HamidRezaei
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hugging Face's logo
|
2 |
+
Hugging Face
|
3 |
+
Search models, datasets, users...
|
4 |
+
Models
|
5 |
+
Datasets
|
6 |
+
Spaces
|
7 |
+
Posts
|
8 |
+
Docs
|
9 |
+
Solutions
|
10 |
+
Pricing
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
Spaces:
|
15 |
+
|
16 |
+
Asa-AI-Lab
|
17 |
+
/
|
18 |
+
Offensive-Detection-Space
|
19 |
+
|
20 |
+
private
|
21 |
+
|
22 |
+
Logs
|
23 |
+
App
|
24 |
+
Files
|
25 |
+
Community
|
26 |
+
Settings
|
27 |
+
Offensive-Detection-Space
|
28 |
+
/
|
29 |
+
app.py
|
30 |
+
|
31 |
+
hafez97's picture
|
32 |
+
hafez97
|
33 |
+
Update app.py
|
34 |
+
b244916
|
35 |
+
verified
|
36 |
+
13 days ago
|
37 |
+
raw
|
38 |
+
|
39 |
+
Copy download link
|
40 |
+
history
|
41 |
+
blame
|
42 |
+
edit
|
43 |
+
delete
|
44 |
+
|
45 |
+
2.96 kB
|
46 |
+
import streamlit as st
|
47 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
48 |
+
import os
|
49 |
+
import torch
|
50 |
+
|
51 |
+
from cleantext import clean
|
52 |
+
import hazm
|
53 |
+
import re
|
54 |
+
|
55 |
+
def cleanhtml(raw_html):
|
56 |
+
cleanr = re.compile('<.*?>')
|
57 |
+
cleantext = re.sub(cleanr, '', raw_html)
|
58 |
+
return cleantext
|
59 |
+
|
60 |
+
|
61 |
+
def cleaning(text):
|
62 |
+
text = text.strip()
|
63 |
+
|
64 |
+
# regular cleaning
|
65 |
+
text = clean(text,
|
66 |
+
clean_all=True,
|
67 |
+
punct=True,
|
68 |
+
stopwords=True,
|
69 |
+
stemming=True,
|
70 |
+
extra_spaces=True
|
71 |
+
)
|
72 |
+
|
73 |
+
# cleaning htmls
|
74 |
+
text = cleanhtml(text)
|
75 |
+
|
76 |
+
# normalizing
|
77 |
+
normalizer = hazm.Normalizer()
|
78 |
+
text = normalizer.normalize(text)
|
79 |
+
|
80 |
+
# removing wierd patterns
|
81 |
+
wierd_pattern = re.compile("["
|
82 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
83 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
84 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
85 |
+
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
86 |
+
u"\U00002702-\U000027B0"
|
87 |
+
u"\U000024C2-\U0001F251"
|
88 |
+
u"\U0001f926-\U0001f937"
|
89 |
+
u'\U00010000-\U0010ffff'
|
90 |
+
u"\u200d"
|
91 |
+
u"\u2640-\u2642"
|
92 |
+
u"\u2600-\u2B55"
|
93 |
+
u"\u23cf"
|
94 |
+
u"\u23e9"
|
95 |
+
u"\u231a"
|
96 |
+
u"\u3030"
|
97 |
+
u"\ufe0f"
|
98 |
+
u"\u2069"
|
99 |
+
u"\u2066"
|
100 |
+
# u"\u200c"
|
101 |
+
u"\u2068"
|
102 |
+
u"\u2067"
|
103 |
+
"]+", flags=re.UNICODE)
|
104 |
+
|
105 |
+
text = wierd_pattern.sub(r'', text)
|
106 |
+
|
107 |
+
# removing extra spaces, hashtags
|
108 |
+
text = re.sub("#", "", text)
|
109 |
+
text = re.sub("\s+", " ", text)
|
110 |
+
|
111 |
+
return text
|
112 |
+
|
113 |
+
access_token = os.getenv('ACCESS_TOKEN')
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained("HamidRezaei/Persian-Offensive-Language-Detection-Lora", token=access_token)
|
115 |
+
model = AutoModelForSequenceClassification.from_pretrained("HamidRezaei/Persian-Offensive-Language-Detection-Lora", token=access_token)
|
116 |
+
|
117 |
+
st.title("Offensive or Not?")
|
118 |
+
prompt = st.text_area(label="Send a message")
|
119 |
+
button = st.button("send")
|
120 |
+
|
121 |
+
if prompt:
|
122 |
+
normalized_prompt = cleaning(prompt)
|
123 |
+
|
124 |
+
encoding = tokenizer(normalized_prompt, return_tensors="pt")
|
125 |
+
encoding = {k: v.to(model.device) for k,v in encoding.items()}
|
126 |
+
|
127 |
+
outputs = model(**encoding)
|
128 |
+
logits = outputs.logits
|
129 |
+
|
130 |
+
# apply sigmoid + threshold
|
131 |
+
sigmoid = torch.nn.Sigmoid()
|
132 |
+
probs = sigmoid(logits.squeeze().cpu())
|
133 |
+
score = probs.item()
|
134 |
+
st.markdown(f"Offensive: score {score}" if score > 0.5 else f"Not Offensive: score {score}")
|
135 |
+
|