Spaces:
Build error
Build error
Upload 7 files
Browse files- .env +1 -0
- .gitignore +2 -0
- Procfile +1 -0
- app.py +168 -0
- apppp.py +168 -0
- requirements.txt +0 -0
- setup.sh +9 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Google_API_Key='AIzaSyBPC1o6NSGFT2LumpdompngjOOzzUNwGqk'
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.myenv
|
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: sh setup.sh && streamlit run app.py
|
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
import os
|
5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
6 |
+
import google.generativeai as genai
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
+
from langchain.chains.question_answering import load_qa_chain
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import traceback
|
13 |
+
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Ensure the Google API key is loaded
|
18 |
+
google_api_key = os.getenv("Google_API_Key")
|
19 |
+
if not google_api_key:
|
20 |
+
raise ValueError("Google API key not found. Please check your .env file.")
|
21 |
+
|
22 |
+
genai.configure(api_key=google_api_key)
|
23 |
+
|
24 |
+
# Function to extract text from PDFs
|
25 |
+
def get_pdf_text(pdf_docs):
|
26 |
+
text = ""
|
27 |
+
try:
|
28 |
+
for pdf in pdf_docs:
|
29 |
+
pdf_reader = PdfReader(pdf)
|
30 |
+
for page in pdf_reader.pages:
|
31 |
+
text += page.extract_text()
|
32 |
+
except Exception as e:
|
33 |
+
st.error(f"Error reading PDF files: {e}")
|
34 |
+
return text
|
35 |
+
|
36 |
+
# Function to split text into manageable chunks
|
37 |
+
def get_text_chunks(text):
|
38 |
+
try:
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
40 |
+
chunks = text_splitter.split_text(text)
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error splitting text: {e}")
|
43 |
+
return []
|
44 |
+
return chunks
|
45 |
+
|
46 |
+
# Function to create an in-memory FAISS vector store
|
47 |
+
def get_vector_store(text_chunks):
|
48 |
+
try:
|
49 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
50 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
51 |
+
return vector_store
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"Error creating vector store: {e}")
|
54 |
+
traceback.print_exc()
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Function to create a conversation chain with Google Generative AI
|
58 |
+
def get_conversational_chain():
|
59 |
+
try:
|
60 |
+
prompt_template = """
|
61 |
+
Answer the question as detailed as possible from the provided context. If the answer is not in
|
62 |
+
the provided context, say, "Answer is not available in the context." Do not provide a wrong answer.
|
63 |
+
|
64 |
+
Context:
|
65 |
+
{context}
|
66 |
+
|
67 |
+
Question:
|
68 |
+
{question}
|
69 |
+
|
70 |
+
Answer:
|
71 |
+
"""
|
72 |
+
|
73 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
74 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
75 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
76 |
+
|
77 |
+
return chain
|
78 |
+
except Exception as e:
|
79 |
+
st.error(f"Error creating conversation chain: {e}")
|
80 |
+
traceback.print_exc()
|
81 |
+
return None
|
82 |
+
|
83 |
+
# Function to process user input and provide a response
|
84 |
+
def user_input(user_question, vector_store):
|
85 |
+
try:
|
86 |
+
docs = vector_store.similarity_search(user_question)
|
87 |
+
|
88 |
+
chain = get_conversational_chain()
|
89 |
+
if chain:
|
90 |
+
response = chain(
|
91 |
+
{"input_documents": docs, "question": user_question},
|
92 |
+
return_only_outputs=True
|
93 |
+
)
|
94 |
+
st.markdown(f"<div style='font-size: 16px;'> 🤖 Response:: {response['output_text']}</div>", unsafe_allow_html=True)
|
95 |
+
except Exception as e:
|
96 |
+
st.error(f"Error processing user input: {e}")
|
97 |
+
traceback.print_exc()
|
98 |
+
|
99 |
+
# Main function to handle Streamlit UI and actions
|
100 |
+
def main():
|
101 |
+
# Set page title and icon
|
102 |
+
st.set_page_config(page_title="📚 Chat PDF with Gemini AI", layout="centered", page_icon="📖")
|
103 |
+
|
104 |
+
# Add CSS for styling
|
105 |
+
st.markdown(
|
106 |
+
"""
|
107 |
+
<style>
|
108 |
+
.main-header {
|
109 |
+
font-size: 36px;
|
110 |
+
font-weight: bold;
|
111 |
+
color: #0A74DA;
|
112 |
+
}
|
113 |
+
.instruction {
|
114 |
+
font-size: 18px;
|
115 |
+
margin-bottom: 20px;
|
116 |
+
}
|
117 |
+
|
118 |
+
</style>
|
119 |
+
""",
|
120 |
+
unsafe_allow_html=True
|
121 |
+
)
|
122 |
+
|
123 |
+
# Add header
|
124 |
+
st.markdown("<h1 class='main-header'>Chat with Your PDF using Gemini AI 🤖</h1>", unsafe_allow_html=True)
|
125 |
+
st.markdown("<p class='instruction'>Upload your PDF, ask questions, and get detailed AI responses!</p>", unsafe_allow_html=True)
|
126 |
+
|
127 |
+
# Create a 2-column layout for better structure
|
128 |
+
col1, col2 = st.columns([12, 2])
|
129 |
+
|
130 |
+
with col1:
|
131 |
+
user_question = st.text_input("🔍 Ask a Question from the PDF Files", placeholder="Type your question here...")
|
132 |
+
|
133 |
+
# Add a "Submit" button to process the question
|
134 |
+
if st.button("Submit"):
|
135 |
+
if user_question:
|
136 |
+
st.write("### 🧠 Thinking...")
|
137 |
+
# Only allow submission if vector_store is available
|
138 |
+
if 'vector_store' in st.session_state:
|
139 |
+
user_input(user_question, st.session_state.vector_store)
|
140 |
+
else:
|
141 |
+
st.error("Please upload and process a PDF file first.")
|
142 |
+
else:
|
143 |
+
st.warning("Please enter a question before submitting.")
|
144 |
+
|
145 |
+
with col2:
|
146 |
+
with st.sidebar:
|
147 |
+
st.title("📂 PDF Upload & Processing")
|
148 |
+
st.write("1. Upload multiple PDFs.")
|
149 |
+
st.write("2. Ask questions based on the content.")
|
150 |
+
pdf_docs = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"])
|
151 |
+
|
152 |
+
if st.button("Submit & Process PDFs"):
|
153 |
+
if pdf_docs:
|
154 |
+
with st.spinner("📜 Extracting text and processing..."):
|
155 |
+
raw_text = get_pdf_text(pdf_docs)
|
156 |
+
if raw_text:
|
157 |
+
text_chunks = get_text_chunks(raw_text)
|
158 |
+
if text_chunks:
|
159 |
+
vector_store = get_vector_store(text_chunks)
|
160 |
+
if vector_store:
|
161 |
+
# Store vector store in session state to avoid re-processing
|
162 |
+
st.session_state.vector_store = vector_store
|
163 |
+
st.success("✅ Processing complete!")
|
164 |
+
else:
|
165 |
+
st.warning("Please upload PDF files before processing.")
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
main()
|
apppp.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
import os
|
5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
6 |
+
import google.generativeai as genai
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
+
from langchain.chains.question_answering import load_qa_chain
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import traceback
|
13 |
+
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Ensure the Google API key is loaded
|
18 |
+
google_api_key = os.getenv("Google_API_Key")
|
19 |
+
if not google_api_key:
|
20 |
+
raise ValueError("Google API key not found. Please check your .env file.")
|
21 |
+
|
22 |
+
genai.configure(api_key=google_api_key)
|
23 |
+
|
24 |
+
# Function to extract text from PDFs
|
25 |
+
def get_pdf_text(pdf_docs):
|
26 |
+
text = ""
|
27 |
+
try:
|
28 |
+
for pdf in pdf_docs:
|
29 |
+
pdf_reader = PdfReader(pdf)
|
30 |
+
for page in pdf_reader.pages:
|
31 |
+
text += page.extract_text()
|
32 |
+
except Exception as e:
|
33 |
+
st.error(f"Error reading PDF files: {e}")
|
34 |
+
return text
|
35 |
+
|
36 |
+
# Function to split text into manageable chunks
|
37 |
+
def get_text_chunks(text):
|
38 |
+
try:
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
40 |
+
chunks = text_splitter.split_text(text)
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error splitting text: {e}")
|
43 |
+
return []
|
44 |
+
return chunks
|
45 |
+
|
46 |
+
# Function to create an in-memory FAISS vector store
|
47 |
+
def get_vector_store(text_chunks):
|
48 |
+
try:
|
49 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
50 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
51 |
+
return vector_store
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"Error creating vector store: {e}")
|
54 |
+
traceback.print_exc()
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Function to create a conversation chain with Google Generative AI
|
58 |
+
def get_conversational_chain():
|
59 |
+
try:
|
60 |
+
prompt_template = """
|
61 |
+
Answer the question as detailed as possible from the provided context. If the answer is not in
|
62 |
+
the provided context, say, "Answer is not available in the context." Do not provide a wrong answer.
|
63 |
+
|
64 |
+
Context:
|
65 |
+
{context}
|
66 |
+
|
67 |
+
Question:
|
68 |
+
{question}
|
69 |
+
|
70 |
+
Answer:
|
71 |
+
"""
|
72 |
+
|
73 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
74 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
75 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
76 |
+
|
77 |
+
return chain
|
78 |
+
except Exception as e:
|
79 |
+
st.error(f"Error creating conversation chain: {e}")
|
80 |
+
traceback.print_exc()
|
81 |
+
return None
|
82 |
+
|
83 |
+
# Function to process user input and provide a response
|
84 |
+
def user_input(user_question, vector_store):
|
85 |
+
try:
|
86 |
+
docs = vector_store.similarity_search(user_question)
|
87 |
+
|
88 |
+
chain = get_conversational_chain()
|
89 |
+
if chain:
|
90 |
+
response = chain(
|
91 |
+
{"input_documents": docs, "question": user_question},
|
92 |
+
return_only_outputs=True
|
93 |
+
)
|
94 |
+
st.markdown(f"<div style='font-size: 16px;'> 🤖 Response:: {response['output_text']}</div>", unsafe_allow_html=True)
|
95 |
+
except Exception as e:
|
96 |
+
st.error(f"Error processing user input: {e}")
|
97 |
+
traceback.print_exc()
|
98 |
+
|
99 |
+
# Main function to handle Streamlit UI and actions
|
100 |
+
def main():
|
101 |
+
# Set page title and icon
|
102 |
+
st.set_page_config(page_title="📚 Chat PDF with Gemini AI", layout="centered", page_icon="📖")
|
103 |
+
|
104 |
+
# Add CSS for styling
|
105 |
+
st.markdown(
|
106 |
+
"""
|
107 |
+
<style>
|
108 |
+
.main-header {
|
109 |
+
font-size: 36px;
|
110 |
+
font-weight: bold;
|
111 |
+
color: #0A74DA;
|
112 |
+
}
|
113 |
+
.instruction {
|
114 |
+
font-size: 18px;
|
115 |
+
margin-bottom: 20px;
|
116 |
+
}
|
117 |
+
|
118 |
+
</style>
|
119 |
+
""",
|
120 |
+
unsafe_allow_html=True
|
121 |
+
)
|
122 |
+
|
123 |
+
# Add header
|
124 |
+
st.markdown("<h1 class='main-header'>Chat with Your PDF using Gemini AI 🤖</h1>", unsafe_allow_html=True)
|
125 |
+
st.markdown("<p class='instruction'>Upload your PDF, ask questions, and get detailed AI responses!</p>", unsafe_allow_html=True)
|
126 |
+
|
127 |
+
# Create a 2-column layout for better structure
|
128 |
+
col1, col2 = st.columns([12, 2])
|
129 |
+
|
130 |
+
with col1:
|
131 |
+
user_question = st.text_input("🔍 Ask a Question from the PDF Files", placeholder="Type your question here...")
|
132 |
+
|
133 |
+
# Add a "Submit" button to process the question
|
134 |
+
if st.button("Submit"):
|
135 |
+
if user_question:
|
136 |
+
st.write("### 🧠 Thinking...")
|
137 |
+
# Only allow submission if vector_store is available
|
138 |
+
if 'vector_store' in st.session_state:
|
139 |
+
user_input(user_question, st.session_state.vector_store)
|
140 |
+
else:
|
141 |
+
st.error("Please upload and process a PDF file first.")
|
142 |
+
else:
|
143 |
+
st.warning("Please enter a question before submitting.")
|
144 |
+
|
145 |
+
with col2:
|
146 |
+
with st.sidebar:
|
147 |
+
st.title("📂 PDF Upload & Processing")
|
148 |
+
st.write("1. Upload multiple PDFs.")
|
149 |
+
st.write("2. Ask questions based on the content.")
|
150 |
+
pdf_docs = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"])
|
151 |
+
|
152 |
+
if st.button("Submit & Process PDFs"):
|
153 |
+
if pdf_docs:
|
154 |
+
with st.spinner("📜 Extracting text and processing..."):
|
155 |
+
raw_text = get_pdf_text(pdf_docs)
|
156 |
+
if raw_text:
|
157 |
+
text_chunks = get_text_chunks(raw_text)
|
158 |
+
if text_chunks:
|
159 |
+
vector_store = get_vector_store(text_chunks)
|
160 |
+
if vector_store:
|
161 |
+
# Store vector store in session state to avoid re-processing
|
162 |
+
st.session_state.vector_store = vector_store
|
163 |
+
st.success("✅ Processing complete!")
|
164 |
+
else:
|
165 |
+
st.warning("Please upload PDF files before processing.")
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
main()
|
requirements.txt
ADDED
Binary file (3.8 kB). View file
|
|
setup.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mkdir -p ~/.streamlit/
|
2 |
+
|
3 |
+
echo "\
|
4 |
+
[server]\n\
|
5 |
+
port = $PORT\n\
|
6 |
+
enableCORS= false\n\
|
7 |
+
headless = true\n\
|
8 |
+
\n\
|
9 |
+
" > ~/.streamlit/config.toml
|