File size: 3,495 Bytes
25abf8c
04dafd4
25abf8c
04dafd4
25abf8c
 
 
04dafd4
25abf8c
 
380d8a4
261d5bd
d9adf30
 
 
04dafd4
25abf8c
04dafd4
 
 
 
 
25abf8c
 
380d8a4
25abf8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380d8a4
25abf8c
 
 
380d8a4
25abf8c
 
 
 
 
 
 
 
 
380d8a4
25abf8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380d8a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from sentence_transformers import SentenceTransformer, util
import torch
import gdown
import os

# Download the CSV file from Hugging Face Spaces
url = 'https://huggingface.co/datasets/HEHEBOIBOT/PharmEvoDiabetesData/raw/main/medical_data.csv'
excel_file_path = os.path.join(os.path.expanduser("~"), 'medical_data.csv')

gdown.download(url, excel_file_path, quiet=False)

# Read the CSV file
try:
    medical_df = pd.read_csv(excel_file_path, encoding='utf-8')
except UnicodeDecodeError:
    medical_df = pd.read_csv(excel_file_path, encoding='latin1')

# TF-IDF Vectorization
vectorizer = TfidfVectorizer(stop_words='english')
X_tfidf = vectorizer.fit_transform(medical_df.iloc[:, 0])  # Accessing first column by index

# Load pre-trained GPT-2 model and tokenizer
model_name = "sshleifer/tiny-gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

# Load pre-trained Sentence Transformer model
sbert_model_name = "paraphrase-MiniLM-L6-v2"
sbert_model = SentenceTransformer(sbert_model_name)


# Function to answer medical questions using a combination of TF-IDF, LLM, and semantic similarity
def get_medical_response(question, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df):
    # TF-IDF Cosine Similarity
    question_vector = vectorizer.transform([question])
    tfidf_similarities = cosine_similarity(question_vector, X_tfidf).flatten()

    # Find the most similar question using semantic similarity
    question_embedding = sbert_model.encode(question, convert_to_tensor=True)
    similarities = util.pytorch_cos_sim(question_embedding, sbert_model.encode(medical_df.iloc[:, 0].tolist(), convert_to_tensor=True)).flatten()
    max_sim_index = similarities.argmax().item()

    # LLM response generation
    input_text = "DiBot: " + medical_df.iloc[max_sim_index][0]
    input_ids = tokenizer.encode(input_text, return_tensors="pt")
    attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
    pad_token_id = tokenizer.eos_token_id
    lm_output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, attention_mask=attention_mask, pad_token_id=pad_token_id)
    lm_generated_response = tokenizer.decode(lm_output[0], skip_special_tokens=True)

    # Compare similarities and choose the best response
    if tfidf_similarities.max() > 0.5:
        tfidf_index = tfidf_similarities.argmax()
        return medical_df.iloc[tfidf_index][1]  # Assuming 'Answers' is in the second column (index 1)
    else:
        return lm_generated_response

# Streamlit UI
st.title("DiBot")

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

user_input = st.chat_input("You:")

if user_input:
    response = get_medical_response(user_input, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df)
    st.session_state.messages.append({"role": "user", "content": user_input})
    st.session_state.messages.append({"role": "assistant", "content": response})

# Display the chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])