File size: 10,406 Bytes
dfed715
 
 
 
 
 
 
 
 
 
 
edeec5b
2390abe
dfed715
 
 
 
 
62b04b6
dfed715
 
cea67ad
dfed715
 
62b04b6
 
4206bd7
 
 
 
 
 
 
 
70c2398
dfed715
 
 
 
c306d7d
dfed715
 
 
 
 
 
 
 
 
 
 
0a2d292
dfed715
 
 
 
6c5ae85
dfed715
bc54fc9
 
dfed715
 
 
 
 
bc54fc9
dfed715
 
c306d7d
 
 
 
 
18083b8
c306d7d
f4b5cf8
 
 
 
 
 
 
 
 
 
c306d7d
 
 
 
 
 
 
 
 
 
b726bae
5f58eb0
 
 
 
 
 
f4b5cf8
 
 
048a704
dfed715
 
 
c306d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfed715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c306d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
dfed715
c306d7d
b726bae
c306d7d
 
 
 
 
 
 
5b680fa
18083b8
95fd1f0
18083b8
 
 
 
95fd1f0
4213864
95fd1f0
f4b5cf8
7037fa9
f4b5cf8
 
 
 
 
 
 
048a704
f4b5cf8
 
 
 
ecba67a
60faeff
 
 
ebaac51
60faeff
048a704
5e1fd6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6058fa5
048a704
2390abe
35a977f
5e1fd6b
ecba67a
487d029
 
60faeff
487d029
35a977f
 
 
 
2cc7e90
35a977f
2cc7e90
35a977f
2390abe
 
 
2cc7e90
ecba67a
1dc9db2
dfed715
62b04b6
38f09a5
1dc9db2
 
 
 
38f09a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image

import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle
import random
import numpy as np

############
## Main page
############

st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")

st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('etsy-shop-LLC.png')
st.image(image)

st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
#    label='# Enter Query:',
#    text='Press enter to add more',
#    value=['Mother'],
#    suggestions=['gift', 'nike', 'wool'],
#    maxtags=maxtags_sidebar,
#    key="aljnf")

user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")

# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
     'Which transformers model would you like to be selected?',
     ('multi-qa-MiniLM-L6-cos-v1','null','null'))

option2 = st.sidebar.selectbox(
     'Which corss-encoder model would you like to be selected?',
     ('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))

st.sidebar.success("Load Successfully!")

#if not torch.cuda.is_available():
#    print("Warning: No GPU found. Please add GPU to your notebook")

#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1,device='cpu')
bi_encoder.max_seq_length = 256    #Truncate long passages to 256 tokens
top_k = 32                          #Number of passages we want to retrieve with the bi-encoder

#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2, device='cpu')

passages = []

# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
  cache_data = pickle.load(fIn)
  passages = cache_data['sentences']
  corpus_embeddings = cache_data['embeddings']

from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import re

import yake

language = "en"
max_ngram_size = 3
deduplication_threshold = 0.9
deduplication_algo = 'seqm'
windowSize = 3
numOfKeywords = 3

custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)

# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
    tokenized_doc = []
    for token in text.lower().split():
        token = token.strip(string.punctuation)

        if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
            tokenized_doc.append(token)
    return tokenized_doc

tokenized_corpus = []
for passage in tqdm(passages):
    tokenized_corpus.append(bm25_tokenizer(passage))

bm25 = BM25Okapi(tokenized_corpus)

def word_len(s):
    return len([i for i in s.split(' ') if i])


# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
    print("Input query:", query)
    total_qe = []

    ##### BM25 search (lexical search) #####
    bm25_scores = bm25.get_scores(bm25_tokenizer(query))
    top_n = np.argpartition(bm25_scores, -5)[-5:]
    bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
    bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
    
    #print("Top-10 lexical search (BM25) hits")
    qe_string = []
    for hit in bm25_hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))

    sub_string = []
    for item in qe_string:
      for sub_item in item.split(","):
        sub_string.append(sub_item)
    #print(sub_string)
    total_qe.append(sub_string)

    ##### Sematic Search #####
    # Encode the query using the bi-encoder and find potentially relevant passages
    query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
    hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
    hits = hits[0]  # Get the hits for the first query

    ##### Re-Ranking #####
    # Now, score all retrieved passages with the cross_encoder
    cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp)

    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx]

    # Output of top-10 hits from bi-encoder
    #print("\n-------------------------\n")
    #print("Top-N Bi-Encoder Retrieval hits")
    hits = sorted(hits, key=lambda x: x['score'], reverse=True)
    qe_string = []
    for hit in hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
    #print(qe_string)
    total_qe.append(qe_string)

    # Output of top-10 hits from re-ranker
    #print("\n-------------------------\n")
    #print("Top-N Cross-Encoder Re-ranker hits")
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
    qe_string = []
    for hit in hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
    #print(qe_string)
    total_qe.append(qe_string)

    # Total Results
    total_qe.append(qe_string)
    st.write("E-Commerce Query Expansion Results: \n")

    res = []
    for sub_list in total_qe:
      for i in sub_list:
        rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
        rs_final = re.sub("\x20\x20", "\n", rs)
        #st.write(rs_final.strip())
        res.append(rs_final.strip())

    res_clean = []
    for out in res:
      if len(out) > 20:
        keywords = custom_kw_extractor.extract_keywords(out)
        for key in keywords:
          res_clean.append(key[0])
      else:
        res_clean.append(out)

    show_out = []
    for i in res_clean:
      num = word_len(i)
      if num > 1:
        show_out.append(i)
    unique_list = list(set(show_out))
    new_unique_list = [item for item in unique_list if item != query]
    Lowercasing_list = [item.lower() for item in new_unique_list]
    st.write(Lowercasing_list[0:maxtags_sidebar])

    return Lowercasing_list

def search_nolog(query):
    total_qe = []
    ##### BM25 search (lexical search) #####
    bm25_scores = bm25.get_scores(bm25_tokenizer(query))
    top_n = np.argpartition(bm25_scores, -5)[-5:]
    bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
    bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
    
    qe_string = []
    for hit in bm25_hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))

    sub_string = []
    for item in qe_string:
      for sub_item in item.split(","):
        sub_string.append(sub_item)
    total_qe.append(sub_string)

    ##### Sematic Search #####
    # Encode the query using the bi-encoder and find potentially relevant passages
    query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
    hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
    hits = hits[0]  # Get the hits for the first query

    ##### Re-Ranking #####
    # Now, score all retrieved passages with the cross_encoder
    cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp)

    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx]

    # Output of top-10 hits from bi-encoder
    hits = sorted(hits, key=lambda x: x['score'], reverse=True)
    qe_string = []
    for hit in hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
    total_qe.append(qe_string)

    # Output of top-10 hits from re-ranker
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
    qe_string = []
    for hit in hits[0:1000]:
      if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
        qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
    total_qe.append(qe_string)

    # Total Results
    total_qe.append(qe_string)

    res = []
    for sub_list in total_qe:
      for i in sub_list:
        rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
        rs_final = re.sub("\x20\x20", "\n", rs)
        res.append(rs_final.strip())

    res_clean = []
    for out in res:
      if len(out) > 20:
        keywords = custom_kw_extractor.extract_keywords(out)
        for key in keywords:
          res_clean.append(key[0])
      else:
        res_clean.append(out)

    show_out = []
    for i in res_clean:
      num = word_len(i)
      if num > 1:
        show_out.append(i)

    return show_out

def reranking():
    rerank_list = []
    reres = []
    remove_dup = []
    rerank_list = search_nolog(query = user_query)
    unique_list = list(set(rerank_list))
    Lowercasing_list = [item.lower() for item in unique_list]
    new_unique_list = [item for item in Lowercasing_list if item != user_query]

    for i in new_unique_list:
        clean_string = i.strip()
        if clean_string not in remove_dup:
            remove_dup.append(clean_string)

    st.write("E-Commerce Query Expansion Results: \n")
    st.write(remove_dup[0:maxtags_sidebar])

    for i in remove_dup[0:maxtags_sidebar]:
        reres.append(i)
    np.random.seed(7)
    np.random.shuffle(reres)
    st.write("Reranking Results: \n")
    st.write(reres)

st.write("## Results:")
if st.button('Generated Expansion'):
    out_res = search(query = user_query)
    #st.success(out_res)

if st.button('Rerank'):
    out_res = reranking()
    #st.success(out_res)