from huggingface_hub import hf_hub_download from inference import YOLOv10 model_file = hf_hub_download( repo_id="onnx-community/yolov10n", filename="onnx/model.onnx" ) model = YOLOv10(model_file) def detection(image, conf_threshold=0.3): image = cv2.resize(image, (model.input_width, model.input_height)) new_image = model.detect_objects(image, conf_threshold) return new_image import gradio as gr from gradio_webrtc import WebRTC css = """.my-group {max-width: 600px !important; max-height: 600px !important;} .my-column {display: flex !important; justify-content: center !important; align-items: center !important;}""" with gr.Blocks(css=css) as demo: gr.HTML( """

YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)

""" ) with gr.Column(elem_classes=["my-column"]): with gr.Group(elem_classes=["my-group"]): image = WebRTC(label="Stream", rtc_configuration=None) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.30, ) image.stream( fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10 ) if __name__ == "__main__": demo.launch()