mgyigit commited on
Commit
0f597fc
·
verified ·
1 Parent(s): 548b502

Update src/bin/semantic_similarity_infer.py

Browse files
src/bin/semantic_similarity_infer.py CHANGED
@@ -52,7 +52,7 @@ def calculateCorrelationforOntology(aspect, matrix_type):
52
  similarityMatrixNameDict = {
53
  "All": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix.csv"),
54
  "500": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
55
- "Sparse": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
56
  "200": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_200_proteins.csv")
57
  }
58
 
@@ -64,7 +64,7 @@ def calculateCorrelationforOntology(aspect, matrix_type):
64
  for prot in proteinList:
65
  proteinListNew.append(prot)
66
 
67
- if matrix_type == "Sparse":
68
  sparsified_path = os.path.join(script_dir, "../data/auxilary_input/SparsifiedSimilarityCoordinates_" + aspect + "_for_highest_500.npy")
69
  sparsified_similarity_coordinates = np.load(sparsified_path)
70
  protParamList = sparsified_similarity_coordinates
@@ -77,7 +77,7 @@ def calculateCorrelationforOntology(aspect, matrix_type):
77
  for tup in tqdm(protParamList):
78
  i = tup[0]
79
  j = tup[1]
80
- if matrix_type == "Sparse":
81
  protein1 = proteinListNew[i]
82
  protein2 = proteinListNew[j]
83
  real = human_proteinSimilarityMatrix.loc[protein1, protein2]
 
52
  similarityMatrixNameDict = {
53
  "All": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix.csv"),
54
  "500": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
55
+ "sparse": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
56
  "200": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_200_proteins.csv")
57
  }
58
 
 
64
  for prot in proteinList:
65
  proteinListNew.append(prot)
66
 
67
+ if matrix_type == "sparse":
68
  sparsified_path = os.path.join(script_dir, "../data/auxilary_input/SparsifiedSimilarityCoordinates_" + aspect + "_for_highest_500.npy")
69
  sparsified_similarity_coordinates = np.load(sparsified_path)
70
  protParamList = sparsified_similarity_coordinates
 
77
  for tup in tqdm(protParamList):
78
  i = tup[0]
79
  j = tup[1]
80
+ if matrix_type == "sparse":
81
  protein1 = proteinListNew[i]
82
  protein2 = proteinListNew[j]
83
  real = human_proteinSimilarityMatrix.loc[protein1, protein2]