import os import gradio as gr from ultralytics import YOLO from fastapi import FastAPI from PIL import Image import torch import spaces import numpy as np import cv2 from pathlib import Path import tempfile from tqdm import tqdm # 从环境变量获取密码 APP_USERNAME = "admin" # 用户名保持固定 APP_PASSWORD = os.getenv("APP_PASSWORD", "default_password") # 从环境变量获取密码 app = FastAPI() device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"使用设备: {device}") model = YOLO('kunin-mice-pose.v0.1.5n.engine') print("模型加载完成") # 定义认证状态 class AuthState: def __init__(self): self.is_logged_in = False auth_state = AuthState() def login(username, password): """登录验证""" if username == APP_USERNAME and password == APP_PASSWORD: auth_state.is_logged_in = True return gr.update(visible=False), gr.update(visible=True), "登录成功" return gr.update(visible=True), gr.update(visible=False), "用户名或密码错误" @spaces.GPU(duration=120) def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8): """ 处理视频并进行小鼠检测 """ print("开始处理视频...") if not auth_state.is_logged_in: return None, "请先登录" print("创建临时输出文件...") with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: output_path = tmp_file.name print("读取视频信息...") cap = cv2.VideoCapture(video_path) fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() print(f"视频信息: {width}x{height} @ {fps}fps, 总帧数: {total_frames}") print("初始化视频写入器...") fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( output_path, fourcc, fps, (width, height) ) base_size = min(width, height) line_thickness = max(1, int(base_size * 0.002)) print("开始YOLO推理...") results = model.predict( source=video_path, device=device, conf=conf_threshold, save=False, show=False, stream=True, line_width=line_thickness, boxes=True, show_labels=True, show_conf=True, vid_stride=1, max_det=max_det, retina_masks=True, verbose=False ) frame_count = 0 detection_info = [] all_positions = [] heatmap = np.zeros((height, width), dtype=np.float32) print("处理检测结果...") progress_bar = tqdm(total=total_frames, desc="处理帧") for r in results: frame = r.plot() if hasattr(r, 'keypoints') and r.keypoints is not None: kpts = r.keypoints.data if isinstance(kpts, torch.Tensor): kpts = kpts.cpu().numpy() if kpts.shape == (1, 8, 3): x, y = int(kpts[0, 0, 0]), int(kpts[0, 0, 1]) all_positions.append([x, y]) if 0 <= x < width and 0 <= y < height: sigma = 10 kernel_size = 31 temp_heatmap = np.zeros((height, width), dtype=np.float32) temp_heatmap[y, x] = 1 temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma) heatmap += temp_heatmap frame_info = { "frame": frame_count + 1, "count": len(r.boxes), "detections": [] } for box in r.boxes: conf = float(box.conf[0]) cls = int(box.cls[0]) cls_name = r.names[cls] frame_info["detections"].append({ "class": cls_name, "confidence": f"{conf:.2%}" }) detection_info.append(frame_info) video_writer.write(frame) frame_count += 1 progress_bar.update(1) if process_seconds and frame_count >= total_frames: break progress_bar.close() print("视频处理完成") video_writer.release() print("生成分析报告...") confidences = [float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']] hist, bins = np.histogram(confidences, bins=5) confidence_report = "\n".join([ f"置信度 {bins[i]:.2f}-{bins[i+1]:.2f}: {hist[i]:3d}个检测 ({hist[i]/len(confidences)*100:.1f}%)" for i in range(len(hist)) ]) report = f"""视频分析报告: 参数设置: - 置信度阈值: {conf_threshold:.2f} - 最大检测数量: {max_det} - 处理时长: {process_seconds}秒 分析结果: - 处理帧数: {frame_count} - 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f} - 最大检测数: {max([info['count'] for info in detection_info])} - 最小检测数: {min([info['count'] for info in detection_info])} 置信度分布: {confidence_report} """ def filter_trajectories(positions, width, height, max_jump_distance=100): if len(positions) < 3: return positions filtered_positions = [] last_valid_pos = None for i, pos in enumerate(positions): x, y = pos if not (0 <= x < width and 0 <= y < height): continue if last_valid_pos is None: filtered_positions.append(pos) last_valid_pos = pos continue distance = np.sqrt((x - last_valid_pos[0])**2 + (y - last_valid_pos[1])**2) if distance > max_jump_distance: if len(filtered_positions) > 0: next_valid_pos = None for next_pos in positions[i:]: nx, ny = next_pos if (0 <= nx < width and 0 <= ny < height): next_distance = np.sqrt((nx - last_valid_pos[0])**2 + (ny - last_valid_pos[1])**2) if next_distance <= max_jump_distance: next_valid_pos = next_pos break if next_valid_pos is not None: steps = max(2, int(distance / max_jump_distance)) for j in range(1, steps): alpha = j / steps interp_x = int(last_valid_pos[0] * (1 - alpha) + next_valid_pos[0] * alpha) interp_y = int(last_valid_pos[1] * (1 - alpha) + next_valid_pos[1] * alpha) filtered_positions.append([interp_x, interp_y]) filtered_positions.append(next_valid_pos) last_valid_pos = next_valid_pos else: filtered_positions.append(pos) last_valid_pos = pos window_size = 5 smoothed_positions = [] if len(filtered_positions) >= window_size: smoothed_positions.extend(filtered_positions[:window_size//2]) for i in range(window_size//2, len(filtered_positions) - window_size//2): window = filtered_positions[i-window_size//2:i+window_size//2+1] smoothed_x = int(np.mean([p[0] for p in window])) smoothed_y = int(np.mean([p[1] for p in window])) smoothed_positions.append([smoothed_x, smoothed_y]) smoothed_positions.extend(filtered_positions[-window_size//2:]) else: smoothed_positions = filtered_positions return smoothed_positions print("生成轨迹图...") trajectory_img = np.zeros((height, width, 3), dtype=np.uint8) + 255 points = np.array(all_positions, dtype=np.int32) if len(points) > 1: filtered_points = filter_trajectories(points.tolist(), width, height) points = np.array(filtered_points, dtype=np.int32) for i in range(len(points) - 1): ratio = i / (len(points) - 1) color = ( int((1 - ratio) * 255), 50, int(ratio * 255) ) cv2.line(trajectory_img, tuple(points[i]), tuple(points[i + 1]), color, 2) cv2.circle(trajectory_img, tuple(points[0]), 8, (0, 255, 0), -1) cv2.circle(trajectory_img, tuple(points[-1]), 8, (0, 0, 255), -1) arrow_interval = max(len(points) // 20, 1) for i in range(0, len(points) - arrow_interval, arrow_interval): pt1 = tuple(points[i]) pt2 = tuple(points[i + arrow_interval]) angle = np.arctan2(pt2[1] - pt1[1], pt2[0] - pt1[0]) cv2.arrowedLine(trajectory_img, pt1, pt2, (100, 100, 100), 1, tipLength=0.2) print("生成热力图...") if np.max(heatmap) > 0: heatmap_normalized = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX) heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET) alpha = 0.7 heatmap_colored = cv2.addWeighted(heatmap_colored, alpha, np.full_like(heatmap_colored, 255), 1-alpha, 0) print("保存结果图像...") trajectory_path = output_path.replace('.mp4', '_trajectory.png') heatmap_path = output_path.replace('.mp4', '_heatmap.png') cv2.imwrite(trajectory_path, trajectory_img) cv2.imwrite(heatmap_path, heatmap_colored) print("处理完成!") return output_path, trajectory_path, heatmap_path, report # 创建 Gradio 界面 with gr.Blocks() as demo: gr.Markdown("# 🐭 小鼠行为分析 (Mice Behavior Analysis)") with gr.Group() as login_interface: username = gr.Textbox(label="用户名") password = gr.Textbox(label="密码", type="password") login_button = gr.Button("登录") login_msg = gr.Textbox(label="消息", interactive=False) with gr.Group(visible=False) as main_interface: gr.Markdown("上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior") with gr.Row(): with gr.Column(): video_input = gr.Video(label="输入视频") process_seconds = gr.Number( label="处理时长(秒,0表示处理整个视频)", value=20 ) conf_threshold = gr.Slider( minimum=0.1, maximum=1.0, value=0.2, step=0.05, label="置信度阈值", info="越高越严格,建议范围0.2-0.5" ) max_det = gr.Slider( minimum=1, maximum=10, value=1, step=1, label="最大检测数量", info="每帧最多检测的目标数量" ) process_btn = gr.Button("开始处理") with gr.Column(): video_output = gr.Video(label="检测结果") with gr.Row(): trajectory_output = gr.Image(label="运动轨迹") heatmap_output = gr.Image(label="热力图") report_output = gr.Textbox(label="分析报告") gr.Markdown(""" ### 使用说明 1. 上传视频文件 2. 设置处理参数: - 处理时长:需要分析的视频时长(秒) - 置信度阈值:检测的置信度要求(越高越严格) - 最大检测数量:每帧最多检测的目标数量 3. 等待处理完成 4. 查看检测结果视频和分析报告 ### 注意事项 - 支持常见视频格式(mp4, avi 等) - 建议视频分辨率不超过 1920x1080 - 处理时间与视频长度和分辨率相关 - 置信度建议范围:0.2-0.5 - 最大检测数量建议根据实际场景设置 """) login_button.click( fn=login, inputs=[username, password], outputs=[login_interface, main_interface, login_msg] ) process_btn.click( fn=process_video, inputs=[video_input, process_seconds, conf_threshold, max_det], outputs=[video_output, trajectory_output, heatmap_output, report_output] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)