Spaces:
Runtime error
Runtime error
import pytesseract | |
from PIL import Image | |
import numpy as np | |
from transformers import LayoutLMTokenizer | |
# pytesseract.pytesseract.tesseract_cmd = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe" | |
tokenizer = LayoutLMTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") | |
def normalize_box(box, width, height): | |
return [ | |
int(1000 * (box[0] / width)), | |
int(1000 * (box[1] / height)), | |
int(1000 * (box[2] / width)), | |
int(1000 * (box[3] / height)), | |
] | |
def apply_ocr(image): | |
# get the image | |
# image = Image.open(example['image_path']) | |
width, height = image.size | |
example={} | |
# apply ocr to the image | |
ocr_df = pytesseract.image_to_data(image, output_type='data.frame') | |
float_cols = ocr_df.select_dtypes('float').columns | |
ocr_df = ocr_df.dropna().reset_index(drop=True) | |
ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int) | |
ocr_df = ocr_df.replace(r'^\s*$', np.nan, regex=True) | |
ocr_df = ocr_df.dropna().reset_index(drop=True) | |
# get the words and actual (unnormalized) bounding boxes | |
#words = [word for word in ocr_df.text if str(word) != 'nan']) | |
words = list(ocr_df.text) | |
words = [str(w) for w in words] | |
coordinates = ocr_df[['left', 'top', 'width', 'height']] | |
actual_boxes = [] | |
for idx, row in coordinates.iterrows(): | |
x, y, w, h = tuple(row) # the row comes in (left, top, width, height) format | |
actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+width, top+height) to get the actual box | |
actual_boxes.append(actual_box) | |
# normalize the bounding boxes | |
boxes = [] | |
for box in actual_boxes: | |
boxes.append(normalize_box(box, width, height)) | |
# add as extra columns | |
assert len(words) == len(boxes) | |
example['words'] = words | |
example['bbox'] = boxes | |
return example | |
def encode_example(example, max_seq_length=512, pad_token_box=[0, 0, 0, 0]): | |
words = example['words'] | |
normalized_word_boxes = example['bbox'] | |
assert len(words) == len(normalized_word_boxes) | |
token_boxes = [] | |
for word, box in zip(words, normalized_word_boxes): | |
word_tokens = tokenizer.tokenize(word) | |
token_boxes.extend([box] * len(word_tokens)) | |
# Truncation of token_boxes | |
special_tokens_count = 2 | |
if len(token_boxes) > max_seq_length - special_tokens_count: | |
token_boxes = token_boxes[: (max_seq_length - special_tokens_count)] | |
# add bounding boxes of cls + sep tokens | |
token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] | |
encoding = tokenizer(' '.join(words), padding='max_length', truncation=True) | |
# Padding of token_boxes up the bounding boxes to the sequence length. | |
input_ids = tokenizer(' '.join(words), truncation=True)["input_ids"] | |
padding_length = max_seq_length - len(input_ids) | |
token_boxes += [pad_token_box] * padding_length | |
encoding['bbox'] = token_boxes | |
assert len(encoding['input_ids']) == max_seq_length | |
assert len(encoding['attention_mask']) == max_seq_length | |
assert len(encoding['token_type_ids']) == max_seq_length | |
assert len(encoding['bbox']) == max_seq_length | |
return encoding |