Spaces:
Sleeping
Sleeping
File size: 26,762 Bytes
7dd65a7 110a761 7dd65a7 110a761 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 110a761 7dd65a7 110a761 7dd65a7 1811622 7dd65a7 1811622 110a761 7dd65a7 110a761 1811622 7dd65a7 1811622 110a761 1811622 110a761 7dd65a7 110a761 1811622 110a761 1811622 110a761 1811622 110a761 1811622 110a761 1811622 110a761 1811622 110a761 1811622 110a761 1811622 7dd65a7 fd94982 110a761 fd94982 110a761 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 110a761 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 110a761 1811622 7dd65a7 110a761 1811622 110a761 1811622 110a761 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 110a761 1811622 110a761 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 110a761 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 110a761 7dd65a7 110a761 7dd65a7 110a761 7dd65a7 110a761 1811622 7dd65a7 110a761 7dd65a7 110a761 7dd65a7 110a761 7dd65a7 1811622 110a761 1811622 110a761 1811622 110a761 7dd65a7 110a761 7dd65a7 110a761 7dd65a7 110a761 7dd65a7 1811622 110a761 7dd65a7 110a761 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 1811622 7dd65a7 fd94982 7dd65a7 1811622 110a761 1811622 110a761 1811622 110a761 1811622 110a761 1811622 110a761 1811622 7dd65a7 0c83cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import RedirectResponse, JSONResponse, HTMLResponse
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, M2M100ForConditionalGeneration, M2M100Tokenizer
from typing import Optional, Dict, Any, List
import logging
import time
import os
import io
import json
import re
from PIL import Image
from docx import Document
import fitz # PyMuPDF
import pandas as pd
from functools import lru_cache
import torch
import numpy as np
from pydantic import BaseModel
import asyncio
import google.generativeai as genai
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("cosmic_ai")
# Create app directory if it doesn't exist
upload_dir = os.getenv('UPLOAD_DIR', '/tmp/uploads')
os.makedirs(upload_dir, exist_ok=True)
app = FastAPI(
title="Cosmic AI Assistant",
description="An advanced AI assistant with space-themed interface and translation features",
version="2.0.0"
)
# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Gemini API Configuration
API_KEY = "AIzaSyCwmgD8KxzWiuivtySNtcZF_rfTvx9s9sY" # Replace with your actual API key
genai.configure(api_key=API_KEY)
# Model configurations
MODELS = {
"summarization": "sshleifer/distilbart-cnn-12-6",
"image-to-text": "Salesforce/blip-image-captioning-large",
"visual-qa": "dandelin/vilt-b32-finetuned-vqa",
"chatbot": "gemini-1.5-pro", # Handles both chat and text generation
"translation": "facebook/m2m100_418M"
}
# Supported languages for translation
SUPPORTED_LANGUAGES = {
"english": "en",
"french": "fr",
"german": "de",
"spanish": "es",
"italian": "it",
"russian": "ru",
"chinese": "zh",
"japanese": "ja",
"arabic": "ar",
"hindi": "hi",
"portuguese": "pt",
"korean": "ko"
}
# Global variables for pre-loaded translation model
translation_model = None
translation_tokenizer = None
# Cache for model loading (excluding translation)
@lru_cache(maxsize=8)
def load_model(task: str, model_name: str = None):
"""Cached model loader with proper task names and error handling"""
try:
logger.info(f"Loading model for task: {task}, model: {model_name or MODELS.get(task)}")
start_time = time.time()
model_to_load = model_name or MODELS.get(task)
if task == "chatbot": # Gemini handles both chat and text generation
return genai.GenerativeModel(model_to_load)
if task == "visual-qa":
processor = ViltProcessor.from_pretrained(model_to_load)
model = ViltForQuestionAnswering.from_pretrained(model_to_load)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def vqa_function(image, question, **generate_kwargs):
if image.mode != "RGB":
image = image.convert("RGB")
inputs = processor(image, question, return_tensors="pt").to(device)
logger.info(f"VQA inputs - question: {question}, image size: {image.size}")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
idx = logits.argmax(-1).item()
answer = model.config.id2label[idx]
logger.info(f"VQA raw output: {answer}")
return answer
return vqa_function
return pipeline(task, model=model_to_load)
except Exception as e:
logger.error(f"Model load failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model loading failed: {task} - {str(e)}")
def get_gemini_response(user_input: str, is_generation: bool = False):
"""Function to generate response with Gemini for both chat and text generation"""
if not user_input:
return "Please provide some input."
try:
chatbot = load_model("chatbot")
if is_generation:
prompt = f"Generate creative text based on this prompt: {user_input}"
else:
prompt = user_input
response = chatbot.generate_content(prompt)
return response.text.strip()
except Exception as e:
return f"Error: {str(e)}"
def translate_text(text: str, target_language: str):
"""Translate text to any target language using pre-loaded M2M100 model"""
if not text:
return "Please provide text to translate."
try:
global translation_model, translation_tokenizer
target_lang = target_language.lower()
if target_lang not in SUPPORTED_LANGUAGES:
similar = [lang for lang in SUPPORTED_LANGUAGES if target_lang in lang or lang in target_lang]
if similar:
target_lang = similar[0]
else:
return f"Language '{target_language}' not supported. Available languages: {', '.join(SUPPORTED_LANGUAGES.keys())}"
lang_code = SUPPORTED_LANGUAGES[target_lang]
if translation_model is None or translation_tokenizer is None:
raise Exception("Translation model not initialized")
match = re.search(r'how to say\s+(.+?)\s+in\s+(\w+)', text.lower())
if match:
text_to_translate = match.group(1)
else:
content_match = re.search(r'(?:translate|convert).*to\s+[a-zA-Z]+\s*[:\s]*(.+)', text, re.IGNORECASE)
text_to_translate = content_match.group(1) if content_match else text
translation_tokenizer.src_lang = "en"
encoded = translation_tokenizer(text_to_translate, return_tensors="pt", padding=True, truncation=True).to(translation_model.device)
start_time = time.time()
generated_tokens = translation_model.generate(
**encoded,
forced_bos_token_id=translation_tokenizer.get_lang_id(lang_code),
max_length=512,
num_beams=1,
early_stopping=True
)
translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logger.info(f"Translation took {time.time() - start_time:.2f} seconds")
return translated_text
except Exception as e:
logger.error(f"Translation error: {str(e)}", exc_info=True)
return f"Translation error: {str(e)}"
def detect_intent(text: str = None, file: UploadFile = None) -> tuple[str, str]:
"""Enhanced intent detection with dynamic translation support"""
target_language = "English" # Default
if file:
content_type = file.content_type.lower() if file.content_type else ""
filename = file.filename.lower() if file.filename else ""
# Catch "what’s this" and "does this fly" first for images
if content_type.startswith('image/') and text:
text_lower = text.lower()
if "what’s this" in text_lower:
return "visual-qa", target_language
if "does this fly" in text_lower:
return "visual-qa", target_language
# Broaden "fly" questions for VQA
if "fly" in text_lower and any(q in text_lower for q in ['does', 'can', 'will']):
return "visual-qa", target_language
if content_type.startswith('image/'):
if text and any(q in text.lower() for q in ['what is', 'what\'s', 'describe', 'tell me about', 'explain','how many', 'what color', 'is there', 'are they', 'does the']):
return "visual-qa", target_language
return "image-to-text", target_language
elif filename.endswith(('.xlsx', '.xls', '.csv')):
return "visualize", target_language
elif filename.endswith(('.pdf', '.docx', '.doc', '.txt', '.rtf')):
return "summarize", target_language
if not text:
return "chatbot", target_language
text_lower = text.lower()
if any(keyword in text_lower for keyword in ['chat', 'talk', 'converse', 'ask gemini']):
return "chatbot", target_language
translate_patterns = [
r'translate.*to\s+\[?([a-zA-Z]+)\]?:?\s*(.*)',
r'convert.*to\s+\[?([a-zA-Z]+)\]?:?\s*(.*)',
r'how to say.*in\s+\[?([a-zA-Z]+)\]?:?\s*(.*)'
]
for pattern in translate_patterns:
translate_match = re.search(pattern, text_lower)
if translate_match:
potential_lang = translate_match.group(1).lower()
if potential_lang in SUPPORTED_LANGUAGES:
target_language = potential_lang.capitalize()
return "translate", target_language
else:
logger.warning(f"Invalid language detected: {potential_lang}")
return "chatbot", target_language
vqa_patterns = [
r'how (many|much)',
r'what (color|size|position|shape)',
r'is (there|that|this) (a|an)',
r'are (they|there) (any|some)',
r'does (the|this) (image|picture) (show|contain)'
]
if any(re.search(pattern, text_lower) for pattern in vqa_patterns):
return "visual-qa", target_language
summarization_patterns = [
r'\b(summar(y|ize|ise)|brief( overview)?)\b',
r'\b(long article|text|document)\b',
r'\bcan you (summar|brief|condense)\b',
r'\b(short summary|brief explanation)\b',
r'\b(overview|main points|key ideas)\b',
r'\b(tl;?dr|too long didn\'?t read)\b'
]
if any(re.search(pattern, text_lower) for pattern in summarization_patterns):
return "summarize", target_language
generation_patterns = [
r'\b(write|generate|create|compose)\b',
r'\b(story|poem|essay|text|content)\b'
]
if any(re.search(pattern, text_lower) for pattern in generation_patterns):
return "text-generation", target_language
if len(text) > 100:
return "summarize", target_language
if file and file.content_type and file.content_type.startswith('image/'):
if text and "what’s this" in text_lower:
return "visual-qa", target_language
if text and any(q in text_lower for q in ['does this', 'is this', 'can this']):
return "visual-qa", target_language
return "chatbot", target_language
class ProcessResponse(BaseModel):
response: str
type: str
additional_data: Optional[Dict[str, Any]] = None
@app.get("/chatbot")
async def chatbot_interface():
"""Redirect to the static index.html file for the chatbot interface"""
return RedirectResponse(url="/static/index.html")
@app.post("/chat")
async def chat_endpoint(data: dict):
message = data.get("message", "")
if not message:
raise HTTPException(status_code=400, detail="No message provided")
try:
response = get_gemini_response(message)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Chat error: {str(e)}")
@app.post("/process", response_model=ProcessResponse)
async def process_input(
request: Request,
text: str = Form(None),
file: UploadFile = File(None)
):
"""Enhanced unified endpoint with dynamic translation"""
start_time = time.time()
client_ip = request.client.host
logger.info(f"Request from {client_ip}: text={text[:50] + '...' if text and len(text) > 50 else text}, file={file.filename if file else None}")
intent, target_language = detect_intent(text, file)
logger.info(f"Detected intent: {intent}, target_language: {target_language}")
try:
if intent == "chatbot":
response = get_gemini_response(text)
return {"response": response, "type": "chat"}
elif intent == "translate":
content = await extract_text_from_file(file) if file else text
if "all languages" in text.lower():
translations = {}
phrase_to_translate = "I want to explore the stars" if "I want to explore the stars" in text else content
for lang, code in SUPPORTED_LANGUAGES.items():
translation_tokenizer.src_lang = "en"
encoded = translation_tokenizer(phrase_to_translate, return_tensors="pt").to(translation_model.device)
generated_tokens = translation_model.generate(
**encoded,
forced_bos_token_id=translation_tokenizer.get_lang_id(code),
max_length=512,
num_beams=1
)
translations[lang] = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
response = "\n".join(f"{lang.capitalize()}: {translations[lang]}" for lang in translations)
logger.info(f"Translated to all supported languages: {', '.join(translations.keys())}")
return {"response": response, "type": "translation"}
else:
translated_text = translate_text(content, target_language)
return {"response": translated_text, "type": "translation"}
elif intent == "summarize":
content = await extract_text_from_file(file) if file else text
summarizer = load_model("summarization")
content_length = len(content.split())
max_len = max(30, min(150, content_length//2))
min_len = max(15, min(30, max_len//2))
if len(content) > 1024:
chunks = [content[i:i+1024] for i in range(0, len(content), 1024)]
summaries = []
for chunk in chunks[:3]:
summary = summarizer(
chunk,
max_length=max_len,
min_length=min_len,
do_sample=False,
truncation=True
)
summaries.append(summary[0]['summary_text'])
final_summary = " ".join(summaries)
else:
summary = summarizer(
content,
max_length=max_len,
min_length=min_len,
do_sample=False,
truncation=True
)
final_summary = summary[0]['summary_text']
final_summary = re.sub(r'\s+', ' ', final_summary).strip()
return {"response": final_summary, "type": "summary"}
elif intent == "image-to-text":
if not file or not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="An image file is required")
image = Image.open(io.BytesIO(await file.read()))
captioner = load_model("image-to-text")
caption = captioner(image, max_new_tokens=50)
return {"response": caption[0]['generated_text'], "type": "caption"}
elif intent == "visual-qa":
if not file or not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="An image file is required")
if not text:
raise HTTPException(status_code=400, detail="A question is required for VQA")
image = Image.open(io.BytesIO(await file.read())).convert("RGB")
vqa_pipeline = load_model("visual-qa")
question = text.strip()
if not question.endswith('?'):
question += '?'
answer = vqa_pipeline(
image=image,
question=question
)
answer = answer.strip()
if not answer or answer.lower() == question.lower():
logger.warning(f"VQA failed to generate a meaningful answer: {answer}")
answer = "I couldn't determine the answer from the image."
else:
answer = answer.capitalize()
if not answer.endswith(('.', '!', '?')):
answer += '.'
chatbot = load_model("chatbot")
if "fly" in question.lower():
answer = chatbot.generate_content(f"Make this fun and spacey: {answer}").text.strip()
else:
answer = chatbot.generate_content(f"Make this cosmic and poetic: {answer}").text.strip()
logger.info(f"Final VQA answer: {answer}")
return {
"response": answer,
"type": "visual_qa",
"additional_data": {
"question": text,
"image_size": f"{image.width}x{image.height}"
}
}
elif intent == "visualize":
if not file:
raise HTTPException(status_code=400, detail="An Excel file is required")
file_content = await file.read()
if file.filename.endswith('.csv'):
df = pd.read_csv(io.BytesIO(file_content))
else:
df = pd.read_excel(io.BytesIO(file_content))
code = generate_visualization_code(df, text)
stats = df.describe().to_string()
response = f"Stats:\n{stats}\n\nChart Code:\n{code}"
return {"response": response, "type": "visualization_code"}
elif intent == "text-generation":
response = get_gemini_response(text, is_generation=True)
lines = response.split(". ")
formatted_poem = "\n".join(line.strip() + ("." if not line.endswith(".") else "") for line in lines if line)
return {"response": formatted_poem, "type": "generated_text"}
else:
response = get_gemini_response(text or "Hello! How can I assist you?")
return {"response": response, "type": "chat"}
except Exception as e:
logger.error(f"Processing error: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
finally:
process_time = time.time() - start_time
logger.info(f"Request processed in {process_time:.2f} seconds")
async def extract_text_from_file(file: UploadFile) -> str:
"""Enhanced text extraction with multiple fallbacks"""
if not file:
return ""
content = await file.read()
filename = file.filename.lower()
try:
if filename.endswith('.pdf'):
try:
doc = fitz.open(stream=content, filetype="pdf")
if doc.is_encrypted:
return "PDF is encrypted and cannot be read"
text = ""
for page in doc:
text += page.get_text()
return text
except Exception as pdf_error:
logger.warning(f"PyMuPDF failed: {str(pdf_error)}. Trying pdfminer.six...")
from pdfminer.high_level import extract_text
from io import BytesIO
return extract_text(BytesIO(content))
elif filename.endswith(('.docx', '.doc')):
doc = Document(io.BytesIO(content))
return "\n".join(para.text for para in doc.paragraphs)
elif filename.endswith('.txt'):
return content.decode('utf-8', errors='replace')
elif filename.endswith('.rtf'):
text = content.decode('utf-8', errors='replace')
text = re.sub(r'\\[a-z]+', ' ', text)
text = re.sub(r'\{|\}|\\', '', text)
return text
else:
raise HTTPException(status_code=400, detail=f"Unsupported file format: {filename}")
except Exception as e:
logger.error(f"File extraction error: {str(e)}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Error extracting text: {str(e)}. Supported formats: PDF, DOCX, TXT, RTF"
)
def generate_visualization_code(df: pd.DataFrame, request: str = None) -> str:
"""Generate visualization code based on data analysis"""
num_rows, num_cols = df.shape
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
date_cols = [col for col in df.columns if df[col].dtype == 'datetime64[ns]' or
(isinstance(df[col].dtype, object) and pd.to_datetime(df[col], errors='coerce').notna().all())]
if request:
request_lower = request.lower()
else:
request_lower = ""
if len(numeric_cols) >= 2 and ("scatter" in request_lower or "correlation" in request_lower):
x_col = numeric_cols[0]
y_col = numeric_cols[1]
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel('data.xlsx')
plt.figure(figsize=(10, 6))
sns.regplot(x='{x_col}', y='{y_col}', data=df, scatter_kws={{'alpha': 0.6}})
plt.title('Correlation between {x_col} and {y_col}')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('correlation_plot.png')
plt.show()
correlation = df['{x_col}'].corr(df['{y_col}'])
print(f"Correlation coefficient: {{correlation:.4f}}")"""
elif len(numeric_cols) >= 1 and len(categorical_cols) >= 1 and ("bar" in request_lower or "comparison" in request_lower):
cat_col = categorical_cols[0]
num_col = numeric_cols[0]
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel('data.xlsx')
plt.figure(figsize=(12, 7))
ax = sns.barplot(x='{cat_col}', y='{num_col}', data=df, palette='viridis')
for p in ax.patches:
ax.annotate(f'{{p.get_height():.1f}}',
(p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='bottom', fontsize=10, color='black', xytext=(0, 5),
textcoords='offset points')
plt.title('Comparison of {num_col} by {cat_col}', fontsize=15)
plt.xlabel('{cat_col}', fontsize=12)
plt.ylabel('{num_col}', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', alpha=0.3)
plt.tight_layout()
plt.savefig('comparison_chart.png')
plt.show()"""
elif len(numeric_cols) >= 1 and ("distribution" in request_lower or "histogram" in request_lower):
num_col = numeric_cols[0]
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel('data.xlsx')
plt.figure(figsize=(10, 6))
sns.histplot(df['{num_col}'], kde=True, bins=20, color='purple')
plt.title('Distribution of {num_col}', fontsize=15)
plt.xlabel('{num_col}', fontsize=12)
plt.ylabel('Frequency', fontsize=12)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('distribution_plot.png')
plt.show()
print(df['{num_col}'].describe())"""
else:
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
df = pd.read_excel('data.xlsx')
print("Descriptive statistics:")
print(df.describe())
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
numeric_df = df.select_dtypes(include=[np.number])
if not numeric_df.empty and numeric_df.shape[1] > 1:
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[0, 0])
axes[0, 0].set_title('Correlation Matrix')
if not numeric_df.empty:
for i, col in enumerate(numeric_df.columns[:1]):
sns.histplot(df[col], kde=True, ax=axes[0, 1], color='purple')
axes[0, 1].set_title(f'Distribution of {{col}}')
axes[0, 1].set_xlabel(col)
axes[0, 1].set_ylabel('Frequency')
categorical_cols = df.select_dtypes(include=['object']).columns
if len(categorical_cols) > 0 and not numeric_df.empty:
cat_col = categorical_cols[0]
num_col = numeric_df.columns[0]
sns.barplot(x=cat_col, y=num_col, data=df, ax=axes[1, 0], palette='viridis')
axes[1, 0].set_title(f'{{num_col}} by {{cat_col}}')
axes[1, 0].set_xticklabels(axes[1, 0].get_xticklabels(), rotation=45, ha='right')
if not numeric_df.empty and len(categorical_cols) > 0:
cat_col = categorical_cols[0]
num_col = numeric_df.columns[0]
sns.boxplot(x=cat_col, y=num_col, data=df, ax=axes[1, 1], palette='Set3')
axes[1, 1].set_title(f'Distribution of {{num_col}} by {{cat_col}}')
axes[1, 1].set_xticklabels(axes[1, 1].get_xticklabels(), rotation=45, ha='right')
plt.tight_layout()
plt.savefig('dashboard.png')
plt.show()"""
@app.get("/", include_in_schema=False)
async def home():
"""Redirect to the static index.html file"""
return RedirectResponse(url="/static/index.html")
@app.get("/health", include_in_schema=True)
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "version": "2.0.0"}
@app.get("/models", include_in_schema=True)
async def list_models():
"""List available models"""
return {"models": MODELS}
@app.on_event("startup")
async def startup_event():
"""Pre-load models at startup with timeout"""
global translation_model, translation_tokenizer
logger.info("Starting model pre-loading...")
async def load_model_with_timeout(task):
try:
await asyncio.wait_for(asyncio.to_thread(load_model, task), timeout=60.0)
logger.info(f"Successfully loaded {task} model")
except asyncio.TimeoutError:
logger.warning(f"Timeout loading {task} model - will load on demand")
except Exception as e:
logger.error(f"Error pre-loading {task}: {str(e)}")
try:
model_name = MODELS["translation"]
translation_model = M2M100ForConditionalGeneration.from_pretrained(model_name)
translation_tokenizer = M2M100Tokenizer.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
translation_model.to(device)
logger.info("Translation model pre-loaded successfully")
except Exception as e:
logger.error(f"Error pre-loading translation model: {str(e)}")
await asyncio.gather(
load_model_with_timeout("summarization"),
load_model_with_timeout("image-to-text"),
load_model_with_timeout("visual-qa"),
load_model_with_timeout("chatbot")
)
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) |