#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Rico Sennrich """Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text. Unlike the original BPE, it does not compress the plain text, but can be used to reduce the vocabulary of a text to a configurable number of symbols, with only a small increase in the number of tokens. Reference: Rico Sennrich, Barry Haddow and Alexandra Birch (2016). Neural Machine Translation of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. """ from __future__ import unicode_literals import os import sys import inspect import codecs import re import copy import argparse import warnings import tempfile from multiprocessing import Pool, cpu_count from collections import defaultdict, Counter try: from tqdm import tqdm except ImportError: def tqdm(iterator, *args, **kwargs): return iterator # hack for python2/3 compatibility from io import open argparse.open = open def create_parser(subparsers=None): if subparsers: parser = subparsers.add_parser('learn-bpe', formatter_class=argparse.RawDescriptionHelpFormatter, description="learn BPE-based word segmentation") else: parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description="learn BPE-based word segmentation") parser.add_argument( '--input', '-i', type=argparse.FileType('r'), default=sys.stdin, metavar='PATH', help="Input text (default: standard input).") parser.add_argument( '--output', '-o', type=argparse.FileType('w'), default=sys.stdout, metavar='PATH', help="Output file for BPE codes (default: standard output)") parser.add_argument( '--symbols', '-s', type=int, default=10000, help="Create this many new symbols (each representing a character n-gram) (default: %(default)s)") parser.add_argument( '--min-frequency', type=int, default=2, metavar='FREQ', help='Stop if no symbol pair has frequency >= FREQ (default: %(default)s)') parser.add_argument('--dict-input', action="store_true", help="If set, input file is interpreted as a dictionary where each line contains a word-count pair") parser.add_argument( '--total-symbols', '-t', action="store_true", help="subtract number of characters from the symbols to be generated (so that '--symbols' becomes an estimate for the total number of symbols needed to encode text).") parser.add_argument( '--num-workers', type=int, default=1, help="Number of processors to process texts, only supported in Python3. If -1, set `multiprocessing.cpu_count()`. (default: %(default)s)") parser.add_argument( '--verbose', '-v', action="store_true", help="verbose mode.") return parser def get_vocabulary(fobj, is_dict=False, num_workers=1): """Read text and return dictionary that encodes vocabulary """ vocab = Counter() if is_dict: for i, line in enumerate(fobj): try: word, count = line.strip('\r\n ').split(' ') except: print('Failed reading vocabulary file at line {0}: {1}'.format(i, line)) sys.exit(1) vocab[word] += int(count) elif num_workers == 1 or fobj.name == '<stdin>': if num_workers > 1: warnings.warn("In parallel mode, the input cannot be STDIN. Using 1 processor instead.") for i, line in enumerate(fobj): for word in line.strip('\r\n ').split(' '): if word: vocab[word] += 1 elif num_workers > 1: if sys.version_info < (3, 0): print("Parallel mode is only supported in Python3.") sys.exit(1) with open(fobj.name, encoding="utf8") as f: size = os.fstat(f.fileno()).st_size chunk_size = int(size / num_workers) offsets = [0 for _ in range(num_workers + 1)] for i in range(1, num_workers): f.seek(chunk_size * i) pos = f.tell() while True: try: line = f.readline() break except UnicodeDecodeError: pos -= 1 f.seek(pos) offsets[i] = f.tell() assert 0 <= offsets[i] < 1e20, "Bad new line separator, e.g. '\\r'" vocab_files = [] pool = Pool(processes=num_workers) for i in range(num_workers): tmp = tempfile.NamedTemporaryFile(delete=False) tmp.close() vocab_files.append(tmp) pool.apply_async(_get_vocabulary, (fobj.name, tmp.name, offsets[i], offsets[i + 1])) pool.close() pool.join() import pickle for i in range(num_workers): with open(vocab_files[i].name, 'rb') as f: vocab += pickle.load(f) os.remove(vocab_files[i].name) else: raise ValueError('`num_workers` is expected to be a positive number, but got {}.'.format(num_workers)) return vocab def _get_vocabulary(infile, outfile, begin, end): import pickle vocab = Counter() with open(infile, encoding="utf8") as f: f.seek(begin) line = f.readline() while line: pos = f.tell() assert 0 <= pos < 1e20, "Bad new line separator, e.g. '\\r'" if end > 0 and pos > end: break for word in line.strip('\r\n ').split(' '): if word: vocab[word] += 1 line = f.readline() with open(outfile, 'wb') as f: pickle.dump(vocab, f) def update_pair_statistics(pair, changed, stats, indices): """Minimally update the indices and frequency of symbol pairs if we merge a pair of symbols, only pairs that overlap with occurrences of this pair are affected, and need to be updated. """ stats[pair] = 0 indices[pair] = defaultdict(int) first, second = pair new_pair = first+second for j, word, old_word, freq in changed: # find all instances of pair, and update frequency/indices around it i = 0 while True: # find first symbol try: i = old_word.index(first, i) except ValueError: break # if first symbol is followed by second symbol, we've found an occurrence of pair (old_word[i:i+2]) if i < len(old_word)-1 and old_word[i+1] == second: # assuming a symbol sequence "A B C", if "B C" is merged, reduce the frequency of "A B" if i: prev = old_word[i-1:i+1] stats[prev] -= freq indices[prev][j] -= 1 if i < len(old_word)-2: # assuming a symbol sequence "A B C B", if "B C" is merged, reduce the frequency of "C B". # however, skip this if the sequence is A B C B C, because the frequency of "C B" will be reduced by the previous code block if old_word[i+2] != first or i >= len(old_word)-3 or old_word[i+3] != second: nex = old_word[i+1:i+3] stats[nex] -= freq indices[nex][j] -= 1 i += 2 else: i += 1 i = 0 while True: try: # find new pair i = word.index(new_pair, i) except ValueError: break # assuming a symbol sequence "A BC D", if "B C" is merged, increase the frequency of "A BC" if i: prev = word[i-1:i+1] stats[prev] += freq indices[prev][j] += 1 # assuming a symbol sequence "A BC B", if "B C" is merged, increase the frequency of "BC B" # however, if the sequence is A BC BC, skip this step because the count of "BC BC" will be incremented by the previous code block if i < len(word)-1 and word[i+1] != new_pair: nex = word[i:i+2] stats[nex] += freq indices[nex][j] += 1 i += 1 def get_pair_statistics(vocab): """Count frequency of all symbol pairs, and create index""" # data structure of pair frequencies stats = defaultdict(int) #index from pairs to words indices = defaultdict(lambda: defaultdict(int)) for i, (word, freq) in enumerate(vocab): prev_char = word[0] for char in word[1:]: stats[prev_char, char] += freq indices[prev_char, char][i] += 1 prev_char = char return stats, indices def replace_pair(pair, vocab, indices): """Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'""" first, second = pair pair_str = ''.join(pair) pair_str = pair_str.replace('\\','\\\\') changes = [] pattern = re.compile(r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)') if sys.version_info < (3, 0): iterator = indices[pair].iteritems() else: iterator = indices[pair].items() for j, freq in iterator: if freq < 1: continue word, freq = vocab[j] new_word = ' '.join(word) new_word = pattern.sub(pair_str, new_word) new_word = tuple(new_word.split(' ')) vocab[j] = (new_word, freq) changes.append((j, new_word, word, freq)) return changes def prune_stats(stats, big_stats, threshold): """Prune statistics dict for efficiency of max() The frequency of a symbol pair never increases, so pruning is generally safe (until we the most frequent pair is less frequent than a pair we previously pruned) big_stats keeps full statistics for when we need to access pruned items """ for item,freq in list(stats.items()): if freq < threshold: del stats[item] if freq < 0: big_stats[item] += freq else: big_stats[item] = freq def learn_bpe(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False, total_symbols=False, num_workers=1): """Learn num_symbols BPE operations from vocabulary, and write to outfile. """ # version 0.2 changes the handling of the end-of-word token ('</w>'); # version numbering allows bckward compatibility outfile.write('#version: 0.2\n') vocab = get_vocabulary(infile, is_dict, num_workers) vocab = dict([(tuple(x[:-1])+(x[-1]+'</w>',) ,y) for (x,y) in vocab.items()]) sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True) stats, indices = get_pair_statistics(sorted_vocab) big_stats = copy.deepcopy(stats) if total_symbols: uniq_char_internal = set() uniq_char_final = set() for word in vocab: for char in word[:-1]: uniq_char_internal.add(char) uniq_char_final.add(word[-1]) sys.stderr.write('Number of word-internal characters: {0}\n'.format(len(uniq_char_internal))) sys.stderr.write('Number of word-final characters: {0}\n'.format(len(uniq_char_final))) sys.stderr.write('Reducing number of merge operations by {0}\n'.format(len(uniq_char_internal) + len(uniq_char_final))) num_symbols -= len(uniq_char_internal) + len(uniq_char_final) # threshold is inspired by Zipfian assumption, but should only affect speed threshold = max(stats.values()) / 10 for i in tqdm(range(num_symbols)): if stats: most_frequent = max(stats, key=lambda x: (stats[x], x)) # we probably missed the best pair because of pruning; go back to full statistics if not stats or (i and stats[most_frequent] < threshold): prune_stats(stats, big_stats, threshold) stats = copy.deepcopy(big_stats) most_frequent = max(stats, key=lambda x: (stats[x], x)) # threshold is inspired by Zipfian assumption, but should only affect speed threshold = stats[most_frequent] * i/(i+10000.0) prune_stats(stats, big_stats, threshold) if stats[most_frequent] < min_frequency: sys.stderr.write('no pair has frequency >= {0}. Stopping\n'.format(min_frequency)) break if verbose: sys.stderr.write('pair {0}: {1} {2} -> {1}{2} (frequency {3})\n'.format(i, most_frequent[0], most_frequent[1], stats[most_frequent])) outfile.write('{0} {1}\n'.format(*most_frequent)) changes = replace_pair(most_frequent, sorted_vocab, indices) update_pair_statistics(most_frequent, changes, stats, indices) stats[most_frequent] = 0 if not i % 100: prune_stats(stats, big_stats, threshold) if __name__ == '__main__': currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) newdir = os.path.join(currentdir, 'subword_nmt') if os.path.isdir(newdir): warnings.simplefilter('default') warnings.warn( "this script's location has moved to {0}. This symbolic link will be removed in a future version. Please point to the new location, or install the package and use the command 'subword-nmt'".format(newdir), DeprecationWarning ) # python 2/3 compatibility if sys.version_info < (3, 0): sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) sys.stdin = codecs.getreader('UTF-8')(sys.stdin) else: sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer) sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer) sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer) parser = create_parser() args = parser.parse_args() if args.num_workers <= 0: args.num_workers = cpu_count() if sys.version_info < (3, 0) and args.num_workers > 1: args.num_workers = 1 warnings.warn("Parallel mode is only supported in Python3. Using 1 processor instead.") # read/write files as UTF-8 if args.input.name != '<stdin>': args.input = codecs.open(args.input.name, encoding='utf-8') if args.output.name != '<stdout>': args.output = codecs.open(args.output.name, 'w', encoding='utf-8') learn_bpe(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input, total_symbols=args.total_symbols, num_workers=args.num_workers)