File size: 9,739 Bytes
ec37289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image

import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle
import random
import numpy as np
import pandas as pd

############
## Main page
############

st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")

st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('etsy-shop-LLC.png')
st.image(image)

st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
#    label='# Enter Query:',
#    text='Press enter to add more',
#    value=['Mother'],
#    suggestions=['gift', 'nike', 'wool'],
#    maxtags=maxtags_sidebar,
#    key="aljnf")

user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")

# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
     'Which transformers model would you like to be selected?',
     ('multi-qa-MiniLM-L6-cos-v1','null','null'))

option2 = st.sidebar.selectbox(
     'Which corss-encoder model would you like to be selected?',
     ('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))

st.sidebar.success("Load Successfully!")

#if not torch.cuda.is_available():
#    print("Warning: No GPU found. Please add GPU to your notebook")

#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1,device='cpu')
bi_encoder.max_seq_length = 256    #Truncate long passages to 256 tokens
top_k = 32                          #Number of passages we want to retrieve with the bi-encoder

#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2, device='cpu')

passages = []

# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
  cache_data = pickle.load(fIn)
  passages = cache_data['sentences']
  corpus_embeddings = cache_data['embeddings']

from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import re

import yake

language = "en"
max_ngram_size = 3
deduplication_threshold = 0.9
deduplication_algo = 'seqm'
windowSize = 3
numOfKeywords = 3

custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)
# load query GMS information
with open('query_gms.json', 'r') as file:
    query_gms_dict = json.load(file)
    
# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
    tokenized_doc = []
    for token in text.lower().split():
        token = token.strip(string.punctuation)

        if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
            tokenized_doc.append(token)
    return tokenized_doc

tokenized_corpus = []
for passage in tqdm(passages):
    tokenized_corpus.append(bm25_tokenizer(passage))

bm25 = BM25Okapi(tokenized_corpus)

def word_len(s):
    return len([i for i in s.split(' ') if i])


# This function will search all wikipedia articles for passages that
# answer the query
DEFAULT_SCORE = -100.0
def clean_string(input_string):
    string_sub1 = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', input_string)
    string_sub2 = re.sub("\x20\x20", "\n", string_sub1)
    string_strip = string_sub2.strip().lower()
    output_string = []
    if len(string_strip) > 20:
        keywords = custom_kw_extractor.extract_keywords(string_strip)
        for tokens in keywords:
            string_clean = tokens[0]
            if word_len(string_clean) > 1:
                output_string.append(string_clean)
    else:
        output_string.append(string_strip)
    return output_string

def add_gms_score_for_candidates(candidates, query_gms_dict):
    for query_candidate in candidates:
        value = candidates[query_candidate]
        value['gms'] = query_gms_dict.get(query_candidate, 0)
        candidates[query_candidate] = value
    return candidates
    
def generate_query_expansion_candidates(query):
    print("Input query:", query)
    expanded_query_set = {}

    ##### BM25 search (lexical search) #####
    bm25_scores = bm25.get_scores(bm25_tokenizer(query))
    # finds the indices of the top n scores
    top_n_indices = np.argpartition(bm25_scores, -5)[-5:]
    bm25_hits = [{'corpus_id': idx, 'bm25_score': bm25_scores[idx]} for idx in top_n_indices]
    # bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
    
    
    ##### Sematic Search #####
    # Encode the query using the bi-encoder and find potentially relevant passages
    query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
    # query_embedding = query_embedding.cuda()
    # Get the hits for the first query
    encoder_hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]

    # For all retrieved passages, add the cross_encoder scores
    cross_inp = [[query, passages[hit['corpus_id']]] for hit in encoder_hits]
    cross_scores = cross_encoder.predict(cross_inp)
    for idx in range(len(cross_scores)):
        encoder_hits[idx]['cross_score'] = cross_scores[idx]
    
    candidates = {}
    for hit in bm25_hits:
        corpus_id = hit['corpus_id']
        if  corpus_id not in candidates:
            candidates[corpus_id] = {'bm25_score': hit['bm25_score'], 'bi_score': DEFAULT_SCORE, 'cross_score': DEFAULT_SCORE}
    for hit in encoder_hits:
        corpus_id = hit['corpus_id']
        if corpus_id not in candidates:
            candidates[corpus_id] = {'bm25_score': DEFAULT_SCORE, 'bi_score': hit['score'], 'cross_score': hit['cross_score']}
        else:
            bm25_score = candidates[corpus_id]['bm25_score']
            candidates[corpus_id].update({'bm25_score': bm25_score, 'bi_score': hit['score'], 'cross_score': hit['cross_score']})
    
    final_candidates = {}
    for key, value in candidates.items():
        input_string = passages[key].replace("\n", "")
        string_set = set(clean_string(input_string))
        for item in string_set:
            final_candidates[item] = value
    # remove the query itself from candidates
    if query in final_candidates: 
        del final_candidates[query]

    # add gms column
    for query_candidate in final_candidates:
        value = final_candidates[query_candidate]
        value['gms'] = query_gms_dict.get(query_candidate, 0)
        final_candidates[query_candidate] = value
    # Total Results
    st.write("E-Commerce Query Expansion Candidates: \n")
    return final_candidates

def re_rank_candidates(query, candidates, method):
    if method == 'bm25':
        # Filter and sort by bm25_score
        filtered_sorted_result = sorted(
            [(k, v) for k, v in candidates.items() if v['bm25_score'] > DEFAULT_SCORE],
            key=lambda x: x[1]['bm25_score'],
            reverse=True
        )
    elif method == 'bi_encoder':
        # Filter and sort by bi_score
        filtered_sorted_result = sorted(
            [(k, v) for k, v in candidates.items() if v['bi_score'] > DEFAULT_SCORE],
            key=lambda x: x[1]['bi_score'],
            reverse=True
        )
    elif method == 'cross_encoder':
        # Filter and sort by cross_score
        filtered_sorted_result = sorted(
            [(k, v) for k, v in candidates.items() if v['cross_score'] > DEFAULT_SCORE],
            key=lambda x: x[1]['cross_score'],
            reverse=True
        )
    elif method == 'gms':
        filtered_sorted_by_encoder = sorted(
            [(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
            key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
            reverse=True
        )
        # first sort by cross_score + bi_score
        filtered_sorted_result = sorted(filtered_sorted_by_encoder, key=lambda x: x[1]['gms'], reverse=True
        )
    else:
        # use default method cross_score + bi_score
        # Filter and sort by cross_score + bi_score
        filtered_sorted_result = sorted(
            [(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
            key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
            reverse=True
        )
    data_dicts = [{'query': item[0], **item[1]} for item in filtered_sorted_result]
    # Convert the list of dictionaries into a DataFrame
    df = pd.DataFrame(data_dicts)
    return df


# st.write("## Raw Candidates:")
if st.button('Generated Expansion'): 
    candidates = generate_query_expansion_candidates(query = user_query)
    df = re_rank_candidates(user_query, candidates, method='cross_encoder')
    result = list(df['query'][:maxtags_sidebar])
    st.write(result)
    ## convert into dataframe
    # data_dicts = [{'query': key, **values} for key, values in candidates.items()]
    # df = pd.DataFrame(data_dicts)
    # st.write(list(candidates.keys())[0:maxtags_sidebar])
    # st.write(df)
    # st.dataframe(df)
    # st.success(raw_candidates)

if st.button('Rerank By GMS'):
    candidates = generate_query_expansion_candidates(query = user_query)
    df = re_rank_candidates(user_query, candidates, method='gms')
    st.dataframe(df[['query', 'gms']][:maxtags_sidebar])