeVdEXPA7TgISXyih64TMkcIbNtaReqFnCM5Q/C5EkrS6XwyTRMMSnyvSsZYeYklBjXTWcfYj6iUWZeFUk31p4cHumkk+8hqVnzlCLdRYqFgu54/Xl9FwBESquIDWhlS8txv9xOVb6W0/M6qWhrXXKtqoBiV9OVKg4oR5y7n95RcCIcAS0+Pjye3/f39Ha0UexCarHWu0nLrJKIq6NZtxbrurEy01hw+UEqGkphGy9A/sfvA5j0lZ6ZpPtlrokeXCqLverLNZ1XW+tqWL/b7756c09nPt+pzXQWZpgiRxnUdwXu+f/9O33UYpZmmUey3qumg6zqiMTgKoqSHcPwPAMDaeOPrKKWUQk4FSqSrI6mCkEVclbcZXU0A6+xUayGa/P0f/6CkxG+//XaiggDv7++8vb/i4/E5brKOrA1JKfpxoC+aUhfN137Key+oorWMlxmlNUcI9FV22b629VLfvn07N6WsIFQg5Gvigfeef/3+L7qu47e//lb/dimLUixoZQg5crvdTuL+y8vL2RfGTgLHDn8Qg0j2pnkmBnlcSonwe60bijHCIT72naHveHx8PCmi4vBoWLeVks2JZre+3lfG1eUinOvDBx4fH4kpkPMnqGUQmWoOEW2lrRnmiaNksIbL8zMxBCLwdr+zp1TppaZKQ6c/vdy3243OOp6enk4g7hxTOUfKYtVrNDw+XrjfF/rBoSioDL21DP1A1/fisrGszMPIfBGrpo+PD4wRv+rHx0exBC6iJr/OMyllbtsmqP4wsJed3jkOf+DDQUHUaEpZSop81LwrpZ04YSL5ZlpzboxtY/k6rpymqQYjKu530SO3KJrWlrWrAZPHcVCUrpbUjlTxhMF1smBtHVmmjNVaYpBzJng5CMcvbcsPWcxtsbXerqGmAqeLDPDwXtQypVTJWUIZOZ2a2OLri6crmeK+LKz/+T8L6lkpnzEnTGcoRuxWOyvlXtYajCOX/ZQUaq3PUUgjKZgmrkjVgytneufotDnLttvtxv1+Z9s2AV+sBMm32WzTshpjuFwv54amtQSC5SIWwH3Xo0fHx8eHuFl+6UVFOKFYVtl0tmOj73rprRHT/5giYZdTSztBc4fx0zmymeA144P39/dqh/tptdOeR4xRIk1C4OHxge/f/yU0RSMvkHWW6/yIX1emccJMij9ev9NibT7uy7lJtzHJ07cXPj4+eH17J8XENI0cR6juJmCt4fHxkZJyRYHFxicEkV9+fHzgOnnV1mPH6Cudk81SlUz0ckB0s8UqSRvsjKHUd+n9/f2UqrZnrLWmH8Sre1ulihr7gZwyy03GewUJLzRGk3Ni2+RzrFHnyXu73xjHiXGciLmmL5Z0YhNtnNre/1IKz8/P58HTPMNa/9tAwCasOWfbtoJktc9um0PXOe7rihs6em3IqnmRyb3sSyH5+GMXs3Oyg10ul/NBnadCKtKLGSkbPj4+RFFSMq4b2JflBDCKUlWkLfEhxlpiFj/uNpJxzjH0PaEketdXGqbCp8wRdtbqN/yVAN8IDl3XEXLGVU74x/s7qhSS9wzDiB7cCf03FLfNjkOMJwraHmBDrx8eHs6y6l7N4CiKdd0Yp4xgZOUkybQZewiB9X5jnGQO3CVBN32o0sWccdYwTRd27yVcXiuc00Jx7foTVZ+m6fzPba7aXpx2ErZ/3/edVPOkSylM00xBes51XRito1BYan6xqrNpEL/npn5rlNxhGIg+8/D0eI57XPXdpihy3Lle5vOUbmBnSolpHLD2k12nEe/ooc7xrRVnj/uyyClURTuXywVl5H62z2zgqYgYJBMsZkGorTF043gaFX4VplhrBcjre7b1zuPjEylnnh6fqu1QIGYoWuHqlKYF7rVJQPt73t7eTgS6/ez7/X7Ok5uyrX2vHAQ9MWe2ZZGKFYWtfO9mmNj146cIx3tM35FTtRH6kYu5oXbv7+8n6+uoYWjaiEeY1loc/evDUEYYTH1VS+VSTrNy7z1WKa7TVNUi0I+DEPiRncmg0DU8rpHW9/qZtpIs2onVKoacM0Odw5qcsUbM67RSHPvOXhd8e0DTNDFNk7yAJTPV2a219jyhz7AxW8PHQqqUvISz4l6SczoBkTajlVmi5/nlCRRi9K7g5eWZUBU4uj68h8uFKWds5/i43aVE15wi+nYyNLdH2eQ/R0ymcqrbSAWEdhmiZxxljBaTlL85FsbHJ2GADQPrvonutnNYreldzW3uevxxoGqaZo6pEiKKgH05MQxjFdJ8el+3OSrA29sbXWexRqYcfe849pXL9VrHaJmMRjtLLFmscJOcqKX+LW1hNWCysfByXVzNyYZKvyQlbrcPYpISOCaPj3JQpCK50M5Z9uox7kOQ9MwMyllCLa8b6tze/VaptMqykW7a2LC9L83U8fn5+eQgjJOqlkJikk89yBSQi8hR931nrJWgMZa3t3eu1+uPL7PbQ4JPJUnXdSJ5DOKY0ZwF22J2FZkOMZ4vXvIHxyEyt6wkPmUYhpNT+Wsz6AAAB6NJREFUfByHACR9j0GLasc5CZ4u8HR5oCi4H/KytPlc+1ylxdqGGj2y7ztmHEXuaOzJeFJa4+tnt5TFTKFUAOMrQ0eoniMheOHnVpM9iubh+oj3O7Gk87RvD1XEEyNkfyZKdH1HiFIGayXh6OR8mifs2yoZTdNE8J4Q0xkM0EYiAuqIUEAbSXkQpxJ9igNa9I51+tQkr6tkRW1+4+N24+n6QIp1FLbvxCMz99Npi5tzEnMAa1mXVYDFKMBXV/vGGFqOcSDrr2kf4awKlJLeWGsYho55EjLOcl/xIZFtJ2F3ObPu+1kBFaNJQTTdwNlGtHexZBmXhprg6L3HFzkM1n3DDY6YxExSyDMCloXjIB4H2rhTsjgMPT5mrFHs635SXVt/3Oa+uUgiS3sOwKkzbwu/9dptkz3WVfTJzuHqPckps4XIw+UCKRB9Og+Cz3BCzkSOH7qYC4aW6oC2pCJ+1dp2DMaAgv04asyJxLQoJWkQzhhiCiz3O+M4SGJhFsle13UM0yDjDmuwpRLRfSDEjKmSRx8CnXOn1CynhKl/ZFt0bQHllCBX3nFdtOu+sVfHyE6NMqPuHOuxn8BcLuXcPFqJ1Bbzcl9Q1Xa2H2Sjkc+TsO3De6Z5JiUxWBfGmKdzllwKL88vn3xv8aLFdR0oTSyS3tFrg/eRkouw24pE8by9vVWl1PxF1gjeixpK60IpkRThcrnIg60U0Pv9A7Qgw2SF3wKd6zDWYrqOIwTcMDApaRn++P5dytuuoyQZRY6dGNLlEHn/eKUU+PXXX9DakJNUG11vKSXi4w66MM3ipV6AfV3oh7GKDoRwFKLMsOf5wuYD4fiUM5YiBn5HOOiNRZkaNleNCKL3WKXxWcZ6MSXStsmmDhSqOCIE7vW9mea5Ep0MASWjxmGovmoJlSLTICdtKUgVuLe2T6YIMnMXD7cjHMQYJJPKWFKtWEJoZKPCOA6M00RnHbFIBDKlnI4jOWXebh9oJ9hRoZC1Zo+RgqJ3vcT+ph9sG1SUlsT3CvUrpbkvazV0G4kp4KuDRUoF53pKUSgUMWUocL1cEdAni/2LMfRDT8qf9kIqKUFqU2Z0vZTmWk4cHwNH8KA+RQ2N5HESJFJCF43fd2JFIZXW+JTEIN5J316UItM2oJ6xIpJUNk/bbUFajPfbnaenb9zuH3TOULLMbrftg3VdMN2MsY5pGsnVJ0qh8H4/Oeufeb7UUlJXqxlDKkU8opTicpFUxfu6/4la+fr6+qfWouRCzqFKGKmIvjg9tqRGVf91bAePj4/CSnLy2G/ryvfX1zPDOcZIyoX7cTA6h6cmPqRU3V4S1+tcP8fUCkaAyZAOnBMKpD9qDM0R6td2vL9/cBy+3gshgtjBiRtmqcmc3uP3XeSqSLU1tCkEEL3nMs9VvSUt234clT/9KRPMSWRK1grZJtV2polLXNcB+iSNNPQ6xnB+X2vDmgTVVxvllMQKaBwlB00VRW/E7OAIXrjtSqONOH2udynBx85xeI+ughutFaZmsG3HLu9kZbG1jKrBdczjhP3RdM6vXNTGrvnc/e9ConADupZ41vYcPgq1TdmTn5uTCB9M7afXdT3L88bYAbhMMzpzlryNmigwP6jyycZpFNI2Ymp9y1ZHFW2U1sYMjX00DMOJWreH11Qrz8/P58YllLrLqWKJwf+JDtn3PRgpRa25EOrcMgbxam7snsbwmuf5nEe3Pux+v58Mr3MD8h5XwZ5SyvmzlmURjXHdwJr/c/s5jdW01dD1hnGcNMjgeXx8PPvaxgs22vDw8MCRIu/vb5hedMXUkrPr7Fl2btt2CgZC8NUjWwz8S6l50sadp4qrrKyvTK727AcnzLBSn4WvbUgTZ3TWcb/dKEn845yREdzD8xPdF0XRVyZYLkl6Ze//ZCLfxnvefyr82my4fd73P97On9OCDUrdcBp9I/hA8AdjPzINE/GQ93Sap+q6epzrpe97fKU7N4rmpZr+pYozDNMkYYxKo7QmHods8B8fjMMPpnN+fSG+/mcUaLTQPFMS5krt6UpdjNqKIbsomEQ0fxwHMWVc19IOw9mXzPPMuq3oxIkeNpeNnDPGWTktvvCHG5rdgIqWotceWBs/2Wrl02aH7URqqPXlcjkR0K9zw5QTg+vZjw2tivSNXUdOAZIkToQoCOZQg+GGQf7u+/1+EhfaWKWBI22m/fj4yNvb2xme1zmZ2X7U0dlnEJ1sIM0SFzjtlEIIJ7nCWfWnEUgbs2itef94O+9TQ8RzznLPtcH2vRj+VZLDy/MDfttISZ2srvZ9vvarKSf2PVLKZy9PUdIuNFT7ixCniTv2/cB28lK3yqjrpA04joPOWlSRMWP7vOlhODfstjG0XrptmDEF+sH96Z5/9tvl/D0al6BZOjUsqE1GWsv18PDAum11fNr6dzkY7m93kdoadc7fvx5+xhhUfUeawWJDvJ0xjNMoBpgpCeCrNcWIw0is7+F/z6XK1yn3z+vn9fP6/+3131eM/7x+Xj+v/89fPxfzz+vn9W9y/VzMP6+f17/J9XMx/7x+Xv8m18/F/PP6ef2bXD8X88/r5/Vvcv1czD+vn9e/yfVzMf+8fl7/JtfPxfzz+nn9m1z/N98ASD5+pAQ9AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "predict_animal(\"/content/test_set/test_set/dogs/dog.4818.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "Deawro_tdafB", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 230 + }, + "outputId": "d5c4b44c-efb7-40fb-cac5-e6335c22b2cc" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGoAAADECAYAAAB3N7QJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4MklEQVR4nOz9WaxtW3aWC36991HPetW73qeuwudEZacLrlwBdoji4QLGmSnSIJCMwoXggXwACYyEpQsWCLDAD1fCFs6UUlzzcO10gSNwQYTDjro8RZxy13vVsx5lL/Khjzn3Oidsnx14WRDKGNLS3nvttdaca7TRe2/tb///N+Gcc3zz+p/+kv+j38A3r4e7vhmob5Drm4H6Brm+GahvkOubgfoGub4ZqG+Q65uB+ga5vhmob5Drm4H6Brm+GahvkOtPHKhf+IVfQAjBZz7zmfXnfu3Xfo2f+qmf+kO/XgjBL/zCL/xJX/Z/quvf//t//6f+O/2prKhf+7Vf45/+03/6p/Gj/6e8vmED9c3r/K9zD9Tf/Jt/k3/37/4d4Le51ccfdc3nc/7e3/t7XL9+nTiO2dnZ4c/9uT/H5z73uT/2dW7evMmHP/xhnnrqKdI0ZXNzk7/21/4aN27ceKj3aa3l3/ybf8O3fMu3kCQJ29vb/OAP/uDbtvCf//mf5/u+7/vY2dkhjmOeffZZfu7nfu5tP+f69eu8+OKL/O7v/u76d/2e7/meh3oPX88VnPcP/NEf/VHu3bvHRz7yEX7xF3/xXb/+7/7dv8sv/dIv8eM//uM8++yznJyc8PGPf5yXX36Z97///X/k933605/mE5/4BD/8wz/M5cuXuXHjBj/3cz/H93zP9/DSSy+RZdkf+7p/+2//bX7hF36BD33oQ/ydv/N30FrzsY99jD/4gz/ggx/8IAA/93M/x3PPPcdf/st/mSAI+JVf+RU+/OEPY63lx37sxwD41//6X/MTP/ETdLtd/tE/+kcA7O7uPuztevjL/Qmvn//5n3eA+/SnP73+3I/92I+5h/3Rg8HA/diP/djX/bp5nn/N537/93/fAe4//sf/+Md+72/91m85wP3kT/7k1/yftfaPfY0f+IEfcI8++ujbPvfcc8+57/7u737Id/7fd/0PP6OGwyGf/OQnuXfv3tf1fWmarv/eNA0nJyc8/vjjDIfDd902//N//s8IIfgn/+SffM3/nd2mz77GdDrl+PiY7/7u7+bNN99kOp1+Xe/3T3r9Dw/Uv/gX/4KvfOUrXLlyhW/7tm/jp37qp3jzzTff9fuKouAf/+N/zJUrV4jjmK2tLba3t5lMJu96E9944w0uXrzIxsbGH/t1v/d7v8ef/bN/lk6nw3A4ZHt7m3/4D/8hwP//BeqHfuiHePPNN/nZn/1ZLl68yM/8zM/w3HPP8eu//ut/7Pf9xE/8BD/90z/ND/3QD/Gf/tN/4jd/8zf5yEc+wubmJtbaP/H7euONN/j+7/9+jo+P+Vf/6l/xq7/6q3zkIx/h7//9vw9wLq/x9VznnkwAf2yW94ddFy5c4MMf/jAf/vCHOTw85P3vfz8//dM/zYc+9KE/8nt+6Zd+iR/5kR/hX/7Lf7n+XFmWTCaTd329xx57jP/yX/4Lp6enf+Sq+pVf+RWqquKXf/mXuXr16vrzv/3bv/01X/v1/r7/PdefyorqdDoA73rTjDFfs4Xs7Oxw8eJFqqr6Y79XKYV7By/nZ3/2ZzHGvOv7+yt/5a/gnPtDi/LVz1RKve3f4Le7n//5n/+a7+l0On/o79o0Da+88gr3799/1/f0btefyor6wAc+AMBP/uRP8gM/8AMopfjhH/7hr/m6+XzO5cuX+at/9a/ywgsv0O12+ehHP8qnP/3pt62UP+z6i3/xL/KLv/iLDAYDnn32WX7/93+fj370o2xubr7r+/ve7/1e/sbf+Bv823/7b3nttdf4wR/8Qay1fOxjH+N7v/d7+fEf/3H+/J//80RRxF/6S3+JH/3RH2WxWPC//+//Ozs7O19z4z/wgQ/wcz/3c/yzf/bPePzxx9nZ2eH7vu/7uHv3Ls888ww/8iM/8idHLv6kaeMflp5rrd1P/MRPuO3tbSeE+CNT9aqq3D/4B//AvfDCC67X67lOp+NeeOEF9+///b9/19cdj8fub/2tv+W2trZct9t1P/ADP+BeeeUVd+3aNfcjP/Ij7/r9Wmv3Mz/zM+7pp592URS57e1t96EPfch99rOfXX/NL//yL7vnn3/eJUnirl+/7v75P//n7j/8h//gAPfWW2+tv25/f9/9hb/wF1yv13PAOlV/6623HPBQ7+fdLuHcN3l93wjX//Cs75vXw13fDNQ3yPXNQH2DXN8M1DfI9c1AfYNc3wzUN8j1zUB9g1wPjUz8wb2bgIdWlFJIpTg5OUEAV69eY7aYo5Ri0Olx+9YtwHH18mWK5RJtDC+98ToqCBiNRuzs7CCEWMNA0/EYUVfs7mxjncQJCYFkvizYPzjk4PiYw/mEa9ev8fSjjxIiuHfzLZ64fIUsilBC4pwAJ9g/2Kfb6dLr95BCYqxBKMXByQnWWbY2txBCIJFYLPP5gqJYcnF7FyUEDhBAWVeMx6fs7V5A4kicACForOHg+JjNrS0iKQkQCOewzjGfzciyjCiKANY/q6grFk3NoNMjAqR1WAG5NYyLJVd6w3e9/w+9oixw/+CAsq5pjEEbw2AwoNPrMV8u0EYjhKDSNcPNERsbG9RNQ2MM/X6fZ599FmOMB07HE6SU6EajpKLX71FrzXy+wAlACKxzJEnCvXv3+T/+03/iN/6/v87/5//1/+a3/+tvU1cV21s73D04wDhBZQ1WCIRSbGxtcTId+/foLEiJtZbtwZBmsYS6JnSOEEeMZJAmuKqGuiZCECEIgU4QIbWFpiFCEghB4ByRkEQIXFkROBDGIh0ECKIgwBmDaAMk2z8jqZDGIp1DtPiCcBAKgXpIuOGhA6WUYnd3l/F4vIb4HRCEIWVVcXB4iMM/Wc45gihivlgwHo9BKKIw4tLFS+zv7zOejBmPx6hAoY1GBQEXLl7iaHJKXpS4Fo221vLSiy9ydHCIMpZ8PONX/89f5r/9t48RJimVc9yfjLFBiBWSyjTIICDJOuwfHWGcf8AcEEhJL8tYzmZI5/xNdJZIKUa9PkW+BOeQwt+UQAg6SUKxXK5vknMghSBNE4qiWN90ACcEKgwpqsrfg/Z1LfiHBbA4nBA4KbA4hJDIh0TeHzpQTkAQhWztbNMYTV4WyDBAG00Ux6RZh+lsBkJgnKMoC9JOBxWF5GWB1prNzU2efuppqqri9PSU5WK5JoS4QHLh4mXuHR9QNhVISVmU3LjxFkpK/9QKSRqn/OZ/+U1+9+MfY7S1zfFixqJp0DhQAUYIuoMBldEsqxINGCFopCAdjTgtcuZNTeEstRCUOFSWcVoUzE1D7iwFMDca1e1yki9ZWEOJo8CydBaXpkybiqlpKIVjaQ1zZyiUZKxrZtYwc4a5s8ysZuEsU9swtf5zC2dZ4FjimDZ/fJdgdT30GWUBKSVIiQwCjo6OqLUmyzKUgOFoiFKK8XRCGAREQYg2mo3NTYQQjMenbG1vs7W9xWw+YzabsX+wz+XgMkkaY6UkTBO2d3bZPzjg0sVLVFXFfL5ASkkURBhraKxGhQEf+ehvIYKAp559hrsHB1zdu4gU4KzF4giylDtH++zu7GKsw0lotKYMFa8d3Gc0GGGdBQFKKg6KBcuxRAjAgbEWYzSLxYLJviFGIIDaWSqtWS6XnDQVoVRYa9BSIKTk9PSUYZ0ThRHOOYQUWOs4mpyyZRqUA9s0hFFEGEUcjE95amPn/AJ1//79NbtGSMmFCxcYj8c07Ys6QElJVdeMT0+5cuUKSip0o0mTmLKqyPOcKIrY29tjsfABuHX7FleuXkEL30cy1tIYzetvvUEkI6yxBCogiGKEteTFkkU5J6ojfvd3/xvLZU6cRBzcvwcOtNFYa5FCUlYlt+/fRyhJoTVVUxMGAVVV0ev1QAgCpRBCUpYFWe7fk7UW1yYIUkpOFwuktQRhiFOSxhiMMeTWELS/d+0sQgjqpiY/PSFQCikVDocxlrwquXt4yP179yiLgiuXr/DYI49Q1/VD3f+HDtRgNOLe/j6j0YgwDDFSkmQZizxnvlzS6XUJKkWtNcY5FosF8/mcOIxI4oTxeEy/3+fevXvs7e6hlOLll1+m2+1yf/8+Igko64pQhphao+uGQCiwFiklRggIAlABtqnJ84K7t+4igWeffZYoCJBSIqVECIF1liCKqK2hk8TEQByGWGuIVEAgBFJInLUsl3O6vT66rul0uszzGdY6pBQ01qGUJA5CjLX+IVCSIIraLdkRKoV0EqkUg6yDtQ5jDUoqwjBgPl/w4itf5eVXXibPc5I4garhPY8+xu7W9vkG6s7NmyzzJVVZtFvZmDiOGY1GvPba62xsbXDx4kVefvFFOmlGEkd8+ctf4tqVqyRJzL27d7h0YY97d26zORiymE4Z9ftMphO6vR6TyQTrbJsNKeqiRIkAIcAYR2MMCH8oCwS6biiqOa8vl2RRzGDU9+edczjrn24pBMYZpDM0ZYlC+P9DUEN70xWmqhCBIg1DpvfvYa3B2fbgdw6HIMfhKwAJEqRUWKX8IR+EvkQQAh0EaGsRUmGAcZHzuc9/gVdefZWs02W7v0FTVRTjCeV4glgsYfvi+QXq9S98HhkGDJ59lv2jQ45PT9nZ2SYLA4rpKUtlMKMu89ND4u1tqnzK5HSfCzsj6nKGWc5RuqGYnBLYhtnRAU89+RSiLsmXC+q6oCpzBlkCxpLKAO0cTlq0M1RViRKSoD0/IueQ1tLMprz42c+S9iKuX72CbGp6cYLCYa2hMg1CNAyzjMV0Bo1GOYijiMFwyCJfErgKVc6RjeKJ3W2ODw/RpiaQCiUl169f5eDwLlVZIpUiCBQ72xsUZcF8NicNIHKKNMvIBkNuHxzQCMvN+/f59Oc+z9F4QqfXQ8iI2bxAVzVPXnuUazs7iDp/qPv/0FlfCERSksURSvj0tZdmBAKG3Q7DLIOmIQkUm/0euixIgoBQCsrFgs3NTZbLBWEYogJFFEcMhwO00eTFkp2tLa5fvky9XCKMRjnH048/ThrFOGtx2vizw1qsMVhjAF8KLBcLPv2pT3J8dES30+PJJ57g2pUrKCnIkoQ4inj6mWfZ3NpEBYowDgmjgEcffYRur4cMFQaLE3D12lW6gx4qDJCBIspitne2SdKEIAxQSqCUZNAfkGUZYRTgBFgpCLOMMImxAt54800+/vFPUBQFaZpSNg15UfgzSxs2NzbIsoyH5cU89IrqZx1EGJAEIf20w8SdkgQhxXzBzuYWnU5KuVhi6ppYBQhjcY0mi2Lm1vLCe1/g4PAAKSV1XfPI9UcZDH2meOniRZZ1TZKEdOMUpxvSIOCxa9cZ9Xrc2z/GaF/LxVFEICVWSqyQqDDENjXjkymf+uSn6X13xtNPPIkWFY0FcIhGU2jNeJlzNJ0RCkk3y/jKq6/x5o0byDCAQCGlpHvrJm/cvkO+WDDo9xnKATmC02XBYpEjpSSOY2oUB5MZy6KmaTRBEGG6Pcqy5lNf+jJfff0NtHUs8pzaOFyY0Ek7NGVNoODC3i51UzNdLM83UMVySXc4YNjvM9wYce/+PZIoYrJY8PiTT1KWOfPpBIwliSKqqkIJQagUzjq6vS6vvvE6jTGcjsfcuXOHnb0dZosFQRwxHAzI51OKPGdxegpbDmGdT/WVQihFU9fYpkFJwDms86tAqYAkUkzGcz772S+wsbFJqCRv3LqDUoIoThBZly++9Ar7d+6SBCFpHDOdzZjO53T6PUQQEAQBX/jKyxTtk7+1ucXe7i6jC5d45cYtX7wj6GQZFx55nJsHx9y7f4+yrEApdk/HLBY5X339TYqyYTyeIIQkilPCMCEIIyTQT3rESciN27f4zCc/wbc9/23nF6jZfE5n0CeMIsqWQuycYzweI4TAWMPNmze5e/cuz7/wAvfv3+fuvXs899xzjCdjHIKbt2+xXC7pHHZASeb5klu3b/H0s8/w8quvUucL7t27y+nBIUEQ0ugGrTVFWRJ7VA2cw1mfNqedzCMEAYRxQrfb5fBkwm/97u9x7foVjBMc3LlPUzdMG83d+4fcfOsW0lh/+ONASfKqQUURVVOjlKLRGoCT8YzDkzGTRc58fEqxzMmylDDtUmiHC2I0AZWtOT095Y1b94jCiP3jU+azBXGU0O1mDIeb2CBGYGl0w3C4DcJhjMFJ9VD3/6EDtX94wHBnmzCKuL1/n/F0iggUy6LASUGlNfN8SW0MYRyxKApkoGisIYwirLVUVUWn00Fby3PveQ9NXYOU9Hp9BqMRJ3WBCkM2trfZ2t2j0precEjaycD4gtU5RxBKj+c4AdIDshKFkCFpJ+R4OmP28le5uLdH2VgO7h9QC8XmxgZVURNJRdWUCCkRSiGkITINTmu08DWSCgKQgsl4xsnRFxH4hyOJY1SY8dXX3mK5LFksa+7e3aesKjrdDnfv7rOYL+n0eoyGG8RxQm0sVV0SBf58S5MIZxsaXRMmyfkGqjsc0t8Y0TjLoirZ2NnBKUXa6xKlKfrU4pSiPxqioohS1/RGI8qmIUoT8qokL0uGGxsURUGcJBwcHhLFMXld0en3eeP1V5kul0RKIuOQyXyGFdDp9YgIKcuSqioxzt9Mhz+3BJIkSpBCQSDRVlI2hlffeIO9rS2EDLh98zadOCMMImzdIIXCWufBZEqCKPJrVglCFeEQCG0JZEBdV1RVTRxHLGZL8kUJ1qfuB4eHgGV7Y5O33noL5+DypSsgFUVVUVQGFYbIIEJry2avSxxHCAnGWZbvQjT9ugNVO0eYpiAVp+MpSZpRa02UZtTWYoTfQqIoQQvJoqwZDkfktSbKupRNg7aOOElZLBY4BMuiQKiAsqrZ2Nj050SaIpxDRjEn8zkah1SSk6NjnNZtgFpoxnjw02qDMI4Ei7QxWb9LmiUoKajynM3tbaZvvMFiNuPCzi63btxA4Yti6yxGCIxUhFFIHCeESUyjNVprAiHXCLluDEZbGq2ZTGdUdYU2lt3dHe7dvEkv65JmGbNlQV5VCBUQJQlar1J92Nnb9eBAHEOjGW1vnW+gov6AdDCislCUFf3+EJBk3T552WCcIsn6LTQTEcU9BsMtrAvodgdU1hEkGUHaQWmLCyLmRU3aG1DUmt4gRIiQrL8J1pEMN6mso9PtMBx22X/rLZSQWOPxcIEjjiLSOMGFiqIpOD1ZEMURp8d+pWxsbXHh4gWSXperFy9ydO8uFy9cxDlL1TQoIZCANgVFHGECSW9z6FEHbWiKAmkdGIPTNUqGpEnIxtaISpe4QLK9u8vde/cZjUZURcG9+/cII4/GCKVwtiEIA4SoiLOM0fYGYZrSqBgiR3/z3XG+rytQO3t7JGlK0zREUcxgMCAMIwaDwDfIhGQ02mBrawvnYDQaMRyO0FoTxzFlVTPa2CDrdDzgaS0qCBiORogW+ul2u6RpijGGbq9PnucMh0NOjo+RgUI4cMaCcyjpg+ZaPE5ZgXSWJs8pW/zs9umY4zt32drc5MLeHlOluHXzJtYYmqbBSkmLwRK351V/OESFIYGULMYTxodH1HVNU9c4ZwkBozVRkpD2uhwdHdHv95genpIvFshAoYIAKQXO+XaQdZZAOC5c2GO4sUGgFFGcYI0jSdI/6pb/9wWq0+2SpCmmxd6iKKJpGtI0RbeH/AoR1loTBAFxklBMJggpKcvStzOcIwxDiqLAWkscxwDkRY4KAoQQBGHo8URj6PZ6ZFnW9sDEAyzPWJTwKIXWDVo3YAy2aXBlhXOWCIGezjlc5ExOThmNhpRFQVWW616SFBIr/M91zpGmKaONDaIw5EQqFpOJf23naKoaYwzz6YxOp8NiNsMZw/69e4QGkjT1JYO16BbzjKKIIAjodDpcvnyZQb+/7pInSfI1Qoc/caC6vR5CSrQxdHo9Or0eun2yEAIVRWxubdEf+q1jMBoRpykDIMkycI6dnR2yLCNJEqSUjEYjn0klCU5I9i5eaIMJSScja2qiNEFrzZc+90XK+RJtLXEQIEOB1ppGa998M5YAgZQKGUW4Fr0wWoODfLGgLkucczRVRSB8u8ZJ3w0wxiDbQF29do1QSsr5AiUVAsAYdNPgag8l7ONIO10PJLcIjBKSKIoJggDjHFXTELQPX7/fZ3Nzk06nQ5IkRGFImGb+qDjPQK22hKZpyHpdgijCOIcMArQxHm5JU6Ikxjj8YSkEIgh8gOt6HSAhhE+B2ydLCM9HQEr/PW3z0bWd0e6gz3C0wUmjEdp/TygVDtBaIxGEQYCuaw8ttT9LKUWYJGjdYKylrip00zyoX5zziLy14GBzc5OtrS12trex2hAEAUVZePS+btAteFvmDqV8C6exBiEEWZQSBgFWeLB31aU2xiDDgO3tbdL291ftVh8EwfmvKBEonPRtZKGU/3cjsMKnmdpaVBiggoCqrhFKgpIghUehaRuP7dU0zfp8EVJicUil3hYohEAGQdtOd/41Av8aSipSpairiqaqwPmV4YSgNtrfqJa8oJIYWVY4Y3wCIZUnpKy2pzghiiJGo5F/8re2KJZLFosFZVFSVxVWa7AWYX0WWBUlVVURpylxmhKFoX/o2iCoMMQCjW5IkoTHH3+crNMhTVPSJEEgCMPwbffkXAIVxzF21Y9pf/g7fSRWN905/8StVo/vmroHqwcvEFsxkaSUNEavv/fsqls9edY5qromTRJ/ZrQV/erzeZ6jjaE2mspabCDpjYbIKGJZFETGIBGUld+qVPsatFnk6uAfDAb0+32c1hRF4Z9667AtaUUKj44Ia4ni1IO+sd/ulFLIMFg/cKuWyoULeyRJ4lEV56ibhkBKjFEPLTF96EDdfPNNHn30MZQAhUA6UM7/HanQ7U0W+IZcoHyLQAmJwK8qGag16UNI6ZOHdrtDiPVWEAQBUiqiFtEo8gIhJUEUkmWZf1Cspcl9gPLlEp3nVLqhsBaRRFy7/gij7S3G0xkbW1s8e+kqr732Gjfv3KFYFgxkQKYCXy9Zf/M6nQ6bm5tkSYrudun1elhrqZvar1ghcVJ6QATfTZ7M58SNppv4VRU4B6GHpiz+rH308cfp93tEYdtsFAIc607yuQaqyQtef/kVrl+7Ri/LCKRChhHKWKQQ1LJd9kJ4MDZJiVSADQJkG6TVSrTWYgREqU9EhFKETqKUfzurVdTt9lrexJz5ckmcJDghMFrjGr3ekgIhEWGESlKssKhel60rVxDOETBnezCis71HN1BkmyPuv/RVsmlOP0woI8cyDUjSjG63y9bWFlIp0iSl2+0ipEBrQ6gCFqZBW+NV+Ds7VFVN7gwHyzmL6ZRhp0OcJKTdDjKOkUmEzGIGu1v0uh3SOMbvx6DrhkgFuPNeUTuXL9Hr9znYPyDMF1y8cBEbSIhCnHNELR9PhQGBjfzbaVeNVIpQROtAKWtRyi/7s0TM1dMlzqTL1lpOTk9pygopPNIgnFujBWHb9ZVBiIwjsm6GjgJMVYF12Krm5o2b7JcV8ZWLdK9cZDhfgL1PrUJKawgHfTZ2trl0+TKdTg/rfOf38tUr7Ozucnp0TFUUyCSgOxhw8cIeH/qzf46jo2M+8YXPklrLySuvcnTkOSFDvUFvc4NEpiRxjBASFYTEcUoQKCSCWpZ0ktQnNOcZqDhN6XS7XLoS8srLr3B0fMyzzz6LBXSLu0kh/HLG+QRBtEmIeLto+WxA/jCvpLMHbFEUTCcTpMAzWYUkChRCWZZlhalrz8MLAs+tQ/jDfrZg2OsjO11OJhPmWLJeh0QIrj3+OLNSk0/mVA7SOObCpcs8+fQzOCWodAPAE08+xWuvvMrNm7fQSrKztwNpTG4dv/vpT/pzK03Y6PeR4ymz42M6nS5BELacJdeSXHzvzEmFcBJnDK7RiMhTD841UBeHI3qdHjbtMHrhfRRlwcH+AVmW0R8McFKC8DdYItarwZ5h86wK3rN/Pxu81b9XCYu1lvF4zGw2Q0mFqWuwFtMyTkUbbJwngqbdDkQhtbXU8wWzqqZc5hhnefyxx+htbLGYzSiNJYljTFLjnGN3Z4dnnnsPFy5fRajQF8PWsrmzx9PPvoevvPgyJg7ZvX6Vwhru3rpNeVCAsfS2t2i0JkxiLl25QjfL/EMbhigVYBvN6dExuzsX6HYChFQEVnikXz281v2hv/KZy9c8ywefajvnaK4/xtHxEdY5cmsomhohJNY5kG02t2LVtoFYbXfvvFYMotXXAtR1zY0bN9jfP/CEkzbpMNZimgYVBHR6PaqyXPMNhZQMsgyLb3auKMZHb96kPJ1SzReY2QK3yKmWOd3BgF4UkyQZDoFFYrBIoZCB4tEnn2Rn7wJ3vrxPsczZvnyJfDrj3htv0ss6RAgWkwmREGSdDmEU+WRBKRpjKPOct958i6gzRImIvcGATAUkUUyE5GGX1MNvfeJMkKxDCkEUhHQvXkJbS+UcRVNR1DXLoqDUDZX2iLmwflWt0vvVajr799VKOxuopmmYz+drBEJJiZCCxlhUGKKk9Nif0TgEDY6wfQgCKddoQGMt+6cTlnfvExtHJwip8pzGaLJuh36vT6c/IG80AYK6adBNQxKEZJ0+733v+/jC5z/D/ls3/FnVNLhFgTWO6d37NHhEw4CvIZ3ztZ+SKBz5MufoZEq/c0LqBBtbPrMMBVjOOZlocMg2Y/Fnjl0f+E74QEZJSj/J0L0BpdFMlgtmywWNNVhtVwnPOoFYnU9n/w5+62uahul0SlVVbGxu+jPXWpyxOK1pyorlfI5tNDKKsDga5xDOorT2RadSlHVNEMfsbmwQNgaxLJjPZh4K29rk+rPP8Px7XyDJUo6Oj5FBQFlVCKCXJERCcuXKFa7t7nHz/l2K41OqxZJhENJVEYmKCHod3zLBoavar2KlUFHkmVJNw2Sx5HQyJ9WGK70eMgqRSrRn2XkGylqExNdFwktWjHOexOgsgZCAQxuDxRGrgJ3BiGG3xyxfcjA+RVufqWEsiHY1COHJ8p42jxE+OSmqipu3bnP/3n3KPG/rGIiCkDRLSTdGRMEVlJQ0dcMsz8nzgqooyKsaKSzCWKI4QjcaW2uqvMIuc7TWqDimNxzS2xwx2N7mdDIjTmriNOXk+Jij/fuMjw6R1qCs5cLODrP5DKSiPxoxjFMU0DhHobV/924FBKw60J42YLXBVjWz8Ziu1SyKEuUsnTQCHKF4d3TioQOlhPCYmGgRiPWD4AkmtXO4Vq1Am0zgIJaK7d6AKIw4Ho9ZLpfIQBEgPbHfQeAgRKAlaByTIufmrVt84Ytf4uDufUTTILWm0Y2v5JWvuZI0Iet2GY02GG1uc/GKt/apypL5fM50OvVbZ1Nh64bAOpQSSBURK0kShtRFyeuvv8GNOwc8ev0xrl26wo0XX+fLX/gMs/ERgppQCkbDDYyzCCuYt2diEscYbaibBid9YR/IACF8kKyxKAuBE8SNwSwLqiRmicPYhtopBJbOQ4Th4bE+aDE7h7bmbXIR986P9vyBByl4L05JtkNOwjHTxWKdESIEtYUKSWMchTUcn8547dU3uHf7tm9VVA3COUJ8z0gqhbaGcr6kmC+ZHp0i1W3PUQ8Dtra22N3d47GLl71Qbjpl//CA6emYomU9be3s0NvaJEoSRhsj7h2N+bXf+HWyIGZva5P5fIExhtOTI5bLGUmcMhiO6PV6636aZ8RKgjCksoZKa7/zAGnLhTDWUjU1TVNjjWY4GhLGEcbWPnvlnJMJvcrWWqzrnT9+dSSuEoO3QSMOpDPEQrK7sUmcJCxK365unEWEMYWNqIyl1DnjWcH+3UNMqZF1gzLGJxL4FojTBl1VNEZ7FSAVUGBtS8icTLl74yZKKba2trhw8SKbGxsIfF8NIRhub/HB7/wOdi9d4uLVqzz9/Pu4fv0RPvbbv8uFSxeZzcbcvzOlP9qgM+iBdcRx4ntlKyRee8lRp9sljSPiKCIOQhQeIouSBBVH9AZDBv1NLl+8xCOPXfe4ojv7aJ9zoGQLETkfkfX/nQVazxazqz8lAtV2ZcEx6PZIsg65rsnrinmtqU2MxqJdQ5k3TI7HmKImsganDSiBNhZjDbpdjU3dYIxXFSb9AZcuXKQ/6K8B0jzPOT4+5uZn72FaNcZgMODxp57khfe/n8eeeopO1ycCnU7Gd3zntxNIxWIyozaGrD/gr//1/5U4knzuM5/j3t07YCxx29i8dOUKOxf2iNOUGofTmjovWM4X5HmOaxubRVUyEJbdvW2iKMBZg5Lt/TnvZGKN0zmPCK/0qfh60xPyjVkj5yv0G/DtabfStIq2WPXkylQKKltR5TWz+ZL9u7d59ZVXyBdLLwbQBoFnFTXaa6OsAINjtL3L5cuXGW5tYuOYoixZLBZYJQnCgMHeLqrbYUtraDQOKKoSIyWTfMlsuUCGARFgpEUGIVeuXeVT9z7F6XTK+9/7LTzx9DNEkSLKMr70uc9z+823KOsGZyyz2YxFXbEoCxbLpS+uq6pNuPzuE2Ypo61NDyYrhwoEpjbINZ/vnAOl3Uoh4VsZnqy6WkFu3baAr4WInPPtCCe8JNJaB85idYN0jkQIqHMO7rzFi5/7HK9+5Uvo5dKfT05grE8yom4GQnJhb5cnn36aK9euEkWxT2CUIowi+v0+TdOwXC6ZTqdMphOKZc789JSirFBpgg0UYZYStCBv3TQYqUFrsm5GnCU8/tRT/Jnv/V6CtIO2NSqKaIxhPp8TOF9HTqdTionFSUEceLp3UVZY3RCGIUJJFOAaTVEsyIsF2gywznhB29fhovnQgTLtGWXbXsyqhlpdQvwxgcKh2+PNk3oM1hqoG9+z0YbAFOjFmMXJPrbMEdZQa02v7/tD3Y0+/cGARx97zNdV+JU6Xyw4PDignMyYnJ5ycHBAVVVrBF5rzWQ6ZTqZ0N8YsXftGju9Lp3BABWFNEZjtSa3GmehWNb0Bj3e88ILyDBikReAb2ecjE89yaWlWgshCYKQtN+lq0Imxye4IPBFfttVUA5C5UuYsirQxveiZFu8y3Pf+sSqTe4DobX225h8R9F2JtlYfdaB79jipZvaGppGo43/s6wrXF2SCEvgDFkakw6HbGxseCuCQZ+9vW36/T6L5ZI33nid09NTbty4wdHREbPJlKDWWOsYjIZcvnaVfn9AVdfMp1NGgwHD0RARhYRRSBInzGdzjo9PUEIhBeRNjZCK5XTB6ekpaZoym00pygXOamaTKVEQkiQJ9TInL0t/LsUh2aDPI489xuh9H0BXFQf39znY36eoK5yUqCDCOcF8mTOfL3HG0k0SjNYeQRq8O1v24VeUaTu77VbGKrH05KC3IeQeRLCI1u4T5xV4jTFtI66hbs+zvKmYL5fMx1OODg5Jsoxrjz3qtUadDhsbG0gheOuN13nlpReZnI6pipxAKsq25ZEEIbuXr/Ls8y/Q29zgeDalMprNLOPp0QZlvuRg/x5FXbF34SLDXp9e2qGuGhwefrIW8nzBydEBd+/dppNlJLGi183IF3PeeuWr3L91G11VhLHvGhN4oLjMc155/S3f4hgMuHL9OnuPPcaNGzc4OT0lzjKy7pAo6hImXRbTKagQoYLzT89Z3fz1ufP2FzDGrP9vTek608F00oOpVV2zzHOMtSAFRVEwXy4oipI0y3jk+nUkAm00Td3w+U9+iju3b1FMJ1Slp5gJwCpF1u3y+BOP89RTz2BlyNFkwuL4CJXEbG/ukAQh4/GY+3dus8wX9AZ9xuMxk/mcxxAMNryjs3GCsmqoq5Kyqck6HWbTKTdu3qTXy2iKgpPDI9+ez3PSDc9frJzl4vVrZL0eTdEwGY+5c/cuN2/dYjQa8eijj3Ll6lWOj48py4rZfI5z3j8jjHzmeO6BMsasqU9ng7IOxNktz3miirN2TWqxzheJTdNQlKWv8qX0ab9ShHFEkqbcvnGT6ckJGMvR/j6zyQRbVZgWQ5NCMhiNeOrpp3n08ceo6pq37t9HxSlRkqJ1w972Flsbm8zGE2anp4RKEacJWdbh6OSEjZ0djLXcv3+fyWxG2uki8KtfKcFgOCRQiulkzJ27tzyp8/CQUPgabrFYkAlBOuyzf3zEcxf3ePapa5wen/Diiy9S1zVFUfD5z3+efr/PlStX6A+HaK0py5I0ih4wsB7y/j981teSKqWUa8LlqjXhnMOuEokVItFyH5xzNFpT6caTUMqSvMg9bz1JsM5RlCUH+/u8/PLLnBweEQpJuVjg6oZYSAQSHYRsbmzx+JNPsrW3y7IoeO3GLYIohCDgeDpmN4u5fPkiVte89OUvMhuP0ZVXwnf7XY5PTxhtbnLpymWWRcF8mSODgCAMieK0lV9acJYoCIjTGOs0J0VOkeeoljCplGI4HCCShMcevc5kMuXz+5/nsUcf5fu///t5+eWXeemllxDCcw9v377NYLHgscce87oxQOsIrbx/Bio+v0CZVrKvlCJs+X2rBp/Dn0ErqpeHm/CoufWaoKppKKuKRb5kkef+HBOCqq45Pj3h+OiIMvduKMvFnKaqcI1vbwgpeeY9z3P9sUeZTGfcunOXpNMhTlLeeOstOt0O1x97hEBJXn/pJe7fuUO/2+Xo8JBOp8OVq1e5d/8+l69f4+q1R1BRiLKQdD0/UakQ6zwFOVASgUfpozQmSSJGgwF3tGYxHhMHymetxuLqmv2793jfBz/IcrrkC1/4Ap1Ohw9+8IPs7e3xyU9+ktPTU7rdLkEYcufOHQa9LtevXFmj+w+rzf26zijdCryiKCIMQ7TWbesdz99bfeE6LWeNiQHUumG+WLBYLsk6HYSUFFW5JlFifRFpG43AZ4pbFy/w+GOPUSF46bU3SDsZGzu7vHXjBtPJhOdfeAEhoJ7P+fJLL1HlORuDAXffepNuv8+1a1d489ZNti5c5PKVK6SdjDhNsUKBCnwj0jgQEiUVUoKzBqMbnFVEcUCWxMi64uYbrzM7HaOcoypLlI04mt3lN+7d57u/5/v59m//dj73uc/x0Y9+lO/6ru/iQx/6EF/4whc4ODgAIaiqiuPjYzYGA/rdjDhQHux+CC3bQ4utm5ZhuvrTx+PtPaSzXdyz/3bt9jZfLJgvFp4a1haE1lq0NmAtVV6gm4ZaN5RNzeVHrvP4s89wvFjw5r279Le3CJOEL33lKyRJwnvf+14W0xmHd+/x+T/4JHaZc2Vzm8n9A0LrePqJJzhuBQbDjQ3/gLXnQxiGfitXXm6jgpAkTYjiiLClpcWJx/ZkECCTGKskRuBdW05OwHj8cnx4yK/96q+yv7/PBz/4QXq9Hr/xG7/B7du3+c7v/E6ef/554iiiaWrKsvTS03fioe9yfV0WO95nQXiAtkUihBQ440nxZ8kqfktkTVqsm9rDLGVJkqYEQUAUhv4XqCuKPCcIFFEck2QZTz31FEEYcuvePeaLBf2NDfJ8yWwy5Zmnn2Z8csLBvXuUec69u3fYGoy4uLvL3bt3EEHItWtXmS5yZoucjd0d+v0BSdrxN14pbyJljGf3Sk9ps6bBOOMfIkBhaRrLcrFgOZ8yn01pqpJyucQ1NZ0k8f5QoxGvvXGTj/3X3+Lbv+M7+JZnniWOIj7xiU8wmc149rnnSDsd3njjDfI8p6hKyroiigKMlBCdY6C0s6A1SRL4v7sW/zNtAuHcOhtcgbfW2vUqzIuCxWKBEIIkjknjGLuq4K13IxttbdEbDun3+5ycnHDv3j3yPGd7ZxuqijQMGV26wK03XydL07aFMeHCxQvs7u5yenqK6PS4dOky3eGQ2mievHSJrZ0dOr0+UZK16IqnOztrkCJEOEMsJRrdchhMWy8adFUzOTlhcXSELEsiaymbCmM1k9NjehsjBIIrm1sc3b3Py5//InVe8OijjyCU4ksvvsiirnjvc+/h8ccfZzadgJCIIPAdYHXOGt5Veg58Db/B178+MAjh+0Vt4mHqmrKqWllnRZZ5ouNKVrPi97n2IwwCXn7pJY6OjgijiN3dXbIkJQkjGt3wuU9/hgsXL/hO7Okplx+5Ttbt0DQNo709Ht3YIOt1aVotcdaSIgPlb4p1Z8g2wovErRDUxpcPTrbJkLU0Rcl8PGY5njA+PMYUlVeNWLC6YTGZEccJ1kGWdL0J1cE+Mg5Z1BWPP/0UTinu3LuLtJb3v/BeBr0ugVLopqGqKgKlIHt3jdTDd3jbG7q6uWeZRCuOw0o7Jds2tLa2Jcp7HrdSijRNvSlIS7o0xnB6esp0MiHLMm7dusV0MiFQim6W0e92UVIyG485PDxkYzig0+mQlyWPPPkEFy55ck2n32sxQOcfjKryLf5AIVrlh7EGpEBK0TYt/eeElJ6v7hzOgjQGtObk8JD9m7eZHh6Rz+ZUyxwaDcb6oryqvbeGAykjLxGylrwoKauKGzdvcvX6dcIwZHJywotf+Qof/OAH2NwY0Ukz4ig6/zoqCAKMMT5DW/HMzxS8pl1ZKzJmGIbUdY21lrKuqVvZzWolrX5WVVWcnJxS5DmnJ6ccHx2BgyiM2N3ZIVCK/fv7NEVBr9cjSVMWyyWDjQ22dnbob24QRhGd4QCEIM9zryRsa7iqaRCuJm63mCAMMe3Wtm7XOO8AtmJK4RzFfM7J/gHHBwc0iyVKBkRRgqVBu5af6ARV2eCUYlGWxGlKoDw3XRvNfD7n4OCAzc1NIuHP8jIviHd3Ec4L45w1EL+7RuqhA3VWoXFW1bFOIKRXAdqWCVQ3DQ4vO2ma2gevbeitCsG6rqmqisVizuRkynKxIApCAqVI0pR+t8eNGzcIgwCZpnS6HVQYksUROxcv0h8MiKKIKEm8/qmuWzUhmBYd0FqznC+QeOipPxj4zC6OfQYYKJyxmMZjj0i5RkDSNCVNU+o8J+71SdIMU9dURUnTND6rDgOCKEKEEUEckWYZYRxT1w2dJGE2m7G5scGlCxdJkpjtzU2kEF4rhsPacz6j4IHxL8BZtuv6jAKkamGh1l2lahqWee4ln22gVoiF1prJZMLpySnF0v/yTdOQZRl7u7uMT089qtDtYvCCNtlifIPBgF63iwB0WeLqGm0926cqSsanJ1RFwWK+8HDQ9JTlYk6cJHT7XjE5GA3pdLo+wdAQxrG3GpCSNEnY2tkhkpLpYEDd1AhgNh6znM09uKw1QRKTZClZ2qEsSywOFYbEabL2BHTOsbO9zdbGBlEYgLEeUG77eHSG5xeot62eNrODB4i5VAp75pyybSCquqZqfCMtiqI1j2+19U0mExaLOXXug9Trdtne2mIyHnNwcOD1vmVBOhohm5p+2mcwGtLtdimWy/XKrowhXy6pypKmqjg5OuLg7j0uXriAU4qXv/BFkiyhk3WYHB8TRBFxmnozKhUgCegNBnSHA4I49orCqsYJQX9zAxcGBFIy2tmhWCyxzqKdozaGOEkYdTqEQchsPvM6rixjd3eXwWDAYDBgNBrRyTLAYY0mVAGto9xDXV9XMrEKTBiGbwdl2w8JVI1X2K18GqqqwlhLHEUPCJvtR1mWzCcTTO2L6DiK2N7aQpcV9+/eYzIZE8W+g7spBGW+IHSOeRAwOzqiqiry5ZLJZOI5Ea1k9PDggLqqmC8XjLpdEFAv5gTWUGqDVF6ZOGmR7DhJWC5Lwijm2ee/heliQZ4vvaNZ7W13+lsbxHGMcM7rtYQgSmKkFMSxwioIspjHLj5Br9cjjf153O/1SKKIJIo84mENwjnyqoCWLkf/3YeTPTxd7AwK8c6K2lqLbWEg6Xxqu0o2qtqfT8Gq9YH3ZRWAM4bJySmu8T2h4XCIcpDP51SLBaEDXZSoKKA4OaYsC+b37vFWazCl22yyrqr1g3LpwkX0dMJ4MqbQmtl8wmA4IJWSjpKgGwJCDA4FhEbjihLXVFgJG/0u9+7cYjoeEytFU5RIYDk+JsnStUdsVfsuchhFzLs90o0NRpubdHoZ3W7K5mgDiaDX6xG1qxHc2g0gSpOvC534us6o1Xa3wvzOElhWqLmUkqZp0NZSFAXL3BsHijZQKggAgTE+mTg9PUUKQaetJW7eeIt+1vVMHeUt45Igocpzlos5hZCo4O0H8Kquq7UhLwr/pCuFAvKyYDvxtdj2cJP5ckHVNCAEcRIjjKMsPYq+SnJM01DXNVIFa2GeCgKa2nPS1787hrqsKPMSdzpmenBENZmiF0uaq9f87pAmGKNb+jIs82WryhSrNw/Dcw6Utdbradt66uw2JoRYB2vVYCzLEoHX/65WmVIK4yxlWTIej6lr34YAx+TkmNlkgs4LlBBYKQgCj8Ut5wUYhwolwq5aLD6DdAJUFAKCWmuGwyH9poGioKwbVBhSVzVHh4et6qPV2BpHY7WnoDmBNTnLvMBJiTGWpkUsHFDrMyp+Wn2ulCi8/NVqy+L4hLemM073D3jrtdd58umneeLpp7h8+TJBErVQWkMgpDdV9Kyfh7r3X1d6fpartwJnzwbKnvl33TSt55FfTbJNy53z4uiypXYJIWjqmigSnB4dgjY0zhFmGRbnAVOlCIOYoOM1t1607BnWUnruunGCOIpZ5DlJxzDc3CZuGgqrkUEEQURe16SdjNpYVCv5NNbgpKSxDmSARRLEKU3LkXcOZMshF03bPWiFaqEMkdLTvZM4RhtD1dTMxxNm0yn37t/nKy9+hceffJKrj1zj6tWrCOfQdmWQ73w/anSOgXrn+bRKsc8WwSuK8sryra5roiTxh3wYrp1ZdKPJ85w7t+8wHo+9KkOP0WVBHATgDFrXrVVCCBKCMEIEEMWsXcWsMd4pBaiFQAQhUZIxXxb044TecERgDMuqprO1RT6fo9KUNE2QQUAUx0RxhFAKq7yHrQ4CBts7hFmHUEgi4Xu/VvgGqHCOYrGkzHPq1jxStFu0E748AUBKmqrizq3bHB8d8dWvvsxjjz3Gk088wSPXrhPFMVKI81ccrs6eFd53dg6ubl2/zJmtb1Vspme9F5SHcuqmZj6fc3//ftt/anBNg8KBNRjnqCWIIEAGktpoyrpuSYu+wecaTRiGxElGEIVIawiCkE637yEh3SCNJck6VNrQv7DL6NIFOt2u9zHKUuIkRQUKYx2ooHVgFnSUYkdKIiFJgpAkDOh0M9JORhYnCGPJFwuKxYLJ6Sk3b9zg8PA+VVH4gl/4MyhQCukcdVGyf/MWR3fu8dZXX+UD3/ZtPPHkk+xe2PPKj/MM1KpgPbvVnVUJmnawioeMKu9MuUo2zsBNxvmzqqlrz2pdnV0Swij2T+i6a2zRTY0pBE4EXiAgpd9icRgpKI2GQmNaxm6cxOxe2CPr9aidxSrJvCzodDOCOKLT6ZB2Ous+lAwCQvCgbeAtsI31nLwQQRyGJFGMSiPCzH9fJ03Z3N4mi2PiIKQocu7cv8P+/n3u3L7N7Zu3mE+nHt+Uytu1GgfOy0qFlHzpK1/h/d/2rbzvgx8450ABgVLrASHGGI+NCe8hoVfkFe3JK3VdE4bhusZSQuGQWKNRMvAmUEWBq2qU9SBnGAVndL6iTfsNuAqEWSPd1rXJTBAQRysrn4i8rqimmtIaLl6+wmB7k7TXZdAydLNuB9k2LJ0QBGFAEKyUi94uyLaMYCU93y+UiqDdIoNArZm5KopwSmEEdIcDHklDNjZGXLlyhaeefpr9e/vcvXePo8MjpuMx0lqPNxpLsVhSTaf8xq/+KvPFgu/7q//38wuUa1sYZz+M0WhnWy44WOHFBEVZ+gI2jr1dm7U0jQHpfNMsL5icnrKYTFBaEwhwSqHx4xNW7BypNYFpRQIYjCvXKzmU0vPZa4uKImojEdI3BIu65mQ2gThEhC3pMooIkDjrPCEGEFZA7Ws4FYbE7Rkq2lbNCpuMwpBAgHQPHlgVeJcW53xTddDtkoYhWZoiVYBBEfUHPPP+b0XiuPHiF3nly19GAMXM+/Mej8d89cUX4a+++/3/70omVuffCq87ezbVbUa32iJ9M1FSUbdBzDk6OODVV77KYj5HtooHoZT3sWsRjFU7ZZWsnIWv/BPfboHCIowkCVKskDS1ptGGpfRPbyAEly5dJo1TwihGAzivtTXGkMUxUeKTi5XVgGrfRxK3JlNKEkjaLPCMaBzaXcPS1A1BELKxsUVvsEHS6XPr3j2kDNjZ3uI9j13jWz/wAT71id/n3r276zKnOe/ZHCuyCu2bXLGOdFscrmqrum1prJKNlc+etb6uWizn3Ll1m6++/DKmFVArJdcWOytK2lnOxapGW2211hhs2x8LwxBd1ShboMKIEIe1gnwypi5yiumUxemYq9ev0x0OqaymbBoWS194XtjdpbvyzWvncETtCIdVQuB3Bi8aX92Lpml8u15IVGvkpVsUXsUxW9s7WBlwMh5TN5p00OeZ9zzHzvY2zlpeeeUVPvelL5L2z9kGbqU88NNofEBU6M2kVjXVqnWxuoFrtYKA2nhb7GKZs5zPKZdLdNMQhJFfRSpYZ5QrtGMVrLXkR/vERAq8yFp5ezYpFU05Q6kAFYXrc7OsS6p8ga0rFtMZ/Y0RhCFGeHvwOIqwZYm0ls7mhnfh7HTodDpvey/5ckkS++1TtR5Pwq3Mp/xOkJc5zuEHt+QlIvSE0qGDpvHSHK1rirpmczTk/R/8AI8//RScdyt+RbxUSq3Vh2VZrvnlq9VUluX668Gn8WEUYbV3cwmUQlqHabR3n3QO7SyReIAnrgK03m6tXctU7AoEbj/vOYQGgcJYQxwFuECijQdpDY7p+ITZzDfx4m6HTr9PEIVEQnLz9TdoipJHnn2GOIqoy5I0jr2qXfmMzW/v/kFcAdJRFGG1FzqEQUCSZBweHpKXFSII0c7XfihFrS1ORYggIM5S4ixDAnGWrcUT5xaoszcxjmOEEH4qGw90Unmet56z0br3tOo/1c77+eEc+/fv+3FDZ7h/XvX+APhddYGtXc3i8EEReE/XlQuZWBthmVZoaYnDhCjxQ8msaBNPq3BS0c06/oxD4JqGxWTKfecwgUIq6c0Rjdcoh+2qCoOAxjZY48/gLElQUhJnGc74cyaSkkuXr7DMS45OTznYP2Ce5/T6Q3q9jld22IaiLEjyGOkcpqUrnGugrLWt62Oz7qGs6qRVUtE0zdordTU5c8WnyIuayXTK0b173L112/sXhaGvjQK/suq6fptZ1ercs8YLv95GRWu/RkrpD3S8CKEoS4qmQQSKJEu9g0qjCUVElIY4rVksl0RJjA7bOR9Nw+HBAcsiZ2/vAleuXGFvb4+dnW06LTlGKIFuu8bLPMe2bZk48gjD4dExZVmzub3NYDRCO8Hixk2OT07Q1tDvb7YNRe9a5lqAoGm3+XML1IoPIZTybXbhm4W6RaLrpsE4h4pjRBRBGID1s5yqsmQ6m3J0uM/+3dvk8ynKOuI0RkQhFoepmnUGFLb2odI5AgQGgZJv3xLPZpXegPGBxAdrEBbyqTe4l1JR24KyzBGLEA303IBQ+m2tmdUM4xiqhvHJydrpM0kTkjDyvHQZECcBcRixnC+YT+fMcD7xkIrFbMHLL71MbSxbFy6QdLrM89xvhUpRLDOk0ZiqYr7MMbpZi8PPNVC2XaYrBaFx3kambuGjvChorCGOI7TwB77Ab4fz+ZzZck5ZLrlz6yZNkZMEwdrcinbPb/CM3KauvWmI8+ZUq+31bKDOWsc1TYNU9sHXALIR6+00ShKcEuAMwvihK8VsirR+wGVtNFQN5XxOkMSoKCRu+Rm6hbekUqAkkQxQ3R5JFLNcLv2D0noHhmHIwfF9bu/vI+OEuNtFhhFJGuOMIVApKhaknY7HBq3900HP1yqOtoJX7Ra0kpnURiODgMYa6qLE1jXL6cyDts7x1muv8dYbbxKcQTcMDtpm3Hq7axpf5K7a/O/oDK+24bMp/IpHuErlBXINkErhjTqccxitMY33pq0XS8IkJhQCGQbMy4LEWYLAs2mDMKTWmvF8RmbN26gEnU6HLMtYLBYs5guSLMMKQd7UWOGR+Wa5pLYLur3sbU3C5dKPIlLCOzufa6BW8/2qqvJulq07sxBejFY1tcf6Cu/tmoYRykEWJ+TNgle/8iJf+cIXqcrSU7ba88doL3JbCQNWgbHCvk2MvMIVV1td0zRvF8zxwGNpVRo454jjuM1A/cMRRhFZkvk5vrVp5+JKTqcTtPKa3P6gTxz7sQ9VVXOS5wx6vfV8xxXmmSQJ/X4frTWLfMlwe5vuZML9oyPCRKGURLVuO43WTKdT3+aoawSiRTzOOVArJutqBanV02n8tOoVoSPtdDzMIiXNImc2PeWzn/wUv/+ZT5EvFsQqaG3ixBrPM9p7iq+Tg/ZmmxX64B54/K3QitW0zXdSBFYKk1Uy07TTtWWSoKKQKMuQcUrU7dHLOp4mEEbM8yW59t2BKAjI4pjlfM50PGa5WHJ8dMSFvT0Gg8F6hYdhSJqmflsMAkrdgJLe+VlIwiD01ARn263aW9JlaeYftBUcd56BWoGwCNCN1yxZa8nzfD0lYPXEl3mOqWpO7u/ze7/127z52ms0ulWDO7e241YtZofwPrG6/fBMW4/7rZCQpm2Bryyok9ateZV12nZbWW2Lxph1mSCUonGeTYtSmEAS97rsXrhE1u2u4Zy8yFGx99GbHBxxfHJMEAT0+33qvODmzZtcvnyZpmk4PT0ljmM/ZskYRBiwWC7XVDNnLcI6AikJhGwTJDzRJU3Xrs3yvPtRa9aR9Stq5eRijKGqa5p2iLBbLqmKgvu37/CJ3/ptju/cRVhLKP3AEtfigaubatvtM4yiB9ua9rRhwYNGpXlHGnsWojpbHIdh6Fv/7coXQhAoSSfKEI1mejpGI1BOoitNt99ntDHCOue35KLkzhtvMplNqZuGx554grmbkbSjLOq6ZmNjA2MMd+7c4fj4GOscRgiqqva2O0oxXxS+5d7pYsrSk0tDr4dazD0vUApx/oHy54l+wHtob/hsNvOe4+2IH+HgYH+f//Y7v8O9GzcJrSUS0ktb8JKdVaa4OvidteQtN10KTwJZ06Z5u7/S2YAJ8cDkfeWDsfq8O7sSnUPoOWaRI4xBOsH03n2qyZzDdoUno6EXOEhBlmb+wcExPx2zLAvK0hNE4zim2+36iaOLBW+99RYnJyc01ichYRShZECd59R5QSgUNg7JlznRsEccx+tt+U9lRTVV5busgfJpa5vpmaahm2XUCqzWTA+O+OLv/T4nN26hWqqYCQJku0UJ4c8vpfzIBeMcutHUTeNRahW0LKMWfD2TULxTaX/W6XndmGwTjdXXQ7ty0SgpCKTw25EEpyusNdhGUB9WqMgT/Yt8iZCKrNdhMZsymXg1hwwDvhJ8iShJSLKMymhE6LdWXVaYWvv5va4kVIIiL5gcH9KJJPmyJAojkiBEtvx23wn+U8D6RJshOWdprGGR557qlaZYUzM+OeUzH/s4t19+hahpUAiMFPii6oGHn8T3dnB4M9zEB01rTWNqrPFtBgdrxq06K/M5k+qu66YzwoXVez0TYaTycFIQhogwIEpiuoM+N2/fxjhHFvqRfkIJRBRhnSYIvcGULksoK2yjObh7l5defplrjz7CdDZjvlh6hKbxu02n00FKyXw+JwokSSAolwtm83wtN4qjEKzxrf/zDlTjT3e0czTOb19rMosxLI9O+L3f/Agvf+4LyLrxTbb2BtGeZc4+8JSVLcAbRdF6O1hhhSuZf9Si1Wso6Qx3cMUtXAVvZRJ1lnp9Fmpa8fWoKggUGXB0ekpjNEEYUVQlWa/H9vY2F65eBeU9nw73DyjKgt5ggMVROTi8dx8ppQ+K9WSX5WLh35NzdFoqWFEUKATdXm+Nxld1jdM1YTtpwLpzTs/LpvFca2vQ1rSEkwppLJPjY/7gt3+blz/zeWgaP8VM+JVknR9WIp1nxq5uNDwAXp3zc5bOJhln/1wFYt00PFPsrrfCVee3PbNWX7NK1/1N8WUB1nBy4v1jkZLtnR2kUyzLiq3tHaIkZmdvj/l8zsnJCUJJyrqm1+shnCWUkI/H2KoEbYgDPx/YaeMN9Fu7OhWGnsiTe656GHptcBJ4G2XrHPrhoL6HD1TV+BrBs2CNn8dUVehlwX/51V/j9S98EWkMgVQI4Vr4/oFLkmmfttVTvkLXgXV6r8+k6Cuy52rVGWOQZ/pTbzMjOQMrrdCJtbhuJQzH8wu1NhC0OinnGA4GXLp0ibt37rOxtUlZV/TaYt4C2zs76KbxA7+kw9UNs5MldZLSZD7NDoVg2O9ThpEfXaQ1zhi0Ax06wsZ7bNR17RuOBrAGSytTPc9Aaa1xhnWmUuUFi/GEj/3X3+Irn/8CYV2jhMRI5wmRrVuvbOm7Daw5f6uP1TS2VQt/dfachYzW3hYrc5H25j8gwbRUtCAgy7I1iv82e5+2zhLwti1SKslwOGQ4HDCdLX0rvy2mtXN0er22QRqS9DqcHh8TCoHThtPphFPn6A8G9AdDtIz8eNiibAel0BJwFLIVeEspicKQJFRrWlyjzxnrU8JvY2VR0tS+mP1vH/2vfP6Tn8K15re2Vc0L6TXlzrk1mrGquVY38KwFwll4aPX3sym2MYYoDL8mUGtTDflgjNGKDLpaYasHQTovUvPm8X6MeBBHbG1tUZYlxlryqqQWju7GaK1vqpuGPWuompJOJ+WtV76K0oZISKqyJHeOJIwg8ZZCdVH6wr5dsSKJPZ7Yvv+yLDE1COe3Y2PP2wbOOeqyoi4K7t29y0d+7df5wic/ReDwU21k64ckBdIXP55b7ZxvkrU37Oz8qdX5dLZtvwrMOwdgvdPYfsWtWH2uqX2xGUbhmrV7NvsTzs9grOrazxzsdkFJDg4OOD4do8KE7QsX6A2H67qsrCqiOKLT66HqkEG3y+5gxMuf+zzj42Ovq3KOo4MDwl5NFEQey6sqP28xiQjBE3daK58kTUlDhTXaG/vX592Pkl7OPz895SP/5y/z0mc/S2AdoRQILMY8YIiubrriQQJgVrA+bQv9TE1UtytvxaQVsEbORVsAn23Br35mEATr7dS4VhEZhGsXZSdW5veSOAoI05g6UnS2Ntm8eIG6KDm4e5eqLAjTLloF9DY2iZMU2xhmxZTFdOaDH4ZYY+htbvH0+97Pa195keODQ1zts8bF7JQkigktCCdwBoTwCsYoTjEqYmkk92c1UaRQUmFRmPPO+rTz6MEffPzjvPTFLyK1IZC+57OiTkklieQDwRuw3u5WW9SK/nwWArItHWx1Lq22ifYH+TOsqkB4+ctqMMuKKi2URAlBEMWELcUrz/PWh8nQ7XRI4xAjBcNBn72rV1kWBSfjMXlZknQ6bF6+zM6FiwRxQhQnKCHJi5J7d+6CgNGFHS9RFZLNCxdRQchrL73M6eERxhmEMOg6x1lBFCYEcYRMErKsS5x1aWTE0kqWs3Jtw+0EayrBuQUqn8+5c+sWn/7kp6jL0udzzvlRB9a1Z9Pba5izicM7d+KvSa/boJ5VNp5FG2wLXSWtn/jZGYlhEIDQ64xvJUNdLpf+LApD5lWFMYaLgyHVyYT5bMp8OiFIEvrb2ww2RgyGQ58IKMVgOGRrc4tABdy5e5eDgwOKPCdWAYNOhzTLeP697+XG629wsH+fQhc4Y5FOYGhXdxQTdzoEYUzVaJpla60jhD8vW5rZuQbq9OiY3/rIR7l/9y6uqglaggjiQSZ19npno8+0q+ZsoODtNdWql3Q23V79rLMiulXxuHoI0ihCtGPwVpjc6hxL09RPndGajcGQbhgzPjohn89Js4Tu9g7DPW+JHcYRo8HQZ4dKsXvBtzWyboc3b3uTrNw6lrMZg26Xfppx9ZHrpN2Mu/t3/JQEpxAyoHF4n8AkJYpjjFM0tR9fvqoxXXv/zjVQX/78F/j8pz+N077Bt5rowpmVtGqqrW78Ot0WAnumZbHWU61QijPZ29lArwJlzqy+qqrWwx9XBe3qtesW1Vi9xtmBxHGS0e0NKMuapmyIw5je9i7haEQ6GJL1er6rG4UkcUwUxwgp6Y+GXGouo4XllnOMj0+YLpc0VUXdqajLkny5pNMbIKOY5aLw1LAwIkg7hEnaPkQWJyRCqPa8Fd7j8LxB2d/5yEepcj87PZDtABTXvvgZ5GC1Us6iCGd7VWdxurNM2FVQzspO19uoaOfyttvgyoF55RvYNA0qjL7G/2J1DmqjSXsDJpMpgZRoKQjSlM7mJjZN2NzZIY5b6pfWJHHijYOXSzZGI5IspdftcvXqVZIw4vbNm5xOJj6LrComiwXWaqwDiySKY3obW/Q2NnHSM2jHsxPSLKMsfYc863YQiHUf7dwCdXT/PlHbInfGK7vXJcA7VsXZp32VPKw6tavrbA/p7LWum6Lo7QUwDwguq9Hnq2A0TdM+rf59RFG0domZzWaEUYTQBm0dSb9PUVcMLl7ApglZt8fGcEQQJbh2uxLKy36ms5mXERUFh4eHTCYTBt0e165f5+jwkPliQZamRGnCdDzBCkg6PbLhgL2rVyGMQATkRQG2pikdpqmRMkGJVnThzpnX56xFVzXCWpRttyXfOFpnX2ef5D/Mhmf15+pzbxMenKl7zmaAwNvqovX8XM4YvAuo6grwW2C/318HCfw2XeclW5cuUgSSbNSnd8mPO7909QqD/oBK29aM1ycCcegVH3VLh0uShNPjE+aTKVtbW+xduODbH6enJK3TGTJg68JFnn7hvfQ3tjFIjG8Y4IwhL3Jm8wXGGkIJSNajH84tUArP5zaAlWItHFvd2LCtwJ113jCx0Z4H8Y5G39mAceb7oU1VV4i8c959KwxbVxhPAwiUt/eUtqWsKYVzkqqpiJKIMAyQoWJZ5JRVSZL4bSwdbOLSDCEcV65eZ3NvFxkoRls7qDAiUj6ZCaQkDkKCwOOGptE0RrMz3KS4fJXX33iDg3qf/mBArz8gTTucTsakw02uXb/O0089wyOPPcposNESVg1IKHCUdU1ZrRxqNA53/lsfbd8HaIVr7epoTapWIKYMlJf6t23p1bZ3Nol4W51Em/mdQR1Wq7HR2rs9084Ecc4PbLZeMCBUCEJ68fJKJhooDILaWjrDIYBn7g4HuCjk6qVL7O5doDPoo6KIJM1ASUI8vBS28p8gCIijCMKQwjmkNlzcu8DR4ZFvv1vHSG0ShiGd/oDdK1d57j3PcWFn13sRVoVv3+CF2sZZpHB0sgRno/bhfFhvsa9r2o2n4FrXqinsalsSOCfWPD0Bb8u83nmtWhHmHWdWEARrjsNZWpgxhsCueOe+DLBSoJ3n64n2bAqjCGRE3OnilKK31SWMY29CrDWDjU2Gow32LuzRHwxIu13iLPUz3c8kQ6tRDCvOvMA/FPnE8xM3NjY4PD6m0b6OE9IDu0LAbDYjCSOEtXTTDCW9R4UAEgcgMI154M3h/hRWlAuCVqMExtn1LxdIv4JWfSDR3uRVNrZCJt7Zhngn8Hr2jDvbh1ojG8KPj/U1myJIPK9chBFhEIJURGlG3B2SdDKiNMVKryRsdMPlCxfoD/r0+n1Pa0tTkizzel0l0dZnm0p6E+D1+xUC2/IQ796/T9VOElh5PHX6ffr9PiKKeOXll/n40RHdLGNrtMH1q1e5dvUKm6MRvTQjabsFHhduQevzNqj/O3/3R5nNZpycnHBycsJ8NmOZ5x5Nb+q2D/UACT9rGbe6+SvEYCXfWfWl4GvNRt7JjxAyAOVb12GSEvd6NMYRxjFJmtFoS9bvk/b7DLc2IVAkPe9KFkjJ9uYG3W5njVSEYUgUBK0CBIT02/c7a7q1oFxI7u/vk3Yyv6u0OGOSpkRJTNLJ2NwcsrU1YjGfg3DcO7jP6fSULElI4tj7LsX+76ONkf+5Dl549NHzC9SiKEi6Xa4O+lx55Lo3IrTepuD0+Ji3vvoqZVH4Tm2rkTrbplidTSvoZ60xWq2mtiO7YsCuYCfnHBZP5QrSDJUkZIMBcdahagxZ5g19hZB0ez1GW5sk3Q5CBYRJjAwC0jShlyYkrVxGruRAKoC2b6RbzBL1wLhEa02oFEhB2vE2CWVVsbG1xbIo6PZ7PkipHy0uBFy8eAHn9rx0R65aMHg6ghCUWKq6YLpf4lE4B+cZqD/47GfWe2qWpmt0AAHlMqdufPLQ6XQwTfP2grWtbVay0ZUYLAiCdWCiOF7XXavVptoObxhGRJ0e6WhIOhjQ2dxExQkISRj6B2Mw6NPrdhmMhkjpCZ5BEJB1OkRRSBqGrAyL19TnwOu1Vmj+WexRSm/yYVq0QwUB1x55hNPxGKRkY2uL/nBAFMfESULWSTyLqmXPhlFEFIWEYeTdzJyfsCqlWAv4hOAPPcf/RIF66tlncM6rM6bTKXlRUEwK3w2ta08aWZFIznAhzqITKxrX6txZ/VtKtWa1VlXlKcltZiiVJMkyulsb9Da3SDZGdDY3ibKuX4XaF9/9focsidft+1AFRO3cwTAIkKp9KHhQJqyEdM6egau0wcgHRsez2cyvPGA0GvktGch63pAxSRLSLGmtgHyipMKg/QgJY/97JcLXgIEKvGa5zfjO/Yw6vnsfIQVZlrEzHMFw5Lcx61jMZ+zfvE3d2urkeb726fOJgaNujB9s1eJbFqhaI6g0ThFBTCIFdV5B1SCUoJaS3vYmG5cu0t26QGcwJOn3SHp9kizzAXD4PlAYEAS+CHdAHEWoICAII1QYkJf+QVKBP+u8JNWh2gkIgZAEzisXrdZY6Vsnq0agMJbAWnRZkJclceTHn+MMTV2RpIm3EJLKb3lCIYTyhx8CxMpky//b4cscc95Y31e//GWWyxwEhIEHX5Mkpt8fkGUpSespsZLg6LZR6BlCrKGS1ZtXrRcrSC+OVp4RFAT+BjscKgpJB32CbocwSVBBSBTF9LLMJwQqIIkiQumpV1EY0WjtLXek951QbVe3LEuvTGzhKOta0UPLq7Otw8zqTF0uFqRx4uWgZYmpKk5PTljO5yzLgrwqeeSxR+mnQ7+D1A1pFBPIgEj6bDEAAgTBurjwHQfR+q4bvDPauQZKGItyflLnYpmjpCRXisVkymg0IklTjDGePdvKHsUKAhItpP+OZe4ZRglhFBGknjRPEiHqGG01cnWjmxo3mSKQhEnsDX6FJ5mYukZJSa/f958/w6FY/VmWfv5HEkXen0L76W0PinE/lRQlMXVNDUzHY7qdDkWeU+UFdVEwXyw4mYzRzrLZ73kCahIzGg49Fc4YT2l2tIZXktCBcvipqdahhGs72IAAe95bXxbFCGOpEUjbZm2B9wmS1nllnvNSHPD1yKr1/oddKyxvrWdSCucg6HaJpYS6Igwl/eEIGUVsDTZIso7f3rSmqb25e1GWft6g9AqPQD1olQgh1i5nq1a/FIKqabBC+vfcNiWl9J3j1Zz4yWTCvbt3GQ6HnnDpHKfjsZ8lnxdUde3B3nY1WymprCG0FgmEqx5dew5a5zB4/ohs42SEn356roGKwxBdVWjnCNv0VkkJxmublJLUTbMGaJ10az6DawUEAFI6EG49DtbfUImhbanHkkhKmlyQdTskSealqHXFtChw85DuaEicpf4mWIuLYo5PTnnsscc9kSR60EGu2hUXt84sWItpNFXTkEYRdvX+XQStZChfLCjznNOjY2zdcHx0RBwETMZjnBCk3S5uRcJpg6CVoJGCSvhzr8Eh8UFBeHzU9+5aXgl+Eqo+70A1rSUNnNEtGW9KGLReDCuny1pKbwJ/5pKr1nN7Rq3OAt9mt4Dn5km8/13sHIPB0BNFtGEyOyQvS7LREBkIqrpAhd4j3TQ1s+l8XfucTfHXaT6AdVg8Qd+1AfJjxARog7DWO14GISpJYTjENJpYKcpljtOGWjd+AoCx1EWBGo38uYO3Owhae1PpPP9ROUfg0WsULe8e0UJv9mElvF9HwZvnvq4wfkSCXDXmhMA4S5xmSKW86+UfUhuc7T0JBEqt4CKDbvwMXBWGiEAhnCOKEpRUKOdHKyzGE5wUREJQFTmuruj2exgcdeWp0EEQkJclVdPSj1dwlRCYVsTtpN/yFvM5Tpv1QxcnIVEYMsy6kGREYeS1DdbDPMYYr39y3nJAO0tlNGiDKQqyMCQODYnUpEiSUJIp6MiAUPnWvEQQGIcUFpykcdCcdx3VWOMRc+mdt4Rshx9L4X3C2xpoxXh95/WgF9WeT8Yi5Bm/I+vWM2ld+5hZY1gWBcvZFFNVhEns+XtGE2YZpgV/61rjY61ZLObIdjxFfzhc0wRsXXtOuJS+IHdQ5Dl1WTKbTWnKgkBJ5tMZRweH3iVMeC+kbiusjpKE3mBAmmX0NkZstk3DJEkYpRnDbo80jkmCkEgKOnFMJ0kJw4CmTadUS/PW1tE471pzroHa3Nj0ZojLJXVdkyYZSnrleNz6qYr2F6tb/Q9nCC4tHoTVhij0KxHrp1wLpXBSQusrZPAuJ8dHE+p86dsGgR9omWiNcxJpDDr3MIy1DusUZZmzmM+I4piq9RVPspQgDHGmoTSeX2GdpTY1tm5oioLTg33myymRCqiXOXfffAOrNeUy950A58tSqRRxmpF2ewx2drj6zNNsXLzAYGPEbn/gLRkc6/orkpIsSQmkIk5i4jAkSxOyKCaKYuLYT7YjfvcBUg8dqNncd0tVENBLEuLYS2K09ltXnKU0iwVNq0p8W3kgBA5vdyCs91FdmcQ3WlO3tqLCCYS11GVBuZxR5XOiQBEEkrKxdOIEATRlRU1L6nQgw4C4N8RpzfjkhMFoSBhFLOYzrDVrpxTnfLPRtBLP2ckpylpOj48Zz078oJYopl7M0WXlzU7awteJVn9sGmxdgTW+52YtIoxQWUpn0CeNYsIgWMNTgfRUZ2kspdHkRYHI/XlnWxTnyf/lz5xfoHrDIWlrnXP37l1qrVHgz5pAva0HdTZQnu/gU1PRbpmrtFUo3xLRjaaDI8BgK021WPitCEEchDRlhcT7mM9OfOu71Avft3KOJMvY3LuEkpLJ6SlRGGKzByQbJSVxGPrCt4WoXGtArIvCb6dlxezkFJIUXVZeKrRquUg/811YS6wCdra22bt4yU/Hvn2XWAUkzteZJstIs3QtmlOhP/uSIECwUjx64V7wkJy+rytQ7/mWb1krMMJ2iktd16QtX8C25PxVz8np1eifVcA82oDDk0fcSiWIt+txGtnUgCWSAm0dceS9izzZJWU+HmOMJVTKc8jbpp8SorUB9fqkYrkEHLqqMXVDIAQ2jGiMD06+XKIQNFXF7HTMyeERwnrjqWq5XOu5pPIcdNqERLU8weFwSLHM2znygvnRMcI0SOfI05Ss2yVKEz+UJQiI45hEKaSQbffYn1Sq7d8xHJ1foA5PT9Ykya2dba4/9iiLxYL5bMZsNmPZPqlwhpC5IrXQtqKld2wWUnooKo4IZEgYBugyp7CGbiejmybocok1higIsdq2SYRvSFpjsLg19y53DoU3FbGNplrm3r5N1FityeLYG45In65MxmOkg8jRAqWS+XQBRkOj2y3ay4ecaDmI0ru7NAIWdUUgBMOR7yktTsaUVUEYhgxGI4qqIslSVOStuqMoIgkCAqkIQ2+HGqyFEQIuXDq/QJ1MJtx46y0A4iRh0HZKpZSe4nxGRvMgeXiQ7VnhP2QLSKog9PPg+0O0tcxPjpiOjyn7fW+yESiqSqPrqrUy8Mj8eixfEHhiprXouqabZj45KEuKxYJ+r+eReO1Fd2mWgfCDwAKpGPZ6DLIOZX+AKQt0scBpTdksEFISxqGfbY/z3rFBgMxS0s0NomGfKE6Jk8w/SNZQ1jW6bjg+PMQBURyDFIRxQqgUnSRZ7z5O+CLfY5LnTGm+dOUyaSejLEvydjzpsrXMDlcoxVm26zsydCFW4+p83WWNptaajpQY01Dpmt6whxBQ1iVWeNdMszJIbBpwEIY+QE1dERCBEH6rifwZJKyjWC7RdY0SgnyxwGjN5vYW8+WS2WzG1vY2zliqtum5mM0ZDAbMp1OcFIShb1voqkIogVGKdDTkwvVrXH7kOmm3z2y2YGO0xfuefx5TN3z2S58nTRK0MZyenPDW4SHLxYJRO3o8i72BCUIQRN7+Lowjyrrm//l9f/b8AnX9kUd5/IknfLOv5XgvFgvu37/P0f4Bwvm5v+/UNbVhesDVa3W9CrEGbzudDvHeDtvbW9R1w62bt9HWEsYxF3d36XV73Lt1h7woqOqKnd1dOt0e9/fv+w6xUiRxzHQ6WzcBddMw2thgMBhwOh4zGU/o9Xs0dc18OqUqSqbHxyjrCJTEGI0FOv0+Qoj1mKMkjjCBYnDxIt/xfd/LM88/j4piDu4fMOoOeOaJJwilJOql1FVNvlgQCMGN11/n+OCAYjJlb2+PwSDlxRdfBCWRQcDu3h6xUkwPjx7q/j90oD73id8nThLSxHd30453zIqFRw9US37x/APf0fRWBb7gDGj3Y+taBEyia4OpGpZVjW0K7izveFOpLKMxhihJ2vb6Fmln4JlHSUTc6bC7s03whS9ycv+AfqeDDEIPjgow7XzBIAjY2tpCNw2bm5v0+n26WYc8z7m7uIMTgq29XXCWcrGkMsJPdVOKx596kseeeRorBG/evMnjTz/Dt37Hd7GxsUEYKq5duAzGkMQhcRhx8cJFQBDHCb/9O79DJSX7sxn2dMyFxx9nuVxw7/ZtbIv37Q5HpF3Hwauvn2+gju/tr21FfS/KDwsOw8hnVTygIjd1vVYYitVxZXygnPQHtG6trquqwjnLcjIhCLyGViiFCgOWec7J6SnBjRskcQ+VpAz2domkYvzWTR5/9jm+9QPfxux0TBDHJN0OF69cWXMxLl66xNVr19g/PFyb+Pb6fYJAcUNrLl254inRdU13I8WFMaVueOb5b+G7vvu7ufLIdeZFzoU33+Sxx55ga3MTJQRRoFCB13UFUhIowcZgBEK06EWf/8t3fCff+u3fwcn41MtP8wXfe+mvUTY1N27eJHnkCkvn0MP++QZqNBr5pmDbCzLtQBFd1d67L45I03QtixEt1WvlFQ60jcEApMJJn7ZubG4iBITCnztRmzFGcYwKg7W6Xkkv54ykZHxyQqU1xXKJMo7drS028Vz4i1cus7Oz0/reetH3t33Ht7MsCnTLTr1y7RpBHHN4eMhisUBGIY8/8TT3Dva5dPky7/vAB9jZ2/PzFJOU5555lrTTW/P4/K8iPTbZciAGnS5lXSGMYXk64fUXXyaMIza3t7i2d5Fbb73BaKPHxs42Tz35JEEQMJ/O+L/9P54+30B1+32MNSRl5f1QjcG1BlNxGHrn4baOClqrUZxbG/s6KdYMIBGEBFFC1vUMoigK2X7iCbRu3m45sKaUhWxtX+CJ556jv7XJjf17HJ6ectCOMcp1hWwNPJLUQ0YgaHTDbP5APBa3ouf7B/vs7u3xSMv+qeqak9mCnSuXef7972ewueEn7YgWEYd1SYC1CKcII899cG0bB2ewdcXt23d47eUXufn6qywWC77rz3wXiTW88vHfZ75coIUgGw746//XH+bmjVv87he/yD/7X999lMDD+0xYD8HktdcEWe17MWmaEscJQRhQV62Pgjhj3KE9V8JY61Nd4cHTKFUEUcSNW7coiiXdKMC2WFynHasaxzFJ4v3wppMxi+kYGUqkNVza2SaQHn+bnPipbhujEUmceAtR520MdN2sM80iz5nOZizmC15++WXiOPZ8wjCkkYonnnySTq+3JpGu7RGUWlOugbUYW+IlR36E7IxymTM9PSYNA65fvsR0MuF9zz6HMJrxcoEBiqZm2OuSjobcOjrgJF881P1/ePS8pTwFnYwwTSiX3qFEBAEGP4tw1UldF6X2jKWOVB5CUgrhvBetthYrPHneljm68cj7vP2atXpDSuJej63dLU4mp/zBZz5NmCQEYUh/NEQpxcnBIXVdc/nyZTb6fQ/fSLW2K9X4m14WpS8x8pyiKBiPx8wXCxpdc/fmLW7svs71Rx4hSmK/VUcR0ZlRTLJtzSBa2nVTU2rN/v495pMJjzz+CO95z3MYa2iqivv37rExHPHPf/qnmS2XTJcLxvM5kXF86Lu/l9nz7zvfQI0u7HnugzE0RUG5zLGNXisQrTOkyp9RaZp69LksoTXlRbL2KZcqIGyR48Fg6OdamBoXR14BorXvjFqLNRaHo6IlSNYVk/0DjLVESYzNc5I049Xc8wNvvfGmFwXEEZ1Ol27Hs2PjzNtYZ1mHje2eF5v1euC8c0zZaCazGcViwcnBIf3NETIMCdshMWEoPVLh3xYGX1ooITk4OuJjv/dxTo6OEAi6aUqaJAx6feqyZGM44srGLmmacnm0ySjtMB2P+V+ee55u+u5z4r+uQEVZgmtHvknpiYZ1XrCczXDaEEUBum7W7ihrhqyUSEB7Pb9HJYRsp0qHdOOExWKOqyzSef6EbPE74dNM73CynlDj6MQxUkjCKEQ0mjBxqPbM7Ha7gIDGUM7n6KJAKsXhycl6hSul6Pf77OzuEihF1ukQBjFp5sVx4+MjGqPpDPpkrelW0zwwrU/CANFayllrydKU97/vfYxPTxFAVZQeGa9rlnXNzVs3+fIbb5DXNc36fLekH/sdIhXwf/xv/9v5BSp23hTR4Q104zBEIVhOZ56r11hs4+uiqvR8dJwvbsNAEflFhUOhZIQSEQJJnCR0Bj0WC7/XYy3aWB8o6zneSio6cUQUhjR1/YBp1BJoyqKgLiukUjT5gizrkGYpSZS1QjGP5uftaFUpJbt7e6StdsoYQ2VKJmWOMYbJdMqFS5fY3t1BNBrR61GF3kxSaMP2YEiYJP4cdo6wdjy2tUvvynWSKPL6Kim9eX374BbGkNcVRVUxnc/Jy4LZYsGyLB7q/j+8fcFsvh6Q5fCCMt0e/j6BkKRxjOz3fUu8bd1ba1tuQ4hSIcgQGaa+vxNGbGxvsXflIhZ/tjVVRdH2a8oiJ18sqauKpq753Je+6DmFrYWBFd6eTje13yrbKmBZ5MSLmLhlzkqpqAxrr9nBYEC328U6x87ODmEUMS0rXAuPWWt547XXODk6Ymtri8vXriEH3m7HaY0yBpNmxEJS5gWvfOXLnNy9RRIEpElCmiT0sg5ZmhCHEWmakKQZURITRv599Tc2uHbp8vmzkBaLBWEcocLQ8yQajTV+TKvTmqzTbcFWT6yMjCGIIg+aWo2KA4IwARFBECPCkNJoxosFm8kGKgxI44huv0evaYiCkG6ngxKSsizQtZ9C2jQNG03jnaGriqLIqaqV4ZWf8tkYTV1DYc3aDk6qECEVCMcyX3Dr9i22trZweNOQykJZVUyn03UX4ODggDt37nDj1i2yzRG60fR6Xdz1RzgRfjc52N/n+PCA2fEBVZH7jm17RHQ7HdLENzv73a7nqHe7Hk9sXaODKOL9f+NvnV+ghPQrp9baA4rKj3twbTY1Xy6IQj9ezkmBjEKs1t5PoTGekaoCnFQgJWmniwsklTZoIcBaGqNbPqBD1xVFU3tGj/Ie4tnG8G1c9rOGi6bRNE2NMd7lRWsPI9VNjTPWDyZodwCaBlHkiPEpk9kUISVRy77tD7prvuFqt7DOUU6nVHVFNZ9SLxcsl0vGp2O0NSRxhExjqjLn8OSY7e1t6rLk6GhBlmWYpmFrMGS+WLC9u0tVV3QHA+8db8/ZC+mZp59hWeQUVUVeluiqpmkVCnVd+BuMW09nW5lKefpWy4cIY1AxYZIhVICKPI1ZG9fa9Xi1iAoUxrnWCcwHFqU8TiYEdav2C8MQp/woBqUkLpDESpHhHScvtMHUjfY8hcCL2srCT4wrq3LdOrHOsljMCcOIOI4AH6w47nqjeeX9i8LIa4r7vQ7b21vodlyRrUt6wwGbec5wOKSsSvLcs4abuqYWApKIe0eHSKWoBTzz3LMYc87klldffZUkS9na2aE/HKJrT+EaHx75m3Zmuo1sW8yB8GYh1jmvYpB+AkEgQy9McxJraVeen2sorAPps76V4h4pidpejtaaMI7XXVfTJgdKePtTeEBNW3VnwyQmCAOkknQ7PYabI+9QKdVaH1VVfmstioKyytvxtN5+rtPtMBqOaKwFkfrs0ErS1DcurTFI6x8Oh59cKoSk1g0W1iyrOIo4PT1FKcV8Pme0sXH+0tA4jhmPxxRVxXBjA9toisUCqeTaBN7RanTbNx/FMXLFUzAGU2sEBk2DsOCsREUKpy0oT/9G+mzP4hCt6kMAumkI2/mHrmU4rbDDMAyJlB+grI1Zz2FXyrukeHsfHzhTlVB59tPaNMt6AujK23YFYa38/86uPidAtdakcehdXgKlCBytwYf1Fq08MDIx7RwTISRbO9uYRtPv95FCEocPF4KHDtTFS5e4/ugjiMCj2qZpsHVNHMU46aeu+WLQrhtktp3pnqapn8BGOzTE0fZ8fCvENhojBCjR4nv2bZCNcFCagqpVZDharW3rC+GsXfvDovXbfC8kPkMV1osBvGZLEkWqFQpotData4JYb6nWGKJWFeJapuvq//yDoxG2QBiLjGOi2IsdkiT20wqco24D64dt+rO3LAqMCtZDxM5dyDba3qKqa97z/LcghODOzVuUOztMjo8xlSBNMnRjKJvS10/GUDWVf2qiFKMagiAB6c8UL7nxnnoyDJDS+ZlKrVe6VIooCnGNxkmJUX7qtG5JLaIdckL7cLj272vxtvDqdtkyYVdj9hCewuzJRd5fPQgirDXtADPVjjkSCBzW+BF/oQz8z3TeYERKh6lr8rqmynPGbSM0DANvS6o8PyQM/ZzfqPXLCIKANEnXrmgrAd25BarT7ZKfnjCZTgmCgLIs/cjvTodF3VAscoxphdXNAz++FeaipEJ5FBXRDlKxWITwqzFNAgLprQZWGqsVKBoEAbFSmMYjHVZX6EZjWsBUW4MIo7X54kpuk2UZRjfrAJ69zmaPqlWSmDaDFW1KL6T0aLl84Fkk2n8Lb/GyLryts6gw8iObrHdpljh0ZVBCUrUj2VfaZXggUz3XQN28eRMLvPnmmwgEuqpwdcN8PmcxnxMGEU3jb3IYhIRRBvhZHtZZrDNIo7FWIJz0PwNvSFiVBXMjSJN4TervdLvtmeclhKJpkNoggwApoJ/26PX7LPLck1zaYHiVo5d2SgdN3WCMxgmflZ619zkbqFXjc3WuWftgPpafcu3WpYJ0tP6Bcg0CCOmzXKQn39A6zRhjcEr42STtSpOtkfEf5cXxJwqUtdYT5JuGIs+RDkxZemlnmqIrTVkUWGP8SKKqeuDFZ73NjDUaYx1GerKiitptQgpGm5tcvLBH0zSMJ+O1vDQI/aEtGw3WtR1gyXyxRLe2NVmSsrO5uR7LuiKDNk3Dcrn0NgstUWalIIEH0weklARxtHY2W9281baklGc7CfnA2sDvED5lB9Zetkq59QOxXpFC4JwHA97mEXWGUndugXrve9/LS199hb29PT84ZTZnuszXXt51WSCcwRmNbipwBoFYC6aDOEDgkNLz/LSuiCJJHIVcunCBixe2ec9zz9LpdAGYz+e8+uqraxflo5MTprMp06NDulmHQAq0UtRGU5cF5uCAUCmiOCZNEs/ryDJ6vR5BGKJbB5eyLCmKgqIo1g+D1pqqrNHarCce+O1NEgSKMAgRkrXaf1UjUrFelZGJWicZsbbulq33hlENgfSNxtWZ6R9icf5ia09TFvT7fZRSbPQHhA7eePmV1hPWUVUFAoExAmv1etsQViCkwxqHFQFR3EUGCl1XdLvb7O3tEAeKpqyYVTVKBei6ppMkXNrdJU5TTKCYzmfcuHmTK60nrHaW8XjCG6+9xjDrYpqaPC+YzOcADPr9luDvMA46Xb/iOp0OGxsbD2x0hMBZaKqaZZ5T5Dllq0zRLTJh8ep75xxOGxrrJ6QK6wgCha2bNmNlLdMBT2RpWs3XWYZW0JYz5771GWO4ePECURQxn89xWjObzxDSr5qyKNF1Q9QqE4EHvSlnQVgcCm0lUsUkaYLACwJe++pXiYRjdnzCcDhkc3MTAFvVlIsl5TKnkbDMcwLryIKQbOA5FVd2dv9/7Z3rbyTFFcV/1dXv7nl67DWGmHWWBRxWoCT/Ef8ukRCQXdgkxOyDffoxj55+V1c+VHXbC1KEFEfIkq9kyR88M/Kc7r637r3nHBLP4+M/3qNTirppWC2X/P3hQ+azGZssI89ztqsVy9VyUMVs25aiKIjjmDiKGEcj4jBmNEpZ7E8vfUHsOaxF0bTNQPtBX9oJRmFom8KaoixRbWtUAey5rlWKtjPjmp4l+d/0ov4noKqqYpvnLHZ3AbMSlufFUOJ6nkstBU1b49jE3bQ1IYGpgFoBQtPUHXVVIFyXcBQbiZrAR+c5P3z/vclzXUcQhgS+z9MnT7izt8d0PjNXa1lRrzZIz6W0lJj8YsnZ+TnSlcRxzGg64fDuhxwfH6M1A/3z66+/5uDggKIoDEf3xQt+evIERwh8LWkqM/JwpPUS9jzSNCUdpQShEfjwfTPw9DyPdDzG832SJGEyGlknNj2ALOy2cAdsrRlaVVdUdcXWdkEqe1FfG1Bh4HKxak0FB6AFqgPVaqN5bsvotqpxMBJu0nHQjm2ldBpXaBytEGVuDsSBJB2lLA7ex9MdviuH/LFcrcjzLT/+/Jwfnz/D7TS+5yGl5F+PHzOfz5lMp+aOzUuKbIsf+IaS0zSslyuzGNrnFM9I7sx3FwjgD3c/5M9//QuPHj3iw7t36bqOzSbj4uKChw8fUlUV0vNYVgXZqkK/qQcL1yRJDFhWdD6JYwJHGutybfjOnu1aeNIlTmLiMCKKQhZRjBsmRLsHuI7xc7xWoJRNsArTONV2RUz6PoHWVFmDFEbhq61qtNDgSpq6QSuNklbKrevo2oamKulyl2yTcRRFzCdjJpOR+SylOD09Jcsy0jSlKkuq9YbNekPbNqhWsdxsaLVmbJdQvvv2WxZ7uwPtJ8/zwYfQ983qc1vVZKu1PZga0JuqpmtaojRhMp1y7949QjvHOj4+pihKVNtQ5yV/++or5vO5NYBeUxYFVdMQO4JkOiHwPDo79Dz56Qnj0Ygo8OnednR1O5D7XClxhaECeVLyyZdfXh9QdaeM9zqGzjgejzl+8IDl+ZJ8vUZVOV6SUOa5GSja17W1ccF27cTWdNlNqRqFoeFYCUM+7pNtfyicz+csFovBC/DlixcIzNpXZWWzy6ri7ekplTL0nCQxXvBpmg5GmV1nvBTLbMvZ6zd4vkfgByCgLgqaskJoTb7eGMXMLKfzPZanZ0MrKohC5osFn3/x+SCXqrqOk5MTJpMJwnGo6oq6rPCli7e8IJ7PmE2mxGFEUeR0reKnkxPSOMD3Q8q24Sy77i0kCxRgykspme7sEI5HFFWFF8VkF+c0rQIhB6Em1/UQaHzpAd2gqKIEhlFvD6audN8RjOoBE3airKWDtLpCk+l0SMLr9Zq3F+fs7szxfbMEen5+TlmWxHbX0JMu4zhhMZkO/4+yNKFAurx9+RJtL44wDNmuVkymU+qteUQ7jkPdKbKteTS6dn1MSklVVWafcJQSy4npOwrBXrHl048/GdYHxkqx3W4JVxfsHRwM21oqCq8XqNqqgMkrVP+WlvFshgYuqhKniPGQlNkWHHNGqlvrLei6lMpQKlXXEUUxSkCUJHbpRf9K369Xau75VrUdcXQwbKz2g0ytNWmaMpvN0Nq4oe3t7ZmVaSs18OL5c8NpGoaRkvlsdnkusgfQ/Tt3QGtWy6Ux4BSCFk1VlGTrDZ7n4vsB2nVpm4a2aSiLwrwec96qypLlxYUpSnwfR0q8IGBnd5fDu3ct87KXBrlGoBwjP4Krwe00tIpK1RwdHcG9e7ze2+OHb75hdXqG0ylD+7fig440uc2PIrTtIhP4pLMZu/v7KH0pw9b/XNWW7YHr7NV6Ve25tetq/VQWLp0Hels+AVRRyDrb8P7hIb1fVZZlnDx7xt7u7vA+QpjmahRFxL5PFMeDbN10NB68Fus8B98ncj10VQ9kc0c4CKVw65ZQg9u0tFUNUlIVBV1Vka/XBtT/R6/v1c8/E/kh51KiqhqpzGPjvfc/IBql7O/vUzYNj7/9jiCMjcSnUsjG7KY7oiVOR8jApxEObhCS7syIJiMj8uvIdyRKf2lDJLB6TMKyAe0EVtW1mVtdAfaqSQuYvlytlPFwR+O4EtcJSBxBsIy58/4BdCbRK6V49OghcZrSdh3ZxYXRp7A6FdPpFN8PrAWex/2jI6aTqXEDFQKlWuqqYj9OTfHQWmk8odB5QaQF3bawerfdsCB6bUAlQUhdlPz78T8Yp2POO81oZ2HcLzvFaDrhsy++YL1aU2+3xEFgeK7bLVVdEYcu09kMP4mRYcTizj7xaMRkNuXtmzeDkokQzq+AEkIMX6QrjCqKoQ6YWVbvU3XVQaeXPR3uRm08rLA9NiEdaqXMTofAHtyN+pnjeURpQpqkRh2605TrDcvzc6aT6XAuOz8745+PHzOfzQgwOSuJY5LYlOOxpSl5nocXBiilTMfDsu3LpqKyvo7XBtTpy9eM0xGBH7DNtwjXISgjnLbGaWuCZMxsZ879z44J7RVX5DlPnj7h6dNneI7L4oND9t97j8Xejmm7aHvltzUaheoEQpg7o1UNVu/XjhRMQlfCTn21Brt0aRZtLsfwffndh7C5x5NyIC+YVlBr7lDMHkbv/BkEAZ4jGaepGck3jVlLcyVuEoOwQ8ZOc5ptGO/t4jtGGaDWmrPzM4qiYDab0XUKiSAWDk6njbCIPXuN44Rods20mzgIB83Y1XrFtirJ65rd/T2COARtGPOfPXhAmqRmhqMU948/5eTkhJfPX7Izm/PR/Y9I05i6KsmyNXVd4ehLV+qrOWrIW0JbI2JzJ+leVM4+qq5Kov7ytX0Mg8Mrn3FVZqFtTbGUJAmvX72i6zrW67XRmNCaWrUIVw42F44QKDqU7kzeFcLIo0oJuQRXkk4n5o5WCk8ITl+/YbNVpHHMeZGjT98iuo4/HR5eH1C+7+N6HtPZFC8KSccjnj1/zqvXr5GeT4NLEEW40sV3XSMU5TiGoXj/Y44Oj8g2GzabDKOt1ZFb1xhHi3e+2KtmKP0X2m/r9AD1j8h+bdrkZucdIfwelP49++h/70E2fwfj8XgYgfSVYJHnZgO3aS6tw38BOFyOTAzo7TsVLI5D67lkaGLfxRmPzNawvbt/Swj9W7uCt/G7xm8rOW7jd49boG5I3AJ1Q+IWqBsSt0DdkLgF6obELVA3JG6BuiFxC9QNif8AOCLJGTbvYPYAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "predict_animal(\"/content/test_set/test_set/cats/cat.4007.jpg\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Uploading the model on drive" + ], + "metadata": { + "id": "fkmZ0LO2syjX" + } + }, + { + "cell_type": "code", + "source": [ + "# Mount Google Drive\n", + "drive.mount('/content/drive')" + ], + "metadata": { + "id": "E1HRSNWjw-o4", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "790b08ca-d01f-447a-fa75-3afcbdae7206" + }, + "execution_count": 75, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Define the path where you want to save the model in your Google Drive\n", + "model_save_path = '/content/drive/MyDrive/Image_classification/catVsdogs.keras'\n", + "\n", + "# Save your trained model to the specified path\n", + "model.save(model_save_path)" + ], + "metadata": { + "id": "9ZrESTbAQG1h" + }, + "execution_count": 76, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Unmount Google Drive\n", + "drive.flush_and_unmount()" + ], + "metadata": { + "id": "jLzXr2mDwb-3" + }, + "execution_count": 77, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "sRALo5CisKp4" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file