File size: 3,792 Bytes
39caa01
 
 
 
 
 
 
 
 
 
c7496eb
39caa01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1d1d9
39caa01
 
 
1d1d1d9
 
 
39caa01
c1d264e
 
39caa01
 
 
 
 
 
 
 
 
927223b
c1d264e
927223b
 
 
f6c2115
927223b
39caa01
 
 
 
 
 
 
 
c1d264e
39caa01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1d1d9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image

import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle

############
## Main page
############

st.write("# Code for Query Expansion")

st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('top.png')
st.image(image)

st.sidebar.write("# Parameter Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 10, 1, key='ehikwegrjifbwreuk')
user_query = st_tags(
    label='# Enter Query:',
    text='Press enter to add more',
    value=['Mother'],
    suggestions=['five', 'six', 'seven', 'eight', 'nine', 'three', 'eleven', 'ten', 'four'],
    maxtags=maxtags_sidebar,
    key="aljnf")

# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
     'Which transformers model would you like to be selected?',
     ('multi-qa-MiniLM-L6-cos-v1','null','null'))

option2 = st.sidebar.selectbox(
     'Which corss-encoder model would you like to be selected?',
     ('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))

st.sidebar.success("Load Successfully!")

#if not torch.cuda.is_available():
#    print("Warning: No GPU found. Please add GPU to your notebook")

#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1)
bi_encoder.max_seq_length = 256    #Truncate long passages to 256 tokens
top_k = 32                          #Number of passages we want to retrieve with the bi-encoder

#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2)

# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
  cache_data = pickle.load(fIn)
  #corpus_sentences = cache_data['sentences']
  corpus_embeddings = cache_data['embeddings']

# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
    print("Input question:", query)
    ##### Sematic Search #####
    # Encode the query using the bi-encoder and find potentially relevant passages
    query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
    #query_embedding = query_embedding.cuda()
    hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
    hits = hits[0]  # Get the hits for the first query

    ##### Re-Ranking #####
    # Now, score all retrieved passages with the cross_encoder
    cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp)

    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx]

    # Output of top-10 hits from bi-encoder
    print("\n-------------------------\n")
    print("Top-10 Bi-Encoder Retrieval hits")
    hits = sorted(hits, key=lambda x: x['score'], reverse=True)
    for hit in hits[0:10]:
        print("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " ")))

    # Output of top-10 hits from re-ranker
    print("\n-------------------------\n")
    print("Top-10 Cross-Encoder Re-ranker hits")
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
    for hit in hits[0:10]:
        print("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " ")))

st.write("## Results:")
if st.button('Generate Sentence'):
    out = search(query = user_query)
    st.success(out)