from llama_cpp import Llama import streamlit as st from langchain.llms.base import LLM from llama_index.embeddings import LangchainEmbedding from llama_index import PromptHelper from typing import Optional, List, Mapping, Any from langchain.embeddings.huggingface import HuggingFaceEmbeddings import pandas as pd # Set the page config as the first command st.set_page_config(page_title='Mental Heallth chatbot', page_icon=':robot_face:', layout='wide') # Define constants MODEL_NAME = 'TheBloke/MelloGPT-GGUF' MODEL_PATH = 'TheBloke/MelloGPT-GGUF' KNOWLEDGE_BASE_FILE = "mentalhealth.csv" # Configuration NUM_THREADS = 8 MAX_INPUT_SIZE = 2048 NUM_OUTPUT = 256 CHUNK_OVERLAP_RATIO = 0.10 # Initialize prompt helper with fallback on exception try: prompt_helper = PromptHelper(MAX_INPUT_SIZE, NUM_OUTPUT, CHUNK_OVERLAP_RATIO) except Exception as e: CHUNK_OVERLAP_RATIO = 0.2 prompt_helper = PromptHelper(MAX_INPUT_SIZE, NUM_OUTPUT, CHUNK_OVERLAP_RATIO) embed_model = LangchainEmbedding(HuggingFaceEmbeddings()) class CustomLLM(LLM): model_name = MODEL_NAME def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: p = f"Human: {prompt} Assistant: " prompt_length = len(p) llm = Llama(model_path=MODEL_PATH, n_threads=NUM_THREADS) try: output = llm(p, max_tokens=512, stop=["Human:"], echo=True)['choices'][0]['text'] response = output[prompt_length:] st.session_state.messages.append({"role": "user", "content": prompt}) st.session_state.messages.append({"role": "assistant", "content": response}) except Exception as e: st.error("An error occurred while processing your request. Please try again.") @property def _identifying_params(self) -> Mapping[str, Any]: return {"name_of_model": self.model_name} @property def _llm_type(self) -> str: return "custom" # Cache functions using the new methods @st.cache_resource def load_model(): return CustomLLM() @st.cache_data def load_knowledge_base(): df = pd.read_csv(KNOWLEDGE_BASE_FILE) return dict(zip(df['Questions'].str.lower(), df['Answers'])) def clear_convo(): st.session_state['messages'] = [] def init(): if 'messages' not in st.session_state: st.session_state['messages'] = [] # Main function if __name__ == '__main__': init() knowledge_base = load_knowledge_base() llm = load_model() clear_button = st.sidebar.button("Clear Conversation") if clear_button: clear_convo() user_input = st.text_input("Enter your query:", key="user_input") if user_input: user_input = user_input.lower() answer = knowledge_base.get(user_input) if answer: st.session_state.messages.append({"role": "user", "content": user_input}) st.session_state.messages.append({"role": "assistant", "content": answer}) else: llm._call(prompt=user_input) for message in st.session_state.messages: with st.container(): st.markdown(f"**{message['role'].title()}**: {message['content']}")