Dataset download utilities
Browse files
category_classification/datasets/download_common.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
from kaggle import api as kapi
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.model_selection import train_test_split as sk_train_test_split
|
6 |
+
|
7 |
+
|
8 |
+
def download_dataset(dest_dir, dataset, filename):
|
9 |
+
if (Path(dest_dir) / filename).exists():
|
10 |
+
print('Dataset already exists, do not download')
|
11 |
+
return
|
12 |
+
print('Downloading dataset...')
|
13 |
+
kapi.dataset_download_file(dataset=dataset, file_name=filename, path=dest_dir, quiet=False)
|
14 |
+
|
15 |
+
|
16 |
+
# Takes a lot of RAM
|
17 |
+
def read_dataset(dest_dir, filename) -> pd.DataFrame:
|
18 |
+
print('Reading dataset...')
|
19 |
+
json_file_path = Path(dest_dir) / filename
|
20 |
+
df = pd.read_json(json_file_path, lines=True)
|
21 |
+
print('Dataset read')
|
22 |
+
return df
|
23 |
+
|
24 |
+
|
25 |
+
def download_and_read_dataset(dest_dir, dataset, filename):
|
26 |
+
download_dataset(dest_dir=dest_dir, dataset=dataset, filename=filename)
|
27 |
+
return read_dataset(dest_dir=dest_dir, filename=filename)
|
28 |
+
|
29 |
+
|
30 |
+
def filter_columns(df: pd.DataFrame, columns) -> pd.DataFrame:
|
31 |
+
print("Removing unwanted columns...")
|
32 |
+
df = df[columns]
|
33 |
+
print("Columns removed...")
|
34 |
+
return df
|
35 |
+
|
36 |
+
|
37 |
+
def create_features_labels(df: pd.DataFrame, old_label, new_label):
|
38 |
+
def transform_categories(categories):
|
39 |
+
categories = categories.split()
|
40 |
+
category = categories[0]
|
41 |
+
if '.' in category:
|
42 |
+
return category[: category.index(".")]
|
43 |
+
return category
|
44 |
+
labels = df[old_label].apply(transform_categories)
|
45 |
+
labels = labels.rename(new_label)
|
46 |
+
features = df.drop(old_label, axis=1)
|
47 |
+
return features, labels
|
48 |
+
|
49 |
+
|
50 |
+
def train_test_split(X, y, test_size=0.25):
|
51 |
+
return sk_train_test_split(X, y, test_size=test_size, stratify=y)
|
52 |
+
|
53 |
+
|
54 |
+
def write_dataset(dest_dir, X, y, filename):
|
55 |
+
dest_dir = Path(dest_dir)
|
56 |
+
df = pd.concat((X, y), axis=1)
|
57 |
+
df.to_json(filename, orient="records", lines=True)
|
requirements.txt
CHANGED
@@ -65,6 +65,8 @@ jupyterlab==4.3.6
|
|
65 |
jupyterlab_pygments==0.3.0
|
66 |
jupyterlab_server==2.27.3
|
67 |
jupyterlab_widgets==3.0.13
|
|
|
|
|
68 |
MarkupSafe==3.0.2
|
69 |
matplotlib-inline==0.1.7
|
70 |
mistune==3.1.3
|
@@ -114,6 +116,7 @@ pydeck==0.9.1
|
|
114 |
Pygments==2.19.1
|
115 |
python-dateutil==2.9.0.post0
|
116 |
python-json-logger==3.3.0
|
|
|
117 |
pytz==2025.2
|
118 |
PyYAML==6.0.2
|
119 |
pyzmq==26.4.0
|
@@ -136,6 +139,7 @@ streamlit==1.44.1
|
|
136 |
sympy==1.13.1
|
137 |
tenacity==9.1.2
|
138 |
terminado==0.18.1
|
|
|
139 |
threadpoolctl==3.6.0
|
140 |
tinycss2==1.4.0
|
141 |
tokenizers==0.21.1
|
|
|
65 |
jupyterlab_pygments==0.3.0
|
66 |
jupyterlab_server==2.27.3
|
67 |
jupyterlab_widgets==3.0.13
|
68 |
+
kaggle==1.7.4.2
|
69 |
+
kagglehub==0.3.11
|
70 |
MarkupSafe==3.0.2
|
71 |
matplotlib-inline==0.1.7
|
72 |
mistune==3.1.3
|
|
|
116 |
Pygments==2.19.1
|
117 |
python-dateutil==2.9.0.post0
|
118 |
python-json-logger==3.3.0
|
119 |
+
python-slugify==8.0.4
|
120 |
pytz==2025.2
|
121 |
PyYAML==6.0.2
|
122 |
pyzmq==26.4.0
|
|
|
139 |
sympy==1.13.1
|
140 |
tenacity==9.1.2
|
141 |
terminado==0.18.1
|
142 |
+
text-unidecode==1.3
|
143 |
threadpoolctl==3.6.0
|
144 |
tinycss2==1.4.0
|
145 |
tokenizers==0.21.1
|