from typing import List, Optional, Tuple import cv2 from pandas import DataFrame from transformers import AutoFeatureExtractor, TimesformerForVideoClassification import numpy as np import torch import pandas as pd from torch import Tensor from utils.frame_rate import FrameRate def load_model(model_name: str): if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name: feature_extractor = AutoFeatureExtractor.from_pretrained( "MCG-NJU/videomae-base-finetuned-kinetics" ) else: feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) model = TimesformerForVideoClassification.from_pretrained(model_name) return feature_extractor, model class ImgContainer: def __init__(self, frames_per_video: int = 8) -> None: self.img: Optional[np.ndarray] = None # raw image self.frame_rate: FrameRate = FrameRate() self.imgs: List[np.ndarray] = [] self.frame_rate.reset() self.frames_per_video = frames_per_video self.rs: Optional[DataFrame] = None def add_frame(self, frame: np.ndarray): if len(img_container.imgs) >= frames_per_video: self.imgs.pop(0) self.imgs.append(frame) @property def ready(self): return len(img_container.imgs) == self.frames_per_video def inference(): if not img_container.ready: return inputs = feature_extractor(list(img_container.imgs), return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits: Tensor = outputs.logits # model predicts one of the 400 Kinetics-400 classes max_index = logits.argmax(-1).item() predicted_label = model.config.id2label[max_index] img_container.frame_rate.label = f"{predicted_label}_{logits[0][max_index]:.2f}%" TOP_K = 12 # logits = np.squeeze(logits) logits = logits.squeeze().numpy() indices = np.argsort(logits)[::-1][:TOP_K] values = logits[indices] results: List[Tuple[str, float]] = [] for index, value in zip(indices, values): predicted_label = model.config.id2label[index] # print(f"Label: {predicted_label} - {value:.2f}%") results.append((predicted_label, value)) img_container.rs = pd.DataFrame(results, columns=("Label", "Confidence")) def get_frames_per_video(model_name: str) -> int: if "base-finetuned" in model_name: return 8 elif "hr-finetuned" in model_name: return 16 else: return 96 model_name = "facebook/timesformer-base-finetuned-k400" # "facebook/timesformer-base-finetuned-k600", # "facebook/timesformer-base-finetuned-ssv2", # "facebook/timesformer-hr-finetuned-k600", # "facebook/timesformer-hr-finetuned-k400", # "facebook/timesformer-hr-finetuned-ssv2", # "fcakyon/timesformer-large-finetuned-k400", # "fcakyon/timesformer-large-finetuned-k600", feature_extractor, model = load_model(model_name) frames_per_video = get_frames_per_video(model_name) print(f"Frames per video: {frames_per_video}") img_container = ImgContainer(frames_per_video) # define a video capture object vid = cv2.VideoCapture(0) while(True): # Capture the video frame # by frame ret, frame = vid.read() img_container.img = frame img_container.frame_rate.count() img_container.add_frame(frame) inference() rs = img_container.frame_rate.show_fps(frame) # Display the resulting frame cv2.imshow('TimeSFormer', rs) # the 'q' button is set as the # quitting button you may use any # desired button of your choice if cv2.waitKey(1) & 0xFF == ord('q'): break # After the loop release the cap object vid.release() # Destroy all the windows cv2.destroyAllWindows()