import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import librosa import librosa.display import gradio as gr import soundfile as sf import os import gettext import os font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" if not os.path.exists(font_path): font_path = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf" # Fallback font # Handle missing translation files locales_dir = 'locales' try: lang = gettext.translation('base', localedir=locales_dir, languages=['id']) lang.install() _ = lang.gettext except FileNotFoundError: print("Translation file not found, using default language.") _ = lambda s: s # Fallback to the original string if translation is unavailable # Function for creating a spectrogram image with text def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5): font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" if os.path.exists(font_path): font = ImageFont.truetype(font_path, max_font_size) else: font = ImageFont.load_default() image = Image.new('L', (base_width, height), 'black') draw = ImageDraw.Draw(image) text_width = 0 for char in text: text_bbox = draw.textbbox((0, 0), char, font=font) text_width += text_bbox[2] - text_bbox[0] + letter_spacing text_width -= letter_spacing if text_width + margin * 2 > base_width: width = text_width + margin * 2 else: width = base_width image = Image.new('L', (width, height), 'black') draw = ImageDraw.Draw(image) text_x = (width - text_width) // 2 text_y = (height - (text_bbox[3] - text_bbox[1])) // 2 for char in text: draw.text((text_x, text_y), char, font=font, fill='white') char_bbox = draw.textbbox((0, 0), char, font=font) text_x += char_bbox[2] - char_bbox[0] + letter_spacing image = np.array(image) image = np.where(image > 0, 255, image) return image # Converting an image to audio def spectrogram_image_to_audio(image, sr=22050): flipped_image = np.flipud(image) S = flipped_image.astype(np.float32) / 255.0 * 100.0 y = librosa.griffinlim(S) return y # Function for creating an audio file and spectrogram from text def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing): spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing) y = spectrogram_image_to_audio(spec_image) audio_path = 'output.wav' sf.write(audio_path, y, 22050) image_path = 'spectrogram.png' plt.imsave(image_path, spec_image, cmap='gray') return audio_path, image_path # Function for displaying the spectrogram of an audio file def display_audio_spectrogram(audio_path): y, sr = librosa.load(audio_path) S = librosa.feature.melspectrogram(y=y, sr=sr) S_dB = librosa.power_to_db(S, ref=np.max) plt.figure(figsize=(10, 4)) librosa.display.specshow(S_dB) plt.tight_layout() spectrogram_path = 'uploaded_spectrogram.png' plt.savefig(spectrogram_path) plt.close() return spectrogram_path # Converting a downloaded image to an audio spectrogram def image_to_spectrogram_audio(image_path, sr=22050): image = Image.open(image_path).convert('L') image = np.array(image) y = spectrogram_image_to_audio(image, sr) img2audio_path = 'image_to_audio_output.wav' sf.write(img2audio_path, y, sr) return img2audio_path informstion = _("""
People, before using this interface, read about what Steganography is.
Steganography is a method of hiding information within other information or a physical object in such a way that it cannot be detected. Using steganography, you can hide almost any digital content, including texts, images, audio, and video files.
In this interface, steganography is used to hide text or an image in the spectrogram of a sound.
""") # Gradio interface with gr.Blocks( title=_('Audio Steganography'), theme="Hev832/Applio", ) as iface: gr.Markdown(_("# Audio Steganography")) with gr.Group(): with gr.Row(variant='panel'): with gr.Column(): gr.HTML(_("