RepoGPT / app.py
wuchangsheng951
Add application file
76019cf
import gradio as gr
import os
import shutil
import requests
import zipfile
from PyPDF2 import PdfFileReader, PdfFileWriter
import PyPDF2
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate,Preformatted
from reportlab.platypus import Image as RLImage
from reportlab.platypus import Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.utils import ImageReader
from PIL import Image
import os
from langchain.indexes.vectorstore import VectorstoreIndexCreator
from langchain.chains import VectorDBQA,VectorDBQAWithSourcesChain
from langchain import OpenAI
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.vectorstores.faiss import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from flask import send_file
# from IPython.display import Markdown, display
class REPOGPT:
def __init__(self) -> None:
self.repo_link = None
self.api_key = None
def init_agent(self, api_key, repo_link = None, load_vectorstore = None):
try:
os.remove('merged.pdf')
except:
pass
self.repo_link = repo_link
self.api_key = api_key
self.load_vectorstore = load_vectorstore
#assert if api key is valid
assert self.api_key != None, "You need to provide an API key"
self.REPOGPT_Initialized()
return gr.update(visible = True),'Initialize Finished'
def REPOGPT_Initialized(self,image_included = False):
os.environ["OPENAI_API_KEY"] = self.api_key
if self.load_vectorstore == None:
loader = UnstructuredPDFLoader( self.create_repo_pdf(self.repo_link,image_included = image_included))
# pages = loader.load_and_split()
self.index = VectorstoreIndexCreator(vectorstore_cls = FAISS).from_loaders([loader])
self.vectorstore = self.index.vectorstore
print(' vectorstore created')
else:
embeddings = OpenAIEmbeddings()
self.vectorstore = FAISS.load_local(self.load_vectorstore,embeddings =embeddings)
print(' vectorstore loaded')
self.qa = VectorDBQA.from_chain_type(llm =OpenAI(temperature=0, model_name="gpt-3.5-turbo"), chain_type = "stuff",vectorstore = self.vectorstore )
def download_repo_zip(self, link, output_folder = "main.zip"):
username = link.split('/')[3]
repo = link.split('/')[4]
zip_url = f"https://github.com/{username}/{repo}/archive/refs/heads/master.zip"
self.zip_url = zip_url
response = requests.get(zip_url)
response.raise_for_status()
#down load the zip file
with open('main.zip', 'wb') as f:
f.write(response.content)
# return the name of the extracted folder
# return self.extract_zip("main.zip", output_folder)
# return BytesIO(response.content)
def extract_zip(self, zip_file, destination_folder):
with zipfile.ZipFile(zip_file) as zf:
zf.extractall(destination_folder)
#get the name of the extracted folder
folder_name = zf.namelist()[0]
return folder_name
def convert_to_pdf(self, input_path, output_path):
if input_path.endswith(".pdf"):
# Create a new PDF with the file path heading
buffer = BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
elements = []
heading = Paragraph(f"File path: {input_path}", styles["Heading2"])
elements.append(heading)
elements.append(Spacer(1, 12))
doc.build(elements)
# Read the newly created PDF with heading
buffer.seek(0)
new_pdf = PdfFileReader(buffer)
# Read the input PDF
with open(input_path, "rb") as f:
input_pdf = PdfFileReader(f)
# Merge the new PDF with heading and the input PDF
pdf_writer = PdfFileWriter()
for page_num in range(new_pdf.getNumPages()):
pdf_writer.addPage(new_pdf.getPage(page_num))
for page_num in range(input_pdf.getNumPages()):
pdf_writer.addPage(input_pdf.getPage(page_num))
# Save the merged PDF to the output file
with open(output_path, "wb") as f:
pdf_writer.write(f)
elif input_path.lower().endswith((".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff")):
img = Image.open(input_path)
img_reader = ImageReader(img)
img_width, img_height = img.size
aspect_ratio = img_height / img_width
max_pdf_width = letter[0] - 2 * 72 # 1 inch margin on each side
max_pdf_height = letter[1] - 2 * 72 # 1 inch margin on top and bottom
if img_width > max_pdf_width:
img_width = max_pdf_width
img_height = img_width * aspect_ratio
if img_height > max_pdf_height:
img_height = max_pdf_height
img_width = img_height / aspect_ratio
img_width = int(img_width)
img_height = int(img_height)
# Resize the image
img = img.resize((int(img_width), int(img_height)))
img = img.resize((int(img_width), int(img_height)))
img.save(output_path, "PNG")
# Create a new PDF with the image
doc = SimpleDocTemplate(output_path, pagesize=letter)
styles = getSampleStyleSheet()
elements = []
heading = Paragraph(f" {input_path}", styles["Heading2"])
elements.append(heading)
elements.append(Spacer(1, 12))
img_rl = RLImage(input_path, width=img_width, height=img_height, kind='proportional')
elements.append(img_rl)
doc.build(elements)
else:
with open(input_path, "r") as f:
content = f.read()
doc = SimpleDocTemplate(output_path, pagesize=letter)
styles = getSampleStyleSheet()
elements = []
# Add the file path heading
heading = Paragraph(f"{input_path}", styles["Heading2"])
elements.append(heading)
elements.append(Spacer(1, 12))
# Add the content as Preformatted text
text = Preformatted(content, style=styles["Code"])
elements.append(text)
doc.build(elements)
def merge_pdfs(self, pdf_files, output_path):
pdf_writer = PyPDF2.PdfWriter()
for pdf_file in pdf_files:
with open(pdf_file, "rb") as f:
try:
pdf_reader = PyPDF2.PdfReader(f)
if pdf_reader.is_encrypted:
print(f"{pdf_file} is encrypted. Skipping.")
continue
except:
print(f"{pdf_file} is not a valid PDF. Skipping.")
continue
for page_num in range(len(pdf_reader.pages)):
pdf_writer.add_page(pdf_reader.pages[page_num])
with open(output_path, "wb") as f:
pdf_writer.write(f)
def get_pdf(self):
return self.merged_pdf_path
def save_indexDB(self,save_path = 'indexDB.json'):
self.vectorstore.save_local(save_path)
print("indexDB saved at: ", save_path)
def create_repo_pdf(self, repo_link, image_included = False, merged_pdf = "temp_merged.pdf"):
self.merged_pdf_path = merged_pdf
self.download_repo_zip(repo_link)
folder_name = self.extract_zip('./main.zip', './')
ingnore_list = ['__pycache__',]
if not image_included:
ingnore_list.append('.jpg')
ingnore_list.append('.png')
ingnore_list.append('.jpeg')
ingnore_list.append('.gif')
ingnore_list.append('.bmp')
ingnore_list.append('.tiff')
print('folder_name: ', folder_name)
pdf_files = []
for root, dirs, files in os.walk(folder_name):
for file in files:
input_file = os.path.join(root, file)
#if the file contains any of the strings in the ignore list, skip it
if any(x in input_file for x in ingnore_list):
continue
#create a temp folder to store the pdf files
os.makedirs("temp", exist_ok=True)
output_file = os.path.join("temp", os.path.splitext(file)[0] + ".pdf")
try:
self.convert_to_pdf(input_file, output_file)
except:
print("Error converting file: ", input_file)
continue
pdf_files.append(output_file)
self.merge_pdfs(pdf_files, self.merged_pdf_path)
#clean up the temp folder and downloaded zip file
os.remove("main.zip")
shutil.rmtree(folder_name)
shutil.rmtree("temp")
return self.merged_pdf_path
def Answer_quetsion(self, question):
return self.qa.run(question)
def Answer_quetsion_with_source(self, question):
return self.qa({"question": question}, return_only_outputs = True)
def call_output(string = 'REPOGPT Initializing'):
return string
def download_file(filename = 'merged.pdf'):
# filename = repogpt.get_pdf()
return send_file(filename, as_attachment=True)
repogpt = REPOGPT()
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("<h3><center>REPOGPT</center></h3>")
gr.Markdown(
"""This is a demo to the work [REPOGPT](https://github.com/wuchangsheng951/RepoGPT).<br>
This space connects ChatGPT and RepoGPT is a Python library that allows you to search and answer questions about a GitHub repository's content.<br>
"""
)
with gr.Row():
apikey = gr.Textbox(
placeholder="Paste your OpenAI API key here to start Visual ChatGPT(sk-...) and press Enter ↵️",
show_label=True,
label = 'OpenAI API key',
lines=1,
type="password",
)
with gr.Row():
repo_link = gr.Textbox(
placeholder="Paste your repo_link and press Enter ↵️",
label = 'repo_link like: https://github.com/wuchangsheng951/RepoGPT',
show_label=True,
lines=1,
)
with gr.Column(scale=0.7):
Initialize = gr.Button("Initialize RepoGPT")
output = gr.Textbox(label="Output Box")
with gr.Row(visible=False) as input_raws:
with gr.Column(scale=0.7):
txt = gr.Textbox(show_label=False, placeholder="Enter your question").style(container=False)
with gr.Column(scale=0.4):
AQ = gr.Button("Ask a Question").style(container=False)
# with gr.Row():
# Download = gr.Button("Download PDF")
gr.Examples(
examples=["Whats the name of this repo?",
"Whats this repo for?",
"How can I use this. Example code ? Step by step",
"how can I use this Experiment trackers ? Step by step",
"how can I Performing gradient accumulation with Accelerate? Step by step?",
"Make it like water-color painting",
"What is the background color",
"Describe this image",
"please detect the depth of this image",
"Can you use this depth image to generate a cute dog",
],
inputs=txt
)
apikey.submit(repogpt.init_agent, [apikey,repo_link], [input_raws, output])
Initialize.click(repogpt.init_agent, [apikey,repo_link], [input_raws, output])
apikey.submit(call_output, [],[output])
txt.submit(repogpt.Answer_quetsion, [txt], [output])
AQ.click(repogpt.Answer_quetsion, [txt], [output])
# Download.click(download_file, [], [Download])
demo.launch()