from fastapi import FastAPI, UploadFile, File from fastapi.responses import JSONResponse import numpy as np import cv2 import pickle from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array app = FastAPI() print("app run") # Load the model and the label binarizer model = load_model('cnn_model.h5') print("model loaded") label_binarizer = pickle.load(open('label_transform.pkl', 'rb')) print("labels loaded") # Function to convert images to array def convert_image_to_array(image_dir): try: image = cv2.imdecode(np.frombuffer(image_dir, np.uint8), cv2.IMREAD_COLOR) if image is not None: image = cv2.resize(image, (256, 256)) return img_to_array(image) else: return np.array([]) except Exception as e: print(f"Error : {e}") return None @app.post("/predict") async def predict(file: UploadFile = File(...)): try: # Read the file and convert it to an array image_data = await file.read() image_array = convert_image_to_array(image_data) if image_array.size == 0: return JSONResponse(content={"error": "Invalid image"}, status_code=400) # Normalize the image image_array = np.array(image_array, dtype=np.float16) / 255.0 # Ensure the image_array has the correct shape (1, 256, 256, 3) image_array = np.expand_dims(image_array, axis=0) # Make a prediction prediction = model.predict(image_array) predicted_class = label_binarizer.inverse_transform(prediction)[0] return {"prediction": predicted_class} except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) # Add a test GET endpoint to manually trigger the prediction @app.get("/test-predict") def test_predict(): try: image_path = 'crop_image1.jpg' image = cv2.imread(image_path) image_array = cv2.resize(image, (256, 256)) image_array = img_to_array(image_array) if image_array.size == 0: return JSONResponse(content={"error": "Invalid image"}, status_code=400) # Normalize the image image_array = np.array(image_array, dtype=np.float16) / 255.0 # Ensure the image_array has the correct shape (1, 256, 256, 3) image_array = np.expand_dims(image_array, axis=0) # Make a prediction prediction = model.predict(image_array) predicted_class = label_binarizer.inverse_transform(prediction)[0] return {"prediction": predicted_class} except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="127.0.0.1", port=8000)