File size: 7,483 Bytes
a379188
 
 
410c1ce
7ed75ad
a379188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808770
a379188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd1a7e
a379188
 
 
ebbdfb3
a379188
 
4d3fada
a379188
 
 
fa0ca1c
0c0efab
fa0ca1c
a379188
 
 
 
79e7101
a379188
bf4ccf5
a379188
 
7ed75ad
3936915
 
79e7101
b438485
a379188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b438485
b132339
a379188
2482c91
a379188
 
 
 
 
 
 
 
 
 
 
4d3fada
a379188
b438485
a379188
 
90d897c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import gradio as gr
from text_generation import Client, InferenceAPIClient
import time




def get_client(model: str):
    if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        return Client(os.getenv("OPENCHAT_API_URL"))
    return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))


def get_usernames(model: str):
    if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
        return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"


def predict(
    model: str,
    inputs: str,
    typical_p: float,
    top_p: float,
    temperature: float,
    top_k: int,
    repetition_penalty: float,
    watermark: bool,
    chatbot,
    history,
):
    client = get_client(model)
    preprompt, user_name, assistant_name, sep = get_usernames(model)

    history.append(inputs)

    past = []
    for data in chatbot:
        user_data, model_data = data

        if not user_data.startswith(user_name):
            user_data = user_name + user_data
        if not model_data.startswith(sep + assistant_name):
            model_data = sep + assistant_name + model_data

        past.append(user_data + model_data.rstrip() + sep)

    if not inputs.startswith(user_name):
        inputs = user_name + inputs

    total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()

    partial_words = ""

    if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
        iterator = client.generate_stream(
            total_inputs,
            typical_p=typical_p,
            truncate=1000,
            watermark=watermark,
            max_new_tokens=500,
        )
    else:
        iterator = client.generate_stream(
            total_inputs,
            top_p=top_p if top_p < 1.0 else None,
            top_k=top_k,
            truncate=1000,
            repetition_penalty=repetition_penalty,
            watermark=watermark,
            temperature=temperature,
            max_new_tokens=500,
            stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
        )

    for i, response in enumerate(iterator):
        if response.token.special:
            continue

        partial_words = partial_words + response.token.text
        if partial_words.endswith(user_name.rstrip()):
            partial_words = partial_words.rstrip(user_name.rstrip())
        if partial_words.endswith(assistant_name.rstrip()):
            partial_words = partial_words.rstrip(assistant_name.rstrip())

        if i == 0:
            history.append(" " + partial_words)
        elif response.token.text not in user_name:
            history[-1] = partial_words

        chat = [
            (history[i].strip(), history[i + 1].strip())
            for i in range(0, len(history) - 1, 2)
        ]
        yield chat, history



def reset_textbox():
    return gr.update(value="")


def radio_on_change(
    value: str,
    typical_p,
    top_p,
    top_k,
    temperature,
    repetition_penalty,
    watermark,
):
    if value in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
        typical_p = typical_p.update(value=0.2, visible=True)
        top_p = top_p.update(visible=False)
        top_k = top_k.update(visible=False)
        temperature = temperature.update(visible=False)
        repetition_penalty = repetition_penalty.update(visible=False)
        watermark = watermark.update(False)
    else:
        typical_p = typical_p.update(visible=False)
        top_p = top_p.update(value=0.95, visible=True)
        top_k = top_k.update(value=4, visible=True)
        temperature = temperature.update(value=0.5, visible=True)
        repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
        watermark = watermark.update(True)
    return (
        typical_p,
        top_p,
        top_k,
        temperature,
        repetition_penalty,
        watermark,
    )


title = """<h1 align="center">Assistant API</h1>"""

with gr.Blocks(
    css="""#col_container {margin-left: auto; margin-right: auto;}
                #chatbot {height: 400px; overflow: auto;}"""
) as demo:
    gr.HTML(title)
    gr.Markdown(visible=True)
    with gr.Column(elem_id="col_container"):
        model = gr.Radio(
            value="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
            choices=[
                "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
            ],
            label="Model",
            interactive=True,
        )

        chatbot = gr.Chatbot(elem_id="chatbot")
        inputs = gr.Textbox(
            placeholder="Hi there!", label="Type and press Enter"
        )
        state = gr.State([])
        
        with gr.Row():
            b0 = gr.Button("send")
            
        # b1 = gr.Button()

        with gr.Accordion("Parameters", open=False):
            typical_p = gr.Slider(
                minimum=-0,
                maximum=1.0,
                value=0.2,
                step=0.05,
                interactive=True,
                label="Typical P mass",
            )
            top_p = gr.Slider(
                minimum=-0,
                maximum=1.0,
                value=0.25,
                step=0.05,
                interactive=True,
                label="Top-p (nucleus sampling)",
                visible=False,
            )
            temperature = gr.Slider(
                minimum=-0,
                maximum=5.0,
                value=0.6,
                step=0.1,
                interactive=True,
                label="Temperature",
                visible=False,
            )
            top_k = gr.Slider(
                minimum=1,
                maximum=50,
                value=50,
                step=1,
                interactive=True,
                label="Top-k",
                visible=False,
            )
            repetition_penalty = gr.Slider(
                minimum=0.1,
                maximum=3.0,
                value=1.03,
                step=0.01,
                interactive=True,
                label="Repetition Penalty",
                visible=False,
            )
            watermark = gr.Checkbox(value=False, label="Text watermarking")

    model.change(
        lambda value: radio_on_change(
            value,
            typical_p,
            top_p,
            top_k,
            temperature,
            repetition_penalty,
            watermark,
        ),
        inputs=model,
        outputs=[
            typical_p,
            top_p,
            top_k,
            temperature,
            repetition_penalty,
            watermark,
        ],
    )

    inputs.submit(
        predict,
        [
            model,
            inputs,
            typical_p,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state],
    )
    b0.click(
        predict,
        [
            model,
            inputs,
            typical_p,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state],
        api_name="output"
    )
    b0.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])

    demo.queue(concurrency_count=16).launch(debug=True)