import os import gradio as gr from text_generation import Client, InferenceAPIClient import time def get_client(model: str): if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B": return Client(os.getenv("OPENCHAT_API_URL")) return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None)) def get_usernames(model: str): if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"): return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>" def predict( model: str, inputs: str, typical_p: float, top_p: float, temperature: float, top_k: int, repetition_penalty: float, watermark: bool, chatbot, history, ): client = get_client(model) preprompt, user_name, assistant_name, sep = get_usernames(model) history.append(inputs) past = [] for data in chatbot: user_data, model_data = data if not user_data.startswith(user_name): user_data = user_name + user_data if not model_data.startswith(sep + assistant_name): model_data = sep + assistant_name + model_data past.append(user_data + model_data.rstrip() + sep) if not inputs.startswith(user_name): inputs = user_name + inputs total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip() partial_words = "" if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"): iterator = client.generate_stream( total_inputs, typical_p=typical_p, truncate=1000, watermark=watermark, max_new_tokens=500, ) else: iterator = client.generate_stream( total_inputs, top_p=top_p if top_p < 1.0 else None, top_k=top_k, truncate=1000, repetition_penalty=repetition_penalty, watermark=watermark, temperature=temperature, max_new_tokens=500, stop_sequences=[user_name.rstrip(), assistant_name.rstrip()], ) for i, response in enumerate(iterator): if response.token.special: continue partial_words = partial_words + response.token.text if partial_words.endswith(user_name.rstrip()): partial_words = partial_words.rstrip(user_name.rstrip()) if partial_words.endswith(assistant_name.rstrip()): partial_words = partial_words.rstrip(assistant_name.rstrip()) if i == 0: history.append(" " + partial_words) elif response.token.text not in user_name: history[-1] = partial_words chat = [ (history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2) ] yield chat, history def reset_textbox(): return gr.update(value="") def radio_on_change( value: str, typical_p, top_p, top_k, temperature, repetition_penalty, watermark, ): if value in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"): typical_p = typical_p.update(value=0.2, visible=True) top_p = top_p.update(visible=False) top_k = top_k.update(visible=False) temperature = temperature.update(visible=False) repetition_penalty = repetition_penalty.update(visible=False) watermark = watermark.update(False) else: typical_p = typical_p.update(visible=False) top_p = top_p.update(value=0.95, visible=True) top_k = top_k.update(value=4, visible=True) temperature = temperature.update(value=0.5, visible=True) repetition_penalty = repetition_penalty.update(value=1.03, visible=True) watermark = watermark.update(True) return ( typical_p, top_p, top_k, temperature, repetition_penalty, watermark, ) title = """

Assistant API

""" with gr.Blocks( css="""#col_container {margin-left: auto; margin-right: auto;} #chatbot {height: 400px; overflow: auto;}""" ) as demo: gr.HTML(title) gr.Markdown(visible=True) with gr.Column(elem_id="col_container"): model = gr.Radio( value="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", choices=[ "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", ], label="Model", interactive=True, ) chatbot = gr.Chatbot(elem_id="chatbot") inputs = gr.Textbox( placeholder="Hi there!", label="Type and press Enter" ) state = gr.State([]) with gr.Row(): b0 = gr.Button("send") # b1 = gr.Button() with gr.Accordion("Parameters", open=False): typical_p = gr.Slider( minimum=-0, maximum=1.0, value=0.2, step=0.05, interactive=True, label="Typical P mass", ) top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.25, step=0.05, interactive=True, label="Top-p (nucleus sampling)", visible=False, ) temperature = gr.Slider( minimum=-0, maximum=5.0, value=0.6, step=0.1, interactive=True, label="Temperature", visible=False, ) top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", visible=False, ) repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", visible=False, ) watermark = gr.Checkbox(value=False, label="Text watermarking") model.change( lambda value: radio_on_change( value, typical_p, top_p, top_k, temperature, repetition_penalty, watermark, ), inputs=model, outputs=[ typical_p, top_p, top_k, temperature, repetition_penalty, watermark, ], ) inputs.submit( predict, [ model, inputs, typical_p, top_p, temperature, top_k, repetition_penalty, watermark, chatbot, state, ], [chatbot, state], ) b0.click( predict, [ model, inputs, typical_p, top_p, temperature, top_k, repetition_penalty, watermark, chatbot, state, ], [chatbot, state], api_name="output" ) b0.click(reset_textbox, [], [inputs]) inputs.submit(reset_textbox, [], [inputs]) demo.queue(concurrency_count=16).launch(debug=True)