import streamlit as st import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from transformers import GPT2Tokenizer, GPT2LMHeadModel from sentence_transformers import SentenceTransformer, util import torch import gdown import os # Download the CSV file from Hugging Face Spaces url = 'https://huggingface.co/datasets/HEHEBOIBOT/PharmEvoDiabetesData/raw/main/medical_data.csv' excel_file_path = os.path.join(os.path.expanduser("~"), 'medical_data.csv') gdown.download(url, excel_file_path, quiet=False) # Read the CSV file try: medical_df = pd.read_csv(excel_file_path, encoding='utf-8') except UnicodeDecodeError: medical_df = pd.read_csv(excel_file_path, encoding='latin1') # TF-IDF Vectorization vectorizer = TfidfVectorizer(stop_words='english') X_tfidf = vectorizer.fit_transform(medical_df.iloc[:, 0]) # Accessing first column by index # Load pre-trained GPT-2 model and tokenizer model_name = "sshleifer/tiny-gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # Load pre-trained Sentence Transformer model sbert_model_name = "paraphrase-MiniLM-L6-v2" sbert_model = SentenceTransformer(sbert_model_name) # Function to answer medical questions using a combination of TF-IDF, LLM, and semantic similarity def get_medical_response(question, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df): # TF-IDF Cosine Similarity question_vector = vectorizer.transform([question]) tfidf_similarities = cosine_similarity(question_vector, X_tfidf).flatten() # Find the most similar question using semantic similarity question_embedding = sbert_model.encode(question, convert_to_tensor=True) similarities = util.pytorch_cos_sim(question_embedding, sbert_model.encode(medical_df.iloc[:, 0].tolist(), convert_to_tensor=True)).flatten() max_sim_index = similarities.argmax().item() # LLM response generation input_text = "DiBot: " + medical_df.iloc[max_sim_index][0] input_ids = tokenizer.encode(input_text, return_tensors="pt") attention_mask = torch.ones(input_ids.shape, dtype=torch.long) pad_token_id = tokenizer.eos_token_id lm_output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, attention_mask=attention_mask, pad_token_id=pad_token_id) lm_generated_response = tokenizer.decode(lm_output[0], skip_special_tokens=True) # Compare similarities and choose the best response if tfidf_similarities.max() > 0.5: tfidf_index = tfidf_similarities.argmax() return medical_df.iloc[tfidf_index][1] # Assuming 'Answers' is in the second column (index 1) else: return lm_generated_response # Streamlit UI st.title("DiBot") if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) user_input = st.chat_input("You:") if user_input: response = get_medical_response(user_input, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df) st.session_state.messages.append({"role": "user", "content": user_input}) st.session_state.messages.append({"role": "assistant", "content": response}) # Display the chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"])