import gradio as gr import joblib import numpy as np import pandas as pd from huggingface_hub import hf_hub_download from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder # Load the trained model and scaler objects from file REPO_ID = "Hemg/marketpredict" # Hugging Face repo ID MoDEL_FILENAME = "stx.joblib" # Model file name SCALER_FILENAME = "scaler.joblib" # Scaler file name model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME)) scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME)) def encode_categorical_columns(df): label_encoder = LabelEncoder() ordinal_columns = df.select_dtypes(include=['object']).columns for col in ordinal_columns: df[col] = label_encoder.fit_transform(df[col]) nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns) df = pd.get_dummies(df, columns=nominal_columns, drop_first=True) return df # Define the prediction function def predict_performance(Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, Internet_Expenses): # Prepare input data (represents independent variables for house prediction) input_data = [[Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, Internet_Expenses]] # Get the feature names from the Gradio interface inputs feature_names = ["Year", "Instagram_Advertising", "Facebook_Advertising", "Event_Expenses", "Internet_Expenses"] # Create a Pandas DataFrame with the input data and feature names input_df = pd.DataFrame(input_data, columns=feature_names) input_df = encode_categorical_columns(input_df) # Scale the input data using the loaded scaler scaled_input = scaler.transform(input_df) # Make predictions using the loaded model prediction = model.predict(scaled_input)[0] # Return the result as HTML with custom styling (green color and larger font) return f'

Forecast no of. Students admission: {prediction:,.0f}

' # Create the Gradio app iface = gr.Interface( fn=predict_performance, inputs=[ gr.Slider(minimum=2024, maximum=2025, step=1, label="Year",info="The forecasted Year"), gr.Slider(minimum=10000, maximum=45000, step=500, label="Instagram_Advertising", info="How much do you spend on Instagram ads Yearly($)?"), gr.Slider(minimum=10000, maximum=75000, step=500, label="Facebook_Advertising", info="How much do you spend on Facebook ads Yearly($)?"), gr.Slider(minimum=20000, maximum=100000, step=500, label="Event_Expenses", info="What’s your typical budget for events($)?"), gr.Slider(minimum=5000, maximum=45000, step=500, label="Internet_Expenses", info="How much do you spend on internet Yearly($)?") ], outputs=gr.HTML(), # Specify the output as HTML title="Student Admission Forecast", description="Forecast of chances of student admission based on marketing expenditures" ) # Run the app if __name__ == "__main__": iface.launch(share=True)