import os import shutil import gradio as gr from PIL import Image import subprocess #os.chdir('Restormer') from demo_dagan import * # Download sample images examples = [['project/cartoon2.jpg','project/video1.mp4'], ['project/cartoon3.jpg','project/video2.mp4'], ['project/celeb1.jpg','project/video1.mp4'], ['project/celeb2.jpg','project/video2.mp4'], ] inference_on = ['Full Resolution Image', 'Downsampled Image'] title = "DaGAN" description = """ Gradio demo for Depth-Aware Generative Adversarial Network for Talking Head Video Generation, CVPR 2022L. [Paper][Github Code]\n """ ##With Restormer, you can perform: (1) Image Denoising, (2) Defocus Deblurring, (3) Motion Deblurring, and (4) Image Deraining. ##To use it, simply upload your own image, or click one of the examples provided below. article = "
Depth-Aware Generative Adversarial Network for Talking Head Video Generation | Github Repo
" def inference(source_image, video): if not os.path.exists('temp'): os.system('mkdir temp') cmd = f"ffmpeg -y -ss 00:00:00 -i {video} -to 00:00:08 -c copy video_input.mp4" subprocess.run(cmd.split()) driving_video = "video_input.mp4" output = "rst.mp4" with open("config/vox-adv-256.yaml") as f: config = yaml.load(f) generator = G.SPADEDepthAwareGenerator(**config['model_params']['generator_params'],**config['model_params']['common_params']) config['model_params']['common_params']['num_channels'] = 4 kp_detector = KPD.KPDetector(**config['model_params']['kp_detector_params'],**config['model_params']['common_params']) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') g_checkpoint = torch.load("generator.pt", map_location=device) kp_checkpoint = torch.load("kp_detector.pt", map_location=device) ckp_generator = OrderedDict((k.replace('module.',''),v) for k,v in g_checkpoint.items()) generator.load_state_dict(ckp_generator) ckp_kp_detector = OrderedDict((k.replace('module.',''),v) for k,v in kp_checkpoint.items()) kp_detector.load_state_dict(ckp_kp_detector) depth_encoder = depth.ResnetEncoder(18, False) depth_decoder = depth.DepthDecoder(num_ch_enc=depth_encoder.num_ch_enc, scales=range(4)) loaded_dict_enc = torch.load('encoder.pth') loaded_dict_dec = torch.load('depth.pth') filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in depth_encoder.state_dict()} depth_encoder.load_state_dict(filtered_dict_enc) ckp_depth_decoder= {k: v for k, v in loaded_dict_dec.items() if k in depth_decoder.state_dict()} depth_decoder.load_state_dict(ckp_depth_decoder) depth_encoder.eval() depth_decoder.eval() # device = torch.device('cpu') # stx() generator = generator.to(device) kp_detector = kp_detector.to(device) depth_encoder = depth_encoder.to(device) depth_decoder = depth_decoder.to(device) generator.eval() kp_detector.eval() depth_encoder.eval() depth_decoder.eval() img_multiple_of = 8 with torch.inference_mode(): if torch.cuda.is_available(): torch.cuda.ipc_collect() torch.cuda.empty_cache() source_image = imageio.imread(source_image) reader = imageio.get_reader(driving_video) fps = reader.get_meta_data()['fps'] driving_video = [] try: for im in reader: driving_video.append(im) except RuntimeError: pass reader.close() source_image = resize(source_image, (256, 256))[..., :3] driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video] i = find_best_frame(source_image, driving_video) print ("Best frame: " + str(i)) driving_forward = driving_video[i:] driving_backward = driving_video[:(i+1)][::-1] sources_forward, drivings_forward, predictions_forward,depth_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False) sources_backward, drivings_backward, predictions_backward,depth_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False) predictions = predictions_backward[::-1] + predictions_forward[1:] sources = sources_backward[::-1] + sources_forward[1:] drivings = drivings_backward[::-1] + drivings_forward[1:] depth_gray = depth_backward[::-1] + depth_forward[1:] imageio.mimsave(output, [np.concatenate((img_as_ubyte(s),img_as_ubyte(d),img_as_ubyte(p)),1) for (s,d,p) in zip(sources, drivings, predictions)], fps=fps) imageio.mimsave("gray.mp4", depth_gray, fps=fps) # merge the gray video animation = np.array(imageio.mimread(output,memtest=False)) gray = np.array(imageio.mimread("gray.mp4",memtest=False)) src_dst = animation[:,:,:512,:] animate = animation[:,:,512:,:] merge = np.concatenate((src_dst,gray,animate),2) imageio.mimsave(output, merge, fps=fps) return output gr.Interface( inference, [ gr.inputs.Image(type="filepath", label="Source Image"), gr.inputs.Video(type='mp4',label="Driving Video"), ], gr.outputs.Video(type="mp4", label="Output Video"), title=title, description=description, article=article, theme ="huggingface", examples=examples, allow_flagging=False, ).launch(debug=False,enable_queue=True)