Spaces:
Running
Running
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d,SPADEResnetBlock | |
from modules.dense_motion import * | |
import pdb | |
from modules.AdaIN import calc_mean_std,adaptive_instance_normalization | |
from modules.dynamic_conv import Dynamic_conv2d | |
class SPADEGenerator(nn.Module): | |
def __init__(self): | |
super().__init__() | |
ic = 256 | |
cc = 4 | |
oc = 64 | |
norm_G = 'spadespectralinstance' | |
label_nc = 3 + cc | |
self.compress = nn.Conv2d(ic, cc, 3, padding=1) | |
self.fc = nn.Conv2d(ic, 2 * ic, 3, padding=1) | |
self.G_middle_0 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) | |
self.G_middle_1 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) | |
self.G_middle_2 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) | |
# self.G_middle_3 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) | |
# self.G_middle_4 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) | |
# self.G_middle_5 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) | |
self.up_0 = SPADEResnetBlock(2 * ic, ic, norm_G, label_nc) | |
self.up_1 = SPADEResnetBlock(ic, oc, norm_G, label_nc) | |
self.conv_img = nn.Conv2d(oc, 3, 3, padding=1) | |
self.up = nn.Upsample(scale_factor=2) | |
def forward(self, feature, image): | |
cp = self.compress(feature) | |
seg = torch.cat((F.interpolate(cp, size=(image.shape[2], image.shape[3])), image), dim=1) # 7, 256, 256 | |
x = feature # 256, 64, 64 | |
x = self.fc(x) # 512, 64, 64 | |
x = self.G_middle_0(x, seg) | |
x = self.G_middle_1(x, seg) | |
x = self.G_middle_2(x, seg) | |
# x = self.G_middle_3(x, seg) | |
# x = self.G_middle_4(x, seg) | |
# x = self.G_middle_5(x, seg) | |
x = self.up(x) # 256, 128, 128 | |
x = self.up_0(x, seg) | |
x = self.up(x) # 64, 256, 256 | |
x = self.up_1(x, seg) | |
x = self.conv_img(F.leaky_relu(x, 2e-1)) | |
# x = torch.tanh(x) | |
x = F.sigmoid(x) | |
return x | |
class DepthAwareAttention(nn.Module): | |
""" depth-aware attention Layer""" | |
def __init__(self,in_dim,activation): | |
super(DepthAwareAttention,self).__init__() | |
self.chanel_in = in_dim | |
self.activation = activation | |
self.query_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1) | |
self.key_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1) | |
self.value_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim , kernel_size= 1) | |
self.gamma = nn.Parameter(torch.zeros(1)) | |
self.softmax = nn.Softmax(dim=-1) # | |
def forward(self,source,feat): | |
""" | |
inputs : | |
source : input feature maps( B X C X W X H) 256,64,64 | |
driving : input feature maps( B X C X W X H) 256,64,64 | |
returns : | |
out : self attention value + input feature | |
attention: B X N X N (N is Width*Height) | |
""" | |
m_batchsize,C,width ,height = source.size() | |
proj_query = self.activation(self.query_conv(source)).view(m_batchsize,-1,width*height).permute(0,2,1) # B X CX(N) [bz,32,64,64] | |
proj_key = self.activation(self.key_conv(feat)).view(m_batchsize,-1,width*height) # B X C x (*W*H) | |
energy = torch.bmm(proj_query,proj_key) # transpose check | |
attention = self.softmax(energy) # BX (N) X (N) | |
proj_value = self.activation(self.value_conv(feat)).view(m_batchsize,-1,width*height) # B X C X N | |
out = torch.bmm(proj_value,attention.permute(0,2,1) ) | |
out = out.view(m_batchsize,C,width,height) | |
out = self.gamma*out + feat | |
return out,attention | |
#### main #### | |
class DepthAwareGenerator(nn.Module): | |
""" | |
Generator that given source image and and keypoints try to transform image according to movement trajectories | |
induced by keypoints. Generator follows Johnson architecture. | |
""" | |
def __init__(self, num_channels, num_kp, block_expansion, max_features, num_down_blocks, | |
num_bottleneck_blocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): | |
super(DepthAwareGenerator, self).__init__() | |
if dense_motion_params is not None: | |
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, num_channels=num_channels, | |
estimate_occlusion_map=estimate_occlusion_map, | |
**dense_motion_params) | |
else: | |
self.dense_motion_network = None | |
self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
down_blocks = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** i)) | |
out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
#source depth | |
self.src_first = SameBlock2d(1, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
src_down_blocks = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** i)) | |
out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
src_down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.src_down_blocks = nn.ModuleList(src_down_blocks) | |
# #driving depth | |
# self.dst_first = SameBlock2d(1, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
# dst_down_blocks = [] | |
# for i in range(num_down_blocks): | |
# in_features = min(max_features, block_expansion * (2 ** i)) | |
# out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
# dst_down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
# self.dst_down_blocks = nn.ModuleList(dst_down_blocks) | |
self.AttnModule = DepthAwareAttention(out_features,nn.ReLU()) | |
up_blocks = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i))) | |
out_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i - 1))) | |
up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.up_blocks = nn.ModuleList(up_blocks) | |
self.bottleneck = torch.nn.Sequential() | |
in_features = min(max_features, block_expansion * (2 ** num_down_blocks)) | |
for i in range(num_bottleneck_blocks): | |
self.bottleneck.add_module('r' + str(i), ResBlock2d(in_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.final = nn.Conv2d(block_expansion, num_channels, kernel_size=(7, 7), padding=(3, 3)) | |
self.estimate_occlusion_map = estimate_occlusion_map | |
self.num_channels = num_channels | |
def deform_input(self, inp, deformation): | |
_, h_old, w_old, _ = deformation.shape | |
_, _, h, w = inp.shape | |
if h_old != h or w_old != w: | |
deformation = deformation.permute(0, 3, 1, 2) | |
deformation = F.interpolate(deformation, size=(h, w), mode='bilinear') | |
deformation = deformation.permute(0, 2, 3, 1) | |
return F.grid_sample(inp, deformation) | |
def forward(self, source_image, kp_driving, kp_source, source_depth, driving_depth): | |
# Encoding (downsampling) part | |
out = self.first(source_image) | |
for i in range(len(self.down_blocks)): | |
out = self.down_blocks[i](out) | |
src_out = self.src_first(source_depth) | |
for i in range(len(self.src_down_blocks)): | |
src_out = self.src_down_blocks[i](src_out) | |
# dst_out = self.dst_first(driving_depth) | |
# for i in range(len(self.down_blocks)): | |
# dst_out = self.dst_down_blocks[i](dst_out) | |
# Transforming feature representation according to deformation and occlusion | |
output_dict = {} | |
if self.dense_motion_network is not None: | |
dense_motion = self.dense_motion_network(source_image=source_image, kp_driving=kp_driving, | |
kp_source=kp_source) | |
output_dict['mask'] = dense_motion['mask'] | |
output_dict['sparse_deformed'] = dense_motion['sparse_deformed'] | |
if 'occlusion_map' in dense_motion: | |
occlusion_map = dense_motion['occlusion_map'] | |
output_dict['occlusion_map'] = occlusion_map | |
else: | |
occlusion_map = None | |
deformation = dense_motion['deformation'] | |
out = self.deform_input(out, deformation) | |
if occlusion_map is not None: | |
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: | |
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') | |
out = out * occlusion_map | |
out,attention = self.AttnModule(src_out,out) | |
output_dict["deformed"] = self.deform_input(source_image, deformation) | |
output_dict["attention"] = attention | |
# Decoding part | |
out = self.bottleneck(out) | |
for i in range(len(self.up_blocks)): | |
out = self.up_blocks[i](out) | |
out = self.final(out) | |
out = F.sigmoid(out) | |
output_dict["prediction"] = out | |
return output_dict | |
class SPADEDepthAwareGenerator(nn.Module): | |
""" | |
Generator that given source image and and keypoints try to transform image according to movement trajectories | |
induced by keypoints. Generator follows Johnson architecture. | |
""" | |
def __init__(self, num_channels, num_kp, block_expansion, max_features, num_down_blocks, | |
num_bottleneck_blocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): | |
super(SPADEDepthAwareGenerator, self).__init__() | |
if dense_motion_params is not None: | |
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, num_channels=num_channels, | |
estimate_occlusion_map=estimate_occlusion_map, | |
**dense_motion_params) | |
else: | |
self.dense_motion_network = None | |
self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
down_blocks = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** i)) | |
out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
#source depth | |
self.src_first = SameBlock2d(1, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
src_down_blocks = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** i)) | |
out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
src_down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.src_down_blocks = nn.ModuleList(src_down_blocks) | |
# #driving depth | |
# self.dst_first = SameBlock2d(1, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
# dst_down_blocks = [] | |
# for i in range(num_down_blocks): | |
# in_features = min(max_features, block_expansion * (2 ** i)) | |
# out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
# dst_down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
# self.dst_down_blocks = nn.ModuleList(dst_down_blocks) | |
self.AttnModule = DepthAwareAttention(out_features,nn.ReLU()) | |
self.decoder = SPADEGenerator() | |
self.estimate_occlusion_map = estimate_occlusion_map | |
self.num_channels = num_channels | |
def deform_input(self, inp, deformation): | |
_, h_old, w_old, _ = deformation.shape | |
_, _, h, w = inp.shape | |
if h_old != h or w_old != w: | |
deformation = deformation.permute(0, 3, 1, 2) | |
deformation = F.interpolate(deformation, size=(h, w), mode='bilinear') | |
deformation = deformation.permute(0, 2, 3, 1) | |
return F.grid_sample(inp, deformation) | |
def forward(self, source_image, kp_driving, kp_source, source_depth, driving_depth): | |
# Encoding (downsampling) part | |
out = self.first(source_image) | |
for i in range(len(self.down_blocks)): | |
out = self.down_blocks[i](out) | |
src_out = self.src_first(source_depth) | |
for i in range(len(self.src_down_blocks)): | |
src_out = self.src_down_blocks[i](src_out) | |
# dst_out = self.dst_first(driving_depth) | |
# for i in range(len(self.down_blocks)): | |
# dst_out = self.dst_down_blocks[i](dst_out) | |
# Transforming feature representation according to deformation and occlusion | |
output_dict = {} | |
if self.dense_motion_network is not None: | |
dense_motion = self.dense_motion_network(source_image=source_image, kp_driving=kp_driving, | |
kp_source=kp_source) | |
output_dict['mask'] = dense_motion['mask'] | |
output_dict['sparse_deformed'] = dense_motion['sparse_deformed'] | |
if 'occlusion_map' in dense_motion: | |
occlusion_map = dense_motion['occlusion_map'] | |
output_dict['occlusion_map'] = occlusion_map | |
else: | |
occlusion_map = None | |
deformation = dense_motion['deformation'] | |
out = self.deform_input(out, deformation) | |
if occlusion_map is not None: | |
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: | |
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') | |
out = out * occlusion_map | |
out,attention = self.AttnModule(src_out,out) | |
deformed_image = self.deform_input(source_image, deformation) | |
output_dict["deformed"] = deformed_image | |
output_dict["attention"] = attention | |
if occlusion_map is not None: | |
if deformed_image.shape[2] != occlusion_map.shape[2] or deformed_image.shape[3] != occlusion_map.shape[3]: | |
occlusion_map = F.interpolate(occlusion_map, size=deformed_image.shape[2:], mode='bilinear') | |
deformed_image = deformed_image * occlusion_map | |
out = self.decoder(out, deformed_image) | |
# # Decoding part | |
# out = self.bottleneck(out) | |
# for i in range(len(self.up_blocks)): | |
# out = self.up_blocks[i](out) | |
# out = self.final(out) | |
# out = F.sigmoid(out) | |
output_dict["prediction"] = out | |
return output_dict | |