from fastapi import FastAPI, HTTPException from pydantic import BaseModel from pymongo import MongoClient from urllib.parse import quote_plus import uuid from typing import List, Optional import json from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.responses import HTMLResponse import os import base64 from groq import Groq import faiss import pickle import torch from transformers import CLIPProcessor, CLIPModel from PIL import Image # Load the FAISS index index = faiss.read_index("knowledge_base.faiss") # Load the titles metadata with open("titles.pkl", "rb") as f: titles = pickle.load(f) # Load CLIP model and processor on CPU model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to("cpu") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # Initialize Groq client client = Groq(api_key='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') # MongoDB connection setup def get_mongo_client(): password = quote_plus("momimaad@123") # Change this to your MongoDB password mongo_uri = f"mongodb+srv://hammad:{password}@cluster0.2a9yu.mongodb.net/" return MongoClient(mongo_uri) db_client = get_mongo_client() db = db_client["recipe"] user_collection = db["user_info"] # Pydantic models for user data class User(BaseModel): first_name: str last_name: str email: str password: str class UserData(BaseModel): email: str password: str class UserToken(BaseModel): token: str class RecipeData(BaseModel): name: str class AltrecipeData(BaseModel): recipe_name: str dietary_restrictions: str allergies: List class Ingredient(BaseModel): name: str quantity: str class Recipe(BaseModel): recipe_name: str ingredients: List[Ingredient] directions: List[str] class get_recipe_name(BaseModel): recipe_name: List[str] ingredients: List[List[str]] # Data model for LLM to generate class Alternative_Ingredient(BaseModel): name: str quantity: str class Alternative_Recipe(BaseModel): recipe_name: str alternative_ingredients: List[Alternative_Ingredient] alternative_directions: List[str] # Function for finding the most similar image def find_similar_image(image_path, threshold=30.0): # Load and preprocess the input image image = Image.open(image_path).convert("RGB") inputs = processor(images=image, return_tensors="pt") # Generate embedding for the input image on CPU with torch.no_grad(): image_features = model.get_image_features(**inputs).numpy() # No need for .cpu() # Perform similarity search in FAISS distances, indices = index.search(image_features, k=1) # Search for the most similar embedding # Check if the closest match meets the threshold if distances[0][0] < threshold: return titles[indices[0][0]] else: return "Not Found" def get_recipe(recipe_name: str) -> Recipe: chat_completion = client.chat.completions.create( messages=[ { "role": "system", "content": f"""Your are an expert agent to generate a recipes with proper and corrected ingredients and direction. Your directions should be concise and to the point and dont explain any irrelevant text. You are a recipe database that outputs recipes in JSON.\n The JSON object must use the schema: {json.dumps(Recipe.model_json_schema(), indent=2)}""", }, { "role": "user", "content": f"Fetch a recipe for {recipe_name}", }, ], model="llama-3.2-90b-text-preview", temperature=0, # Streaming is not supported in JSON mode stream=False, # Enable JSON mode by setting the response format response_format={"type": "json_object"}, ) return Recipe.model_validate_json(chat_completion.choices[0].message.content) def Suggest_ingredient_alternatives(recipe_name: str, dietary_restrictions: str, allergies: List) -> Alternative_Recipe: chat_completion = client.chat.completions.create( messages=[ { "role": "system", "content": f""" You are an expert agent to suggest alternatives for specific allergies ingredients for the provided recipe {recipe_name}. Please take the following into account: - If the user has dietary restrictions, suggest substitutes that align with their needs (e.g., vegan, gluten-free, etc.) in alternative_directions and your alternative_directions should be concise and to the point. -In ingredient you will recommend the safe ingredient for avoid any allergy and dietary restriction. - Consider the following allergies {allergies} and recommend the safe ingredient to avoid this allergies. recipe_name: {recipe_name} Dietary Restrictions: {dietary_restrictions} Allergies: {', '.join(allergies)} You are a recipe database that outputs alternative recipes to avoid allergy and dietary_restrictions in JSON.\n The JSON object must use the schema: {json.dumps(Alternative_Recipe.model_json_schema(), indent=2)}""", }, { "role": "user", "content": f"""Fetch a alternative recipe for recipe_name: {recipe_name} Dietary Restrictions: {dietary_restrictions} Allergies: {', '.join(allergies)}""", }, ], model="llama-3.2-90b-text-preview", temperature=0, # Streaming is not supported in JSON mode stream=False, # Enable JSON mode by setting the response format response_format={"type": "json_object"}, ) return Alternative_Recipe.model_validate_json(chat_completion.choices[0].message.content) app = FastAPI() @app.post("/get_recipe/{token}") async def get_recipe_response(token: str, recipe_user: RecipeData): user = user_collection.find_one({"token": token}) if not user: raise HTTPException(status_code=401, detail="Invalid token") # Find user by email recipe_name = recipe_user.name response = get_recipe(recipe_name) return { "Response": response } @app.post("/get_recipe_alternative/{token}") async def get_alternative_recipe_response(token: str, altrecipe_user: AltrecipeData): user = user_collection.find_one({"token": token}) if not user: raise HTTPException(status_code=401, detail="Invalid token") response = Suggest_ingredient_alternatives(altrecipe_user.recipe_name, altrecipe_user.dietary_restrictions, altrecipe_user.allergies) return { "Response": response } # Directory to save uploaded images UPLOAD_DIR = "uploads" # Ensure the upload directory exists os.makedirs(UPLOAD_DIR, exist_ok=True) # Endpoint to upload an image @app.post("/upload-image/{token}") async def upload_image(token: str, file: UploadFile = File(...)): user = user_collection.find_one({"token": token}) if not user: raise HTTPException(status_code=401, detail="Invalid token") # Validate the file type if not file.filename.lower().endswith(('.png', '.jpg', '.jpeg')): raise HTTPException(status_code=400, detail="Invalid file type. Only PNG, JPG, and JPEG are allowed.") # Create a file path for saving the uploaded file file_path = os.path.join(UPLOAD_DIR, file.filename) # Save the file with open(file_path, "wb") as buffer: buffer.write(await file.read()) result = find_similar_image(file_path, threshold=30.0) return { "Response": result } # Endpoint to register a new user @app.post("/register") async def register_user(user: User): # Check if user already exists existing_user = user_collection.find_one({"email": user.email}) if existing_user: raise HTTPException(status_code=400, detail="Email already registered") # Create user data user_data = { "first_name": user.first_name, "last_name": user.last_name, "email": user.email, "password": user.password, # Store plaintext password (not recommended in production) } # Insert the user data into the user_info collection result = user_collection.insert_one(user_data) return {"msg": "User registered successfully", "user_id": str(result.inserted_id)} # Endpoint to check user credentials and generate a token @app.post("/get_token") async def check_credentials(user: UserData): # Find user by email existing_user = user_collection.find_one({"email": user.email}) # Check if user exists and password matches if not existing_user or existing_user["password"] != user.password: raise HTTPException(status_code=401, detail="Invalid email or password") # Generate a UUID token token = str(uuid.uuid4()) # Update the user document with the token user_collection.update_one({"email": user.email}, {"$set": {"token": token}}) return { "first_name": existing_user["first_name"], "last_name": existing_user["last_name"], "token": token, } @app.get("/") async def root(): return {"message": "API is up and running!"}