Spaces:
Sleeping
Sleeping
File size: 10,406 Bytes
dfed715 edeec5b 2390abe dfed715 62b04b6 dfed715 cea67ad dfed715 62b04b6 4206bd7 70c2398 dfed715 c306d7d dfed715 0a2d292 dfed715 6c5ae85 dfed715 bc54fc9 dfed715 bc54fc9 dfed715 c306d7d 18083b8 c306d7d f4b5cf8 c306d7d b726bae 5f58eb0 f4b5cf8 048a704 dfed715 c306d7d dfed715 c306d7d dfed715 c306d7d b726bae c306d7d 5b680fa 18083b8 95fd1f0 18083b8 95fd1f0 4213864 95fd1f0 f4b5cf8 7037fa9 f4b5cf8 048a704 f4b5cf8 ecba67a 60faeff ebaac51 60faeff 048a704 5e1fd6b 6058fa5 048a704 2390abe 35a977f 5e1fd6b ecba67a 487d029 60faeff 487d029 35a977f 2cc7e90 35a977f 2cc7e90 35a977f 2390abe 2cc7e90 ecba67a 1dc9db2 dfed715 62b04b6 38f09a5 1dc9db2 38f09a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image
import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle
import random
import numpy as np
############
## Main page
############
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('etsy-shop-LLC.png')
st.image(image)
st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
# label='# Enter Query:',
# text='Press enter to add more',
# value=['Mother'],
# suggestions=['gift', 'nike', 'wool'],
# maxtags=maxtags_sidebar,
# key="aljnf")
user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")
# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
'Which transformers model would you like to be selected?',
('multi-qa-MiniLM-L6-cos-v1','null','null'))
option2 = st.sidebar.selectbox(
'Which corss-encoder model would you like to be selected?',
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
st.sidebar.success("Load Successfully!")
#if not torch.cuda.is_available():
# print("Warning: No GPU found. Please add GPU to your notebook")
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1,device='cpu')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2, device='cpu')
passages = []
# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
cache_data = pickle.load(fIn)
passages = cache_data['sentences']
corpus_embeddings = cache_data['embeddings']
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import re
import yake
language = "en"
max_ngram_size = 3
deduplication_threshold = 0.9
deduplication_algo = 'seqm'
windowSize = 3
numOfKeywords = 3
custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)
# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
tokenized_corpus = []
for passage in tqdm(passages):
tokenized_corpus.append(bm25_tokenizer(passage))
bm25 = BM25Okapi(tokenized_corpus)
def word_len(s):
return len([i for i in s.split(' ') if i])
# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
print("Input query:", query)
total_qe = []
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
top_n = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
#print("Top-10 lexical search (BM25) hits")
qe_string = []
for hit in bm25_hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
sub_string = []
for item in qe_string:
for sub_item in item.split(","):
sub_string.append(sub_item)
#print(sub_string)
total_qe.append(sub_string)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-10 hits from bi-encoder
#print("\n-------------------------\n")
#print("Top-N Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
#print(qe_string)
total_qe.append(qe_string)
# Output of top-10 hits from re-ranker
#print("\n-------------------------\n")
#print("Top-N Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
#print(qe_string)
total_qe.append(qe_string)
# Total Results
total_qe.append(qe_string)
st.write("E-Commerce Query Expansion Results: \n")
res = []
for sub_list in total_qe:
for i in sub_list:
rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
rs_final = re.sub("\x20\x20", "\n", rs)
#st.write(rs_final.strip())
res.append(rs_final.strip())
res_clean = []
for out in res:
if len(out) > 20:
keywords = custom_kw_extractor.extract_keywords(out)
for key in keywords:
res_clean.append(key[0])
else:
res_clean.append(out)
show_out = []
for i in res_clean:
num = word_len(i)
if num > 1:
show_out.append(i)
unique_list = list(set(show_out))
new_unique_list = [item for item in unique_list if item != query]
Lowercasing_list = [item.lower() for item in new_unique_list]
st.write(Lowercasing_list[0:maxtags_sidebar])
return Lowercasing_list
def search_nolog(query):
total_qe = []
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
top_n = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
qe_string = []
for hit in bm25_hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
sub_string = []
for item in qe_string:
for sub_item in item.split(","):
sub_string.append(sub_item)
total_qe.append(sub_string)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-10 hits from bi-encoder
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
total_qe.append(qe_string)
# Output of top-10 hits from re-ranker
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
total_qe.append(qe_string)
# Total Results
total_qe.append(qe_string)
res = []
for sub_list in total_qe:
for i in sub_list:
rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
rs_final = re.sub("\x20\x20", "\n", rs)
res.append(rs_final.strip())
res_clean = []
for out in res:
if len(out) > 20:
keywords = custom_kw_extractor.extract_keywords(out)
for key in keywords:
res_clean.append(key[0])
else:
res_clean.append(out)
show_out = []
for i in res_clean:
num = word_len(i)
if num > 1:
show_out.append(i)
return show_out
def reranking():
rerank_list = []
reres = []
remove_dup = []
rerank_list = search_nolog(query = user_query)
unique_list = list(set(rerank_list))
Lowercasing_list = [item.lower() for item in unique_list]
new_unique_list = [item for item in Lowercasing_list if item != user_query]
for i in new_unique_list:
clean_string = i.strip()
if clean_string not in remove_dup:
remove_dup.append(clean_string)
st.write("E-Commerce Query Expansion Results: \n")
st.write(remove_dup[0:maxtags_sidebar])
for i in remove_dup[0:maxtags_sidebar]:
reres.append(i)
np.random.seed(7)
np.random.shuffle(reres)
st.write("Reranking Results: \n")
st.write(reres)
st.write("## Results:")
if st.button('Generated Expansion'):
out_res = search(query = user_query)
#st.success(out_res)
if st.button('Rerank'):
out_res = reranking()
#st.success(out_res) |