Spaces:
Sleeping
Sleeping
File size: 4,460 Bytes
dfed715 b726bae dfed715 62b04b6 dfed715 62b04b6 4206bd7 dfed715 0a2d292 dfed715 6c5ae85 dfed715 bc54fc9 dfed715 bc54fc9 dfed715 b726bae dfed715 cfb5e00 dfed715 62b04b6 cfb5e00 3dcac50 dfed715 62b04b6 cfb5e00 dfed715 62b04b6 cfb5e00 3dcac50 dfed715 b726bae dfed715 62b04b6 4206bd7 3dcac50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image
import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle
import yake
############
## Main page
############
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('top.png')
st.image(image)
st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
# label='# Enter Query:',
# text='Press enter to add more',
# value=['Mother'],
# suggestions=['gift', 'nike', 'wool'],
# maxtags=maxtags_sidebar,
# key="aljnf")
user_query = st.text_input("Enter a query for the generated text:")
# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
'Which transformers model would you like to be selected?',
('multi-qa-MiniLM-L6-cos-v1','null','null'))
option2 = st.sidebar.selectbox(
'Which corss-encoder model would you like to be selected?',
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
st.sidebar.success("Load Successfully!")
#if not torch.cuda.is_available():
# print("Warning: No GPU found. Please add GPU to your notebook")
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1,device='cpu')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2, device='cpu')
passages = []
# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
cache_data = pickle.load(fIn)
passages = cache_data['sentences']
corpus_embeddings = cache_data['embeddings']
kw_extractor = yake.KeywordExtractor()
language = "en"
max_ngram_size = 3
deduplication_threshold = 0.9
numOfKeywords = 20
custom_kw_extractor=yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, top=numOfKeywords, features=None)
# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
st.write("Input question:", query)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-N hits from bi-encoder
st.write("\n-------------------------\n")
st.subheader("Top-N Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
for hit in hits[0:maxtags_sidebar]:
st.write("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " ")))
# Output of top-N hits from re-ranker
st.write("\n-------------------------\n")
st.subheader("Top-N Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
#for hit in hits[0:maxtags_sidebar]:
# st.write("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " ")))
hit_res = []
for hit in hits[0:1000]:
q = passages[hit['corpus_id']].replace("\n", " ")
if q not in hit_res:
hit_res.append(q)
for res in hit_res[0:maxtags_sidebar]:
keywords = custom_kw_extractor.extract_keywords(res)
for kw in keywords:
print(kw)
st.write("## Results:")
if st.button('Generated Expansion'):
out = search(query = user_query)
#st.success(out) |