from langchain_openai import OpenAI from pypdf import PdfReader import pandas as pd import re from langchain.prompts import PromptTemplate from langchain_community.llms import CTransformers from ctransformers import AutoModelForCausalLM #Extract Information from PDF file def get_pdf_text(pdf_doc): text = "" pdf_reader = PdfReader(pdf_doc) for page in pdf_reader.pages: text += page.extract_text() return text #Function to extract data from text... def extracted_data(pages_data): template = """Please Extract all the following values : invoice no., Description, Quantity, date, Unit price , Amount, Total, email, phone number and address from this data: {pages} Expected output: remove any dollar symbols {{'Invoice no.': '1001329','Description': 'Office Chair','Quantity': '2','Date': '5/4/2023','Unit price': '1100.00$','Amount': '2200.00$','Total': '2200.00$','Email': 'Santoshvarma0988@gmail.com','Phone number': '9999999999','Address': 'Mumbai, India'}} """ # prompt_template = PromptTemplate(input_variables=["pages"], template=template) # llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q8_0.bin",model_type='llama') llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML", model_file="llama-2-7b-chat.ggmlv3.q8_0.bin") #Creating the final PROMPT prompt = PromptTemplate( input_variables=["pages"], template=template,) #Generating the response using LLM #Last week langchain has recommended to use 'invoke' function for the below please :) response=llm(prompt.format(email_topic=form_input,sender=email_sender,recipient=email_recipient,style=email_style)) output_text=llm(prompt_template.format(pages=pages_data)) full_response = '' for item in output_text: full_response += item return full_response # iterate over files in # that user uploaded PDF files, one by one def create_docs(user_pdf_list): df = pd.DataFrame({'Invoice no.': pd.Series(dtype='str'), 'Description': pd.Series(dtype='str'), 'Quantity': pd.Series(dtype='str'), 'Date': pd.Series(dtype='str'), 'Unit price': pd.Series(dtype='str'), 'Amount': pd.Series(dtype='int'), 'Total': pd.Series(dtype='str'), 'Email': pd.Series(dtype='str'), 'Phone number': pd.Series(dtype='str'), 'Address': pd.Series(dtype='str') }) for filename in user_pdf_list: # print(filename) raw_data=get_pdf_text(filename) print("pdf_Data",raw_data) # print("extracted raw data") llm_extracted_data=extracted_data(raw_data) print("llm_extracted_data",llm_extracted_data) #print(llm_extracted_data) #print("llm extracted data") #Adding items to our list - Adding data & its metadata pattern = r'{(.+)}' match = re.search(pattern, llm_extracted_data, re.DOTALL) if match: extracted_text = match.group(1) # Converting the extracted text to a dictionary data_dict = eval('{' + extracted_text + '}') print(data_dict) else: print("No match found.") # Initialize data_dict data_dict = {} df=df._append([data_dict], ignore_index=True) print("********************DONE***************") # df=df.append(save_to_dataframe(llm_extracted_data), ignore_index=True) llm_extracted_data return llm_extracted_data