Spaces:
Sleeping
Sleeping
Commit
·
9ac3eaa
1
Parent(s):
a432ed7
skills missing elements
Browse files- Process/ats_parser.py +5 -2
- Process/extract.py +7 -5
- Process/models.py +7 -8
- Process/response.py +10 -5
- Process/urls.py +4 -5
- Process/utils.py +189 -127
- Process/views.py +24 -19
- ResumeATS/settings.py +39 -38
Process/ats_parser.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import re
|
| 2 |
import logging
|
| 3 |
-
from .response import get_response
|
| 4 |
from pydantic import BaseModel, TypeAdapter
|
| 5 |
import json
|
| 6 |
import traceback
|
|
@@ -8,6 +8,7 @@ import traceback
|
|
| 8 |
# Set up logging
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
|
|
|
| 11 |
class Section:
|
| 12 |
name: str
|
| 13 |
email: str
|
|
@@ -18,6 +19,7 @@ class Section:
|
|
| 18 |
certifications: str
|
| 19 |
areas_of_interest: str
|
| 20 |
|
|
|
|
| 21 |
def deep_get(dictionary, keys, default=None):
|
| 22 |
logger.debug(f"Accessing deep keys {keys} in dictionary")
|
| 23 |
try:
|
|
@@ -32,6 +34,7 @@ def deep_get(dictionary, keys, default=None):
|
|
| 32 |
logger.error(f"Error in deep_get function: {e}")
|
| 33 |
return default
|
| 34 |
|
|
|
|
| 35 |
def extract_resume_details(resume: str):
|
| 36 |
logger.info("Starting resume details extraction")
|
| 37 |
"""
|
|
@@ -82,7 +85,7 @@ def extract_resume_details(resume: str):
|
|
| 82 |
logger.info("Sending resume to get_response function")
|
| 83 |
combined_output = get_response(prompt=resume, task=system_ins)
|
| 84 |
logger.debug("Raw response received from get_response")
|
| 85 |
-
|
| 86 |
logger.info("Attempting to parse response to JSON")
|
| 87 |
result = json.loads(combined_output)
|
| 88 |
logger.debug("Successfully parsed response to JSON")
|
|
|
|
| 1 |
import re
|
| 2 |
import logging
|
| 3 |
+
from .response import get_response
|
| 4 |
from pydantic import BaseModel, TypeAdapter
|
| 5 |
import json
|
| 6 |
import traceback
|
|
|
|
| 8 |
# Set up logging
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
+
|
| 12 |
class Section:
|
| 13 |
name: str
|
| 14 |
email: str
|
|
|
|
| 19 |
certifications: str
|
| 20 |
areas_of_interest: str
|
| 21 |
|
| 22 |
+
|
| 23 |
def deep_get(dictionary, keys, default=None):
|
| 24 |
logger.debug(f"Accessing deep keys {keys} in dictionary")
|
| 25 |
try:
|
|
|
|
| 34 |
logger.error(f"Error in deep_get function: {e}")
|
| 35 |
return default
|
| 36 |
|
| 37 |
+
|
| 38 |
def extract_resume_details(resume: str):
|
| 39 |
logger.info("Starting resume details extraction")
|
| 40 |
"""
|
|
|
|
| 85 |
logger.info("Sending resume to get_response function")
|
| 86 |
combined_output = get_response(prompt=resume, task=system_ins)
|
| 87 |
logger.debug("Raw response received from get_response")
|
| 88 |
+
|
| 89 |
logger.info("Attempting to parse response to JSON")
|
| 90 |
result = json.loads(combined_output)
|
| 91 |
logger.debug("Successfully parsed response to JSON")
|
Process/extract.py
CHANGED
|
@@ -4,18 +4,19 @@ from PIL import Image
|
|
| 4 |
import io
|
| 5 |
import requests
|
| 6 |
|
|
|
|
| 7 |
def extract_text_from_pdf(file_path_or_url):
|
| 8 |
text = ""
|
| 9 |
-
|
| 10 |
# Check if the file_path_or_url is a URL
|
| 11 |
-
if file_path_or_url.startswith((
|
| 12 |
# Download the PDF file from URL
|
| 13 |
response = requests.get(file_path_or_url)
|
| 14 |
if response.status_code != 200:
|
| 15 |
raise Exception(f"Failed to download the file: {response.status_code}")
|
| 16 |
-
|
| 17 |
# Open the PDF from the downloaded bytes
|
| 18 |
-
doc = fitz.open(stream=io.BytesIO(response.content), filetype="pdf")
|
| 19 |
else:
|
| 20 |
# Open the PDF from a local file path
|
| 21 |
doc = fitz.open(file_path_or_url)
|
|
@@ -24,7 +25,7 @@ def extract_text_from_pdf(file_path_or_url):
|
|
| 24 |
page = doc.load_page(page_num)
|
| 25 |
# Try to extract text
|
| 26 |
page_text = page.get_text()
|
| 27 |
-
|
| 28 |
if page_text.strip(): # If text is found
|
| 29 |
text += page_text
|
| 30 |
else: # If no text, use OCR
|
|
@@ -35,6 +36,7 @@ def extract_text_from_pdf(file_path_or_url):
|
|
| 35 |
|
| 36 |
return text
|
| 37 |
|
|
|
|
| 38 |
# Example usage with Firebase URL
|
| 39 |
# firebase_url = "https://firebasestorage.googleapis.com/v0/b/resumeats-50ccf.firebasestorage.app/o/uploads%2Fsanthoshrajan776%40gmail.com%2FSanthoshNatarajan_InternshalaResume%20(1).pdf?alt=media&token=f11f9601-6550-4e64-bba6-a2b699a148af"
|
| 40 |
# text = extract_text_from_pdf(firebase_url)
|
|
|
|
| 4 |
import io
|
| 5 |
import requests
|
| 6 |
|
| 7 |
+
|
| 8 |
def extract_text_from_pdf(file_path_or_url):
|
| 9 |
text = ""
|
| 10 |
+
|
| 11 |
# Check if the file_path_or_url is a URL
|
| 12 |
+
if file_path_or_url.startswith(("http://", "https://")):
|
| 13 |
# Download the PDF file from URL
|
| 14 |
response = requests.get(file_path_or_url)
|
| 15 |
if response.status_code != 200:
|
| 16 |
raise Exception(f"Failed to download the file: {response.status_code}")
|
| 17 |
+
|
| 18 |
# Open the PDF from the downloaded bytes
|
| 19 |
+
doc = fitz.open(stream=io.BytesIO(response.content), filetype="pdf")a
|
| 20 |
else:
|
| 21 |
# Open the PDF from a local file path
|
| 22 |
doc = fitz.open(file_path_or_url)
|
|
|
|
| 25 |
page = doc.load_page(page_num)
|
| 26 |
# Try to extract text
|
| 27 |
page_text = page.get_text()
|
| 28 |
+
|
| 29 |
if page_text.strip(): # If text is found
|
| 30 |
text += page_text
|
| 31 |
else: # If no text, use OCR
|
|
|
|
| 36 |
|
| 37 |
return text
|
| 38 |
|
| 39 |
+
|
| 40 |
# Example usage with Firebase URL
|
| 41 |
# firebase_url = "https://firebasestorage.googleapis.com/v0/b/resumeats-50ccf.firebasestorage.app/o/uploads%2Fsanthoshrajan776%40gmail.com%2FSanthoshNatarajan_InternshalaResume%20(1).pdf?alt=media&token=f11f9601-6550-4e64-bba6-a2b699a148af"
|
| 42 |
# text = extract_text_from_pdf(firebase_url)
|
Process/models.py
CHANGED
|
@@ -1,19 +1,18 @@
|
|
| 1 |
from django.db import models
|
| 2 |
|
| 3 |
# Create your models here.
|
| 4 |
-
|
|
|
|
| 5 |
class EndPoint(models.Model):
|
| 6 |
user_id = models.IntegerField()
|
| 7 |
resume = models.TextField()
|
| 8 |
job_description = models.TextField()
|
| 9 |
-
time = models.DateTimeField(auto_now_add=True)
|
| 10 |
|
| 11 |
def __str__(self):
|
| 12 |
return {
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
}
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 1 |
from django.db import models
|
| 2 |
|
| 3 |
# Create your models here.
|
| 4 |
+
|
| 5 |
+
|
| 6 |
class EndPoint(models.Model):
|
| 7 |
user_id = models.IntegerField()
|
| 8 |
resume = models.TextField()
|
| 9 |
job_description = models.TextField()
|
| 10 |
+
time = models.DateTimeField(auto_now_add=True)
|
| 11 |
|
| 12 |
def __str__(self):
|
| 13 |
return {
|
| 14 |
+
"user_id": self.user_id,
|
| 15 |
+
"resume": self.resume,
|
| 16 |
+
"job_description": self.job_description,
|
| 17 |
+
"time": self.time,
|
| 18 |
}
|
|
|
|
|
|
Process/response.py
CHANGED
|
@@ -7,18 +7,23 @@ from google.genai import types
|
|
| 7 |
load_dotenv()
|
| 8 |
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
def get_response(prompt,task):
|
| 13 |
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
| 14 |
|
| 15 |
response = client.models.generate_content(
|
| 16 |
model="gemini-2.0-flash",
|
| 17 |
config=types.GenerateContentConfig(
|
| 18 |
-
system_instruction=task+sys_instruct,
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
# print(response.text)
|
| 22 |
return response.text
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
| 7 |
load_dotenv()
|
| 8 |
|
| 9 |
|
| 10 |
+
sys_instruct = "Provide the output in JSON format where the key is the topic and the value is a list of relevant contents. Ensure the response is clear, user friendly, structured."
|
| 11 |
|
| 12 |
+
|
| 13 |
+
def get_response(prompt, task, temperature=0.75):
|
| 14 |
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
| 15 |
|
| 16 |
response = client.models.generate_content(
|
| 17 |
model="gemini-2.0-flash",
|
| 18 |
config=types.GenerateContentConfig(
|
| 19 |
+
system_instruction=task + sys_instruct,
|
| 20 |
+
response_mime_type="application/json",
|
| 21 |
+
temperature=temperature,
|
| 22 |
+
),
|
| 23 |
+
contents=prompt,
|
| 24 |
)
|
| 25 |
# print(response.text)
|
| 26 |
return response.text
|
| 27 |
|
| 28 |
+
|
| 29 |
+
# get_response("What is AI?","explain the given prompt")
|
Process/urls.py
CHANGED
|
@@ -3,9 +3,8 @@ from . import views
|
|
| 3 |
from .change import process_change
|
| 4 |
|
| 5 |
urlpatterns = [
|
| 6 |
-
path("",views.home,name="welcome"),
|
| 7 |
-
path(
|
| 8 |
-
path(
|
| 9 |
-
path(
|
| 10 |
]
|
| 11 |
-
|
|
|
|
| 3 |
from .change import process_change
|
| 4 |
|
| 5 |
urlpatterns = [
|
| 6 |
+
path("", views.home, name="welcome"),
|
| 7 |
+
path("process_resume/", views.process_resume, name="handle_request"),
|
| 8 |
+
path("process_change/", process_change, name="handle_change"),
|
| 9 |
+
path("verify_api/", views.verify_api, name="verify_api"),
|
| 10 |
]
|
|
|
Process/utils.py
CHANGED
|
@@ -19,16 +19,17 @@ Provide responses in this exact JSON format:
|
|
| 19 |
Ensure the score is always a number between 0-10.
|
| 20 |
"""
|
| 21 |
|
|
|
|
| 22 |
class ATSResumeParser:
|
| 23 |
def __init__(self):
|
| 24 |
logger.info("Initializing ATSResumeParser")
|
| 25 |
self.score_weights = {
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
}
|
| 33 |
self.total_weight = sum(self.score_weights.values())
|
| 34 |
logger.debug(f"Score weights configured with total weight: {self.total_weight}")
|
|
@@ -39,136 +40,174 @@ class ATSResumeParser:
|
|
| 39 |
logger.debug("Parsing Gemini API response")
|
| 40 |
response = json.loads(response_text)
|
| 41 |
result = {
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
}
|
| 47 |
logger.debug(f"Successfully parsed response with score: {result['score']}")
|
| 48 |
return result
|
| 49 |
except (json.JSONDecodeError, KeyError, ValueError) as e:
|
| 50 |
logger.error(f"Error parsing Gemini response: {e}")
|
| 51 |
logger.debug(f"Failed response content: {response_text}")
|
| 52 |
-
return {
|
| 53 |
except Exception as e:
|
| 54 |
logger.error(f"Unexpected error parsing Gemini response: {e}")
|
| 55 |
logger.debug(traceback.format_exc())
|
| 56 |
-
return {
|
| 57 |
|
| 58 |
def _score_skills(self, skills: List[str], job_description: Optional[str]) -> Dict:
|
| 59 |
"""Score skills with optimized processing"""
|
| 60 |
if not skills:
|
| 61 |
-
return {
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
skills_length = len(skills)
|
| 66 |
if skills_length >= 5:
|
| 67 |
base_score += 10
|
| 68 |
if skills_length >= 10:
|
| 69 |
base_score += 10
|
| 70 |
-
|
| 71 |
if not job_description:
|
| 72 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
prompt = f"Skills: {','.join(skills[:20])}.
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
| 79 |
return {
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
}
|
| 85 |
|
| 86 |
-
def _score_experience(
|
|
|
|
|
|
|
| 87 |
"""Score experience with optimized processing"""
|
| 88 |
if not experience:
|
| 89 |
-
return {
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
base_score = 60
|
| 92 |
-
|
| 93 |
-
required_keys = {
|
| 94 |
-
improvement_keywords = {
|
| 95 |
-
|
| 96 |
for exp in experience:
|
| 97 |
if required_keys.issubset(exp.keys()):
|
| 98 |
base_score += 10
|
| 99 |
-
|
| 100 |
-
description = exp.get(
|
| 101 |
-
if description and any(
|
|
|
|
|
|
|
| 102 |
base_score += 5
|
| 103 |
-
|
| 104 |
if not job_description:
|
| 105 |
-
return {
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
prompt = f"Experience: {json.dumps(simplified_exp)}. Job description: {job_description[:500]}. Rate match."
|
| 111 |
-
|
| 112 |
-
response = self._parse_gemini_response(
|
| 113 |
-
get_response(prompt, SYSTEM_INSTRUCTION)
|
| 114 |
-
)
|
| 115 |
return {
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
}
|
| 121 |
|
| 122 |
def _score_education(self, education: List[Dict]) -> Dict:
|
| 123 |
"""Score education with optimized processing"""
|
| 124 |
if not education:
|
| 125 |
-
return {
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
score = 70
|
| 128 |
matching = []
|
| 129 |
-
|
| 130 |
-
required_keys = {
|
| 131 |
-
|
| 132 |
for edu in education:
|
| 133 |
-
gpa = edu.get(
|
| 134 |
if gpa and float(gpa) > 3.0:
|
| 135 |
score += 10
|
| 136 |
matching.append(f"Strong GPA: {gpa}")
|
| 137 |
-
|
| 138 |
if required_keys.issubset(edu.keys()):
|
| 139 |
score += 10
|
| 140 |
-
matching.append(
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
return {
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
}
|
| 148 |
|
| 149 |
def _score_formatting(self, structured_data: Dict) -> Dict:
|
| 150 |
"""Score formatting with optimized processing"""
|
| 151 |
score = 100
|
| 152 |
-
|
| 153 |
-
contact_fields = (
|
| 154 |
-
essential_sections = (
|
| 155 |
-
|
| 156 |
structured_keys = set(structured_data.keys())
|
| 157 |
-
|
| 158 |
-
missing_contacts = [
|
|
|
|
|
|
|
| 159 |
if missing_contacts:
|
| 160 |
score -= 20
|
| 161 |
-
|
| 162 |
-
missing_sections = [
|
|
|
|
|
|
|
| 163 |
missing_penalty = 15 * len(missing_sections)
|
| 164 |
if missing_sections:
|
| 165 |
score -= missing_penalty
|
| 166 |
-
|
| 167 |
return {
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
}
|
| 173 |
|
| 174 |
def _score_extra(self, structured_data: Dict) -> Dict:
|
|
@@ -182,102 +221,125 @@ class ATSResumeParser:
|
|
| 182 |
"patents": 15,
|
| 183 |
"professional_affiliations": 10,
|
| 184 |
"portfolio_links": 10,
|
| 185 |
-
"summary_or_objective": 10
|
| 186 |
}
|
| 187 |
-
|
| 188 |
total_possible = sum(extra_sections.values())
|
| 189 |
-
|
| 190 |
structured_keys = set(structured_data.keys())
|
| 191 |
-
|
| 192 |
score = 0
|
| 193 |
matching = []
|
| 194 |
missing = []
|
| 195 |
-
|
| 196 |
for section, weight in extra_sections.items():
|
| 197 |
if section in structured_keys and structured_data.get(section):
|
| 198 |
score += weight
|
| 199 |
-
matching.append(section.replace(
|
| 200 |
else:
|
| 201 |
-
missing.append(section.replace(
|
| 202 |
-
|
| 203 |
normalized_score = (score * 100) // total_possible if total_possible > 0 else 0
|
| 204 |
-
|
| 205 |
return {
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
}
|
| 211 |
|
| 212 |
-
def parse_and_score(
|
|
|
|
|
|
|
| 213 |
"""Parse and score resume with parallel processing"""
|
| 214 |
scores = {}
|
| 215 |
-
feedback = {
|
| 216 |
detailed_feedback = {}
|
| 217 |
-
|
| 218 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 219 |
# Define tasks to run in parallel
|
| 220 |
tasks = {
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
}
|
| 227 |
-
|
| 228 |
total_score = 0
|
| 229 |
for category, future in tasks.items():
|
| 230 |
result = future.result()
|
| 231 |
-
|
| 232 |
-
scores[category] = result[
|
| 233 |
-
|
| 234 |
weight = self.score_weights[category] / 100
|
| 235 |
-
total_score += result[
|
| 236 |
-
|
| 237 |
detailed_feedback[category] = {
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
}
|
| 242 |
-
|
| 243 |
-
if result[
|
| 244 |
-
feedback[
|
| 245 |
-
elif result[
|
| 246 |
-
feedback[
|
| 247 |
-
|
|
|
|
|
|
|
| 248 |
return {
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
}
|
| 254 |
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
| 256 |
"""Generate ATS score with optimized processing"""
|
| 257 |
try:
|
| 258 |
logger.info("Starting ATS score generation")
|
| 259 |
if not structured_data:
|
| 260 |
return {"error": "No resume data provided"}
|
| 261 |
-
|
| 262 |
if isinstance(structured_data, str):
|
| 263 |
try:
|
| 264 |
structured_data = json.loads(structured_data)
|
| 265 |
except json.JSONDecodeError:
|
| 266 |
return {"error": "Invalid JSON format in resume data"}
|
| 267 |
-
|
| 268 |
parser = ATSResumeParser()
|
| 269 |
result = parser.parse_and_score(structured_data, job_des_text)
|
| 270 |
-
|
| 271 |
logger.info("ATS score generation completed successfully")
|
| 272 |
return {
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
}
|
| 278 |
-
|
| 279 |
except Exception as e:
|
| 280 |
error_msg = f"Error generating ATS score: {e}"
|
| 281 |
logger.error(error_msg)
|
| 282 |
logger.debug(traceback.format_exc())
|
| 283 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
Ensure the score is always a number between 0-10.
|
| 20 |
"""
|
| 21 |
|
| 22 |
+
|
| 23 |
class ATSResumeParser:
|
| 24 |
def __init__(self):
|
| 25 |
logger.info("Initializing ATSResumeParser")
|
| 26 |
self.score_weights = {
|
| 27 |
+
"skills_match": 30,
|
| 28 |
+
"experience_relevance": 25,
|
| 29 |
+
"education_relevance": 10,
|
| 30 |
+
"overall_formatting": 15,
|
| 31 |
+
"keyword_optimization": 10,
|
| 32 |
+
"extra_sections": 10,
|
| 33 |
}
|
| 34 |
self.total_weight = sum(self.score_weights.values())
|
| 35 |
logger.debug(f"Score weights configured with total weight: {self.total_weight}")
|
|
|
|
| 40 |
logger.debug("Parsing Gemini API response")
|
| 41 |
response = json.loads(response_text)
|
| 42 |
result = {
|
| 43 |
+
"score": float(response["score"]),
|
| 44 |
+
"matching": response.get("matching_elements", []),
|
| 45 |
+
"missing": response.get("missing_elements", []),
|
| 46 |
+
"explanation": response.get("explanation", ""),
|
| 47 |
}
|
| 48 |
logger.debug(f"Successfully parsed response with score: {result['score']}")
|
| 49 |
return result
|
| 50 |
except (json.JSONDecodeError, KeyError, ValueError) as e:
|
| 51 |
logger.error(f"Error parsing Gemini response: {e}")
|
| 52 |
logger.debug(f"Failed response content: {response_text}")
|
| 53 |
+
return {"score": 5.0, "matching": [], "missing": [], "explanation": ""}
|
| 54 |
except Exception as e:
|
| 55 |
logger.error(f"Unexpected error parsing Gemini response: {e}")
|
| 56 |
logger.debug(traceback.format_exc())
|
| 57 |
+
return {"score": 5.0, "matching": [], "missing": [], "explanation": ""}
|
| 58 |
|
| 59 |
def _score_skills(self, skills: List[str], job_description: Optional[str]) -> Dict:
|
| 60 |
"""Score skills with optimized processing"""
|
| 61 |
if not skills:
|
| 62 |
+
return {
|
| 63 |
+
"score": 0,
|
| 64 |
+
"matching": [],
|
| 65 |
+
"missing": [],
|
| 66 |
+
"explanation": "No skills provided",
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
base_score = 70
|
| 70 |
+
|
| 71 |
skills_length = len(skills)
|
| 72 |
if skills_length >= 5:
|
| 73 |
base_score += 10
|
| 74 |
if skills_length >= 10:
|
| 75 |
base_score += 10
|
| 76 |
+
|
| 77 |
if not job_description:
|
| 78 |
+
return {
|
| 79 |
+
"score": base_score,
|
| 80 |
+
"matching": skills,
|
| 81 |
+
"missing": [],
|
| 82 |
+
"explanation": "No job description provided",
|
| 83 |
+
}
|
| 84 |
|
| 85 |
+
prompt = f"""Skills: {','.join(skills[:20])}.
|
| 86 |
+
Job description: {job_description[:500]}.
|
| 87 |
+
Evaluate the skills match against this job description.
|
| 88 |
+
In the 'matching_elements' list, include only skills that directly match the job requirements.
|
| 89 |
+
In the 'missing_elements' list, include ONLY specific missing skills from the job description (no paragraphs or lengthy text).
|
| 90 |
+
Rate the overall match on a scale of 0-10."""
|
| 91 |
+
|
| 92 |
+
response = self._parse_gemini_response(get_response(prompt, SYSTEM_INSTRUCTION))
|
| 93 |
return {
|
| 94 |
+
"score": (base_score + (response["score"] * 10)) / 2,
|
| 95 |
+
"matching": response["matching"],
|
| 96 |
+
"missing": response["missing"],
|
| 97 |
+
"explanation": response["explanation"],
|
| 98 |
}
|
| 99 |
|
| 100 |
+
def _score_experience(
|
| 101 |
+
self, experience: List[Dict], job_description: Optional[str]
|
| 102 |
+
) -> Dict:
|
| 103 |
"""Score experience with optimized processing"""
|
| 104 |
if not experience:
|
| 105 |
+
return {
|
| 106 |
+
"score": 0,
|
| 107 |
+
"matching": [],
|
| 108 |
+
"missing": [],
|
| 109 |
+
"explanation": "No experience provided",
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
base_score = 60
|
| 113 |
+
|
| 114 |
+
required_keys = {"title", "company", "description"}
|
| 115 |
+
improvement_keywords = {"increased", "decreased", "improved", "%", "reduced"}
|
| 116 |
+
|
| 117 |
for exp in experience:
|
| 118 |
if required_keys.issubset(exp.keys()):
|
| 119 |
base_score += 10
|
| 120 |
+
|
| 121 |
+
description = exp.get("description", "")
|
| 122 |
+
if description and any(
|
| 123 |
+
keyword in description for keyword in improvement_keywords
|
| 124 |
+
):
|
| 125 |
base_score += 5
|
| 126 |
+
|
| 127 |
if not job_description:
|
| 128 |
+
return {
|
| 129 |
+
"score": base_score,
|
| 130 |
+
"matching": [],
|
| 131 |
+
"missing": [],
|
| 132 |
+
"explanation": "No job description provided",
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
simplified_exp = [
|
| 136 |
+
{"title": e.get("title", ""), "description": e.get("description", "")[:100]}
|
| 137 |
+
for e in experience[:3]
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
prompt = f"Experience: {json.dumps(simplified_exp)}. Job description: {job_description[:500]}. Rate match."
|
| 141 |
+
|
| 142 |
+
response = self._parse_gemini_response(get_response(prompt, SYSTEM_INSTRUCTION))
|
|
|
|
|
|
|
| 143 |
return {
|
| 144 |
+
"score": (base_score + (response["score"] * 10)) / 2,
|
| 145 |
+
"matching": response["matching"],
|
| 146 |
+
"missing": response["missing"],
|
| 147 |
+
"explanation": response["explanation"],
|
| 148 |
}
|
| 149 |
|
| 150 |
def _score_education(self, education: List[Dict]) -> Dict:
|
| 151 |
"""Score education with optimized processing"""
|
| 152 |
if not education:
|
| 153 |
+
return {
|
| 154 |
+
"score": 0,
|
| 155 |
+
"matching": [],
|
| 156 |
+
"missing": [],
|
| 157 |
+
"explanation": "No education provided",
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
score = 70
|
| 161 |
matching = []
|
| 162 |
+
|
| 163 |
+
required_keys = {"institution", "degree", "start_date", "end_date"}
|
| 164 |
+
|
| 165 |
for edu in education:
|
| 166 |
+
gpa = edu.get("gpa")
|
| 167 |
if gpa and float(gpa) > 3.0:
|
| 168 |
score += 10
|
| 169 |
matching.append(f"Strong GPA: {gpa}")
|
| 170 |
+
|
| 171 |
if required_keys.issubset(edu.keys()):
|
| 172 |
score += 10
|
| 173 |
+
matching.append(
|
| 174 |
+
f"{edu.get('degree', '')} from {edu.get('institution', '')}"
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
return {
|
| 178 |
+
"score": min(100, score),
|
| 179 |
+
"matching": matching,
|
| 180 |
+
"missing": [],
|
| 181 |
+
"explanation": "Education assessment completed",
|
| 182 |
}
|
| 183 |
|
| 184 |
def _score_formatting(self, structured_data: Dict) -> Dict:
|
| 185 |
"""Score formatting with optimized processing"""
|
| 186 |
score = 100
|
| 187 |
+
|
| 188 |
+
contact_fields = ("name", "email", "phone")
|
| 189 |
+
essential_sections = ("skills", "experience", "education")
|
| 190 |
+
|
| 191 |
structured_keys = set(structured_data.keys())
|
| 192 |
+
|
| 193 |
+
missing_contacts = [
|
| 194 |
+
field for field in contact_fields if field not in structured_keys
|
| 195 |
+
]
|
| 196 |
if missing_contacts:
|
| 197 |
score -= 20
|
| 198 |
+
|
| 199 |
+
missing_sections = [
|
| 200 |
+
section for section in essential_sections if section not in structured_keys
|
| 201 |
+
]
|
| 202 |
missing_penalty = 15 * len(missing_sections)
|
| 203 |
if missing_sections:
|
| 204 |
score -= missing_penalty
|
| 205 |
+
|
| 206 |
return {
|
| 207 |
+
"score": max(0, score),
|
| 208 |
+
"matching": [field for field in contact_fields if field in structured_keys],
|
| 209 |
+
"missing": missing_contacts + missing_sections,
|
| 210 |
+
"explanation": "Format assessment completed",
|
| 211 |
}
|
| 212 |
|
| 213 |
def _score_extra(self, structured_data: Dict) -> Dict:
|
|
|
|
| 221 |
"patents": 15,
|
| 222 |
"professional_affiliations": 10,
|
| 223 |
"portfolio_links": 10,
|
| 224 |
+
"summary_or_objective": 10,
|
| 225 |
}
|
| 226 |
+
|
| 227 |
total_possible = sum(extra_sections.values())
|
| 228 |
+
|
| 229 |
structured_keys = set(structured_data.keys())
|
| 230 |
+
|
| 231 |
score = 0
|
| 232 |
matching = []
|
| 233 |
missing = []
|
| 234 |
+
|
| 235 |
for section, weight in extra_sections.items():
|
| 236 |
if section in structured_keys and structured_data.get(section):
|
| 237 |
score += weight
|
| 238 |
+
matching.append(section.replace("_", " ").title())
|
| 239 |
else:
|
| 240 |
+
missing.append(section.replace("_", " ").title())
|
| 241 |
+
|
| 242 |
normalized_score = (score * 100) // total_possible if total_possible > 0 else 0
|
| 243 |
+
|
| 244 |
return {
|
| 245 |
+
"score": normalized_score,
|
| 246 |
+
"matching": matching,
|
| 247 |
+
"missing": missing,
|
| 248 |
+
"explanation": "Additional sections assessment completed",
|
| 249 |
}
|
| 250 |
|
| 251 |
+
def parse_and_score(
|
| 252 |
+
self, structured_data: Dict, job_description: Optional[str] = None
|
| 253 |
+
) -> Dict:
|
| 254 |
"""Parse and score resume with parallel processing"""
|
| 255 |
scores = {}
|
| 256 |
+
feedback = {"strengths": [], "improvements": []}
|
| 257 |
detailed_feedback = {}
|
| 258 |
+
|
| 259 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 260 |
# Define tasks to run in parallel
|
| 261 |
tasks = {
|
| 262 |
+
"skills_match": executor.submit(
|
| 263 |
+
self._score_skills,
|
| 264 |
+
structured_data.get("skills", []),
|
| 265 |
+
job_description,
|
| 266 |
+
),
|
| 267 |
+
"experience_relevance": executor.submit(
|
| 268 |
+
self._score_experience,
|
| 269 |
+
structured_data.get("experience", []),
|
| 270 |
+
job_description,
|
| 271 |
+
),
|
| 272 |
+
"education_relevance": executor.submit(
|
| 273 |
+
self._score_education, structured_data.get("education", [])
|
| 274 |
+
),
|
| 275 |
+
"overall_formatting": executor.submit(
|
| 276 |
+
self._score_formatting, structured_data
|
| 277 |
+
),
|
| 278 |
+
"extra_sections": executor.submit(self._score_extra, structured_data),
|
| 279 |
}
|
| 280 |
+
|
| 281 |
total_score = 0
|
| 282 |
for category, future in tasks.items():
|
| 283 |
result = future.result()
|
| 284 |
+
|
| 285 |
+
scores[category] = result["score"]
|
| 286 |
+
|
| 287 |
weight = self.score_weights[category] / 100
|
| 288 |
+
total_score += result["score"] * weight
|
| 289 |
+
|
| 290 |
detailed_feedback[category] = {
|
| 291 |
+
"matching_elements": result["matching"],
|
| 292 |
+
"missing_elements": result["missing"],
|
| 293 |
+
"explanation": result["explanation"],
|
| 294 |
}
|
| 295 |
+
|
| 296 |
+
if result["score"] >= 80:
|
| 297 |
+
feedback["strengths"].append(f"Strong {category.replace('_', ' ')}")
|
| 298 |
+
elif result["score"] < 60:
|
| 299 |
+
feedback["improvements"].append(
|
| 300 |
+
f"Improve {category.replace('_', ' ')}"
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
return {
|
| 304 |
+
"total_score": round(total_score, 2),
|
| 305 |
+
"detailed_scores": scores,
|
| 306 |
+
"feedback": feedback,
|
| 307 |
+
"detailed_feedback": detailed_feedback,
|
| 308 |
}
|
| 309 |
|
| 310 |
+
|
| 311 |
+
def generate_ats_score(
|
| 312 |
+
structured_data: Union[Dict, str], job_des_text: Optional[str] = None
|
| 313 |
+
) -> Dict:
|
| 314 |
"""Generate ATS score with optimized processing"""
|
| 315 |
try:
|
| 316 |
logger.info("Starting ATS score generation")
|
| 317 |
if not structured_data:
|
| 318 |
return {"error": "No resume data provided"}
|
| 319 |
+
|
| 320 |
if isinstance(structured_data, str):
|
| 321 |
try:
|
| 322 |
structured_data = json.loads(structured_data)
|
| 323 |
except json.JSONDecodeError:
|
| 324 |
return {"error": "Invalid JSON format in resume data"}
|
| 325 |
+
|
| 326 |
parser = ATSResumeParser()
|
| 327 |
result = parser.parse_and_score(structured_data, job_des_text)
|
| 328 |
+
|
| 329 |
logger.info("ATS score generation completed successfully")
|
| 330 |
return {
|
| 331 |
+
"ats_score": result["total_score"],
|
| 332 |
+
"detailed_scores": result["detailed_scores"],
|
| 333 |
+
"feedback": result["feedback"],
|
| 334 |
+
"detailed_feedback": result["detailed_feedback"],
|
| 335 |
}
|
| 336 |
+
|
| 337 |
except Exception as e:
|
| 338 |
error_msg = f"Error generating ATS score: {e}"
|
| 339 |
logger.error(error_msg)
|
| 340 |
logger.debug(traceback.format_exc())
|
| 341 |
+
return {
|
| 342 |
+
"ats_score": 50.0,
|
| 343 |
+
"detailed_scores": {},
|
| 344 |
+
"feedback": {"error": error_msg},
|
| 345 |
+
}
|
Process/views.py
CHANGED
|
@@ -26,6 +26,7 @@ except Exception as e:
|
|
| 26 |
logger.error(f"Failed to load model: {e}")
|
| 27 |
logger.debug(traceback.format_exc())
|
| 28 |
|
|
|
|
| 29 |
def get_embeddings(texts):
|
| 30 |
try:
|
| 31 |
logger.debug(f"Generating embeddings for {len(texts)} texts")
|
|
@@ -39,6 +40,7 @@ def get_embeddings(texts):
|
|
| 39 |
logger.debug(traceback.format_exc())
|
| 40 |
return None
|
| 41 |
|
|
|
|
| 42 |
def calculate_similarity(job_description, resume_text):
|
| 43 |
try:
|
| 44 |
logger.info("Calculating similarity between job description and resume")
|
|
@@ -54,21 +56,22 @@ def calculate_similarity(job_description, resume_text):
|
|
| 54 |
logger.debug(traceback.format_exc())
|
| 55 |
return 0.0
|
| 56 |
|
|
|
|
| 57 |
@csrf_exempt
|
| 58 |
def process_resume(request):
|
| 59 |
-
if request.method ==
|
| 60 |
try:
|
| 61 |
logger.info("Processing resume request")
|
| 62 |
data = json.loads(request.body)
|
| 63 |
|
| 64 |
-
user_id = data.get(
|
| 65 |
-
file_link = data.get(
|
| 66 |
-
job_description = data.get(
|
| 67 |
logger.info(f"Received data for user_id: {user_id}")
|
| 68 |
-
|
| 69 |
if not all([user_id, file_link, job_description]):
|
| 70 |
logger.warning("Missing required fields in request")
|
| 71 |
-
return JsonResponse({
|
| 72 |
|
| 73 |
logger.info("Extracting Text from the pdf")
|
| 74 |
resume = extract_text_from_pdf(file_link)
|
|
@@ -83,37 +86,39 @@ def process_resume(request):
|
|
| 83 |
logger.info("ATS score generation completed")
|
| 84 |
|
| 85 |
response_data = {
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
}
|
| 91 |
logger.info("Sending successful response")
|
| 92 |
return JsonResponse(response_data, status=200)
|
| 93 |
except json.JSONDecodeError as e:
|
| 94 |
logger.error(f"Invalid JSON received: {e}")
|
| 95 |
-
return JsonResponse({
|
| 96 |
except Exception as e:
|
| 97 |
error_msg = f"Error processing resume: {e}"
|
| 98 |
logger.error(error_msg)
|
| 99 |
logger.debug(traceback.format_exc())
|
| 100 |
-
return JsonResponse({
|
| 101 |
else:
|
| 102 |
logger.warning(f"Unsupported method: {request.method}")
|
| 103 |
-
return JsonResponse({
|
|
|
|
| 104 |
|
| 105 |
def verify_api(request):
|
| 106 |
logger.info(f"API verification request received via {request.method}")
|
| 107 |
-
if request.method ==
|
| 108 |
-
return JsonResponse({
|
| 109 |
else:
|
| 110 |
logger.warning(f"Unsupported method for API verification: {request.method}")
|
| 111 |
-
return JsonResponse({
|
|
|
|
| 112 |
|
| 113 |
def home(request):
|
| 114 |
logger.info(f"Home request received via {request.method}")
|
| 115 |
-
if request.method ==
|
| 116 |
-
return JsonResponse({
|
| 117 |
else:
|
| 118 |
logger.warning(f"Unsupported method for home: {request.method}")
|
| 119 |
-
return JsonResponse({
|
|
|
|
| 26 |
logger.error(f"Failed to load model: {e}")
|
| 27 |
logger.debug(traceback.format_exc())
|
| 28 |
|
| 29 |
+
|
| 30 |
def get_embeddings(texts):
|
| 31 |
try:
|
| 32 |
logger.debug(f"Generating embeddings for {len(texts)} texts")
|
|
|
|
| 40 |
logger.debug(traceback.format_exc())
|
| 41 |
return None
|
| 42 |
|
| 43 |
+
|
| 44 |
def calculate_similarity(job_description, resume_text):
|
| 45 |
try:
|
| 46 |
logger.info("Calculating similarity between job description and resume")
|
|
|
|
| 56 |
logger.debug(traceback.format_exc())
|
| 57 |
return 0.0
|
| 58 |
|
| 59 |
+
|
| 60 |
@csrf_exempt
|
| 61 |
def process_resume(request):
|
| 62 |
+
if request.method == "POST":
|
| 63 |
try:
|
| 64 |
logger.info("Processing resume request")
|
| 65 |
data = json.loads(request.body)
|
| 66 |
|
| 67 |
+
user_id = data.get("user_id")
|
| 68 |
+
file_link = data.get("file_link")
|
| 69 |
+
job_description = data.get("job_description")
|
| 70 |
logger.info(f"Received data for user_id: {user_id}")
|
| 71 |
+
|
| 72 |
if not all([user_id, file_link, job_description]):
|
| 73 |
logger.warning("Missing required fields in request")
|
| 74 |
+
return JsonResponse({"error": "Missing required fields"}, status=400)
|
| 75 |
|
| 76 |
logger.info("Extracting Text from the pdf")
|
| 77 |
resume = extract_text_from_pdf(file_link)
|
|
|
|
| 86 |
logger.info("ATS score generation completed")
|
| 87 |
|
| 88 |
response_data = {
|
| 89 |
+
"user_id": user_id,
|
| 90 |
+
"similarity": "100.00",
|
| 91 |
+
"ats_score": ats_score,
|
| 92 |
+
"structured_data": st_data,
|
| 93 |
}
|
| 94 |
logger.info("Sending successful response")
|
| 95 |
return JsonResponse(response_data, status=200)
|
| 96 |
except json.JSONDecodeError as e:
|
| 97 |
logger.error(f"Invalid JSON received: {e}")
|
| 98 |
+
return JsonResponse({"error": "Invalid JSON format"}, status=400)
|
| 99 |
except Exception as e:
|
| 100 |
error_msg = f"Error processing resume: {e}"
|
| 101 |
logger.error(error_msg)
|
| 102 |
logger.debug(traceback.format_exc())
|
| 103 |
+
return JsonResponse({"error": error_msg}, status=500)
|
| 104 |
else:
|
| 105 |
logger.warning(f"Unsupported method: {request.method}")
|
| 106 |
+
return JsonResponse({"message": "Only POST requests are allowed"}, status=405)
|
| 107 |
+
|
| 108 |
|
| 109 |
def verify_api(request):
|
| 110 |
logger.info(f"API verification request received via {request.method}")
|
| 111 |
+
if request.method == "GET":
|
| 112 |
+
return JsonResponse({"message": "yaay working-GET "}, status=200)
|
| 113 |
else:
|
| 114 |
logger.warning(f"Unsupported method for API verification: {request.method}")
|
| 115 |
+
return JsonResponse({"error": "Only GET requests are allowed"}, status=405)
|
| 116 |
+
|
| 117 |
|
| 118 |
def home(request):
|
| 119 |
logger.info(f"Home request received via {request.method}")
|
| 120 |
+
if request.method == "GET":
|
| 121 |
+
return JsonResponse({"message": "Welcome To Resume-ATS"}, status=200)
|
| 122 |
else:
|
| 123 |
logger.warning(f"Unsupported method for home: {request.method}")
|
| 124 |
+
return JsonResponse({"error": "Only GET requests are allowed"}, status=405)
|
ResumeATS/settings.py
CHANGED
|
@@ -13,6 +13,7 @@ https://docs.djangoproject.com/en/5.1/ref/settings/
|
|
| 13 |
from pathlib import Path
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import os
|
|
|
|
| 16 |
load_dotenv()
|
| 17 |
# Build paths inside the project like this: BASE_DIR / 'subdir'.
|
| 18 |
BASE_DIR = Path(__file__).resolve().parent.parent
|
|
@@ -27,60 +28,60 @@ SECRET_KEY = os.getenv("SECRET_KEY")
|
|
| 27 |
# SECURITY WARNING: don't run with debug turned on in production!
|
| 28 |
DEBUG = False
|
| 29 |
|
| 30 |
-
ALLOWED_HOSTS = ["127.0.0.1","harish20205-resume-ats.hf.space"]
|
| 31 |
|
| 32 |
|
| 33 |
# Application definition
|
| 34 |
|
| 35 |
INSTALLED_APPS = [
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
]
|
| 45 |
|
| 46 |
MIDDLEWARE = [
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
]
|
| 55 |
|
| 56 |
-
ROOT_URLCONF =
|
| 57 |
|
| 58 |
TEMPLATES = [
|
| 59 |
{
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
],
|
| 70 |
},
|
| 71 |
},
|
| 72 |
]
|
| 73 |
|
| 74 |
-
WSGI_APPLICATION =
|
| 75 |
|
| 76 |
|
| 77 |
# Database
|
| 78 |
# https://docs.djangoproject.com/en/5.1/ref/settings/#databases
|
| 79 |
|
| 80 |
DATABASES = {
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
}
|
| 85 |
}
|
| 86 |
|
|
@@ -90,16 +91,16 @@ DATABASES = {
|
|
| 90 |
|
| 91 |
AUTH_PASSWORD_VALIDATORS = [
|
| 92 |
{
|
| 93 |
-
|
| 94 |
},
|
| 95 |
{
|
| 96 |
-
|
| 97 |
},
|
| 98 |
{
|
| 99 |
-
|
| 100 |
},
|
| 101 |
{
|
| 102 |
-
|
| 103 |
},
|
| 104 |
]
|
| 105 |
|
|
@@ -107,9 +108,9 @@ AUTH_PASSWORD_VALIDATORS = [
|
|
| 107 |
# Internationalization
|
| 108 |
# https://docs.djangoproject.com/en/5.1/topics/i18n/
|
| 109 |
|
| 110 |
-
LANGUAGE_CODE =
|
| 111 |
|
| 112 |
-
TIME_ZONE =
|
| 113 |
|
| 114 |
USE_I18N = True
|
| 115 |
|
|
@@ -119,9 +120,9 @@ USE_TZ = True
|
|
| 119 |
# Static files (CSS, JavaScript, Images)
|
| 120 |
# https://docs.djangoproject.com/en/5.1/howto/static-files/
|
| 121 |
|
| 122 |
-
STATIC_URL =
|
| 123 |
|
| 124 |
# Default primary key field type
|
| 125 |
# https://docs.djangoproject.com/en/5.1/ref/settings/#default-auto-field
|
| 126 |
|
| 127 |
-
DEFAULT_AUTO_FIELD =
|
|
|
|
| 13 |
from pathlib import Path
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import os
|
| 16 |
+
|
| 17 |
load_dotenv()
|
| 18 |
# Build paths inside the project like this: BASE_DIR / 'subdir'.
|
| 19 |
BASE_DIR = Path(__file__).resolve().parent.parent
|
|
|
|
| 28 |
# SECURITY WARNING: don't run with debug turned on in production!
|
| 29 |
DEBUG = False
|
| 30 |
|
| 31 |
+
ALLOWED_HOSTS = ["127.0.0.1", "harish20205-resume-ats.hf.space"]
|
| 32 |
|
| 33 |
|
| 34 |
# Application definition
|
| 35 |
|
| 36 |
INSTALLED_APPS = [
|
| 37 |
+
"django.contrib.admin",
|
| 38 |
+
"django.contrib.auth",
|
| 39 |
+
"django.contrib.contenttypes",
|
| 40 |
+
"django.contrib.sessions",
|
| 41 |
+
"django.contrib.messages",
|
| 42 |
+
"django.contrib.staticfiles",
|
| 43 |
+
"rest_framework",
|
| 44 |
+
"Process",
|
| 45 |
]
|
| 46 |
|
| 47 |
MIDDLEWARE = [
|
| 48 |
+
"django.middleware.security.SecurityMiddleware",
|
| 49 |
+
"django.contrib.sessions.middleware.SessionMiddleware",
|
| 50 |
+
"django.middleware.common.CommonMiddleware",
|
| 51 |
+
"django.middleware.csrf.CsrfViewMiddleware",
|
| 52 |
+
"django.contrib.auth.middleware.AuthenticationMiddleware",
|
| 53 |
+
"django.contrib.messages.middleware.MessageMiddleware",
|
| 54 |
+
"django.middleware.clickjacking.XFrameOptionsMiddleware",
|
| 55 |
]
|
| 56 |
|
| 57 |
+
ROOT_URLCONF = "ResumeATS.urls"
|
| 58 |
|
| 59 |
TEMPLATES = [
|
| 60 |
{
|
| 61 |
+
"BACKEND": "django.template.backends.django.DjangoTemplates",
|
| 62 |
+
"DIRS": [],
|
| 63 |
+
"APP_DIRS": True,
|
| 64 |
+
"OPTIONS": {
|
| 65 |
+
"context_processors": [
|
| 66 |
+
"django.template.context_processors.debug",
|
| 67 |
+
"django.template.context_processors.request",
|
| 68 |
+
"django.contrib.auth.context_processors.auth",
|
| 69 |
+
"django.contrib.messages.context_processors.messages",
|
| 70 |
],
|
| 71 |
},
|
| 72 |
},
|
| 73 |
]
|
| 74 |
|
| 75 |
+
WSGI_APPLICATION = "ResumeATS.wsgi.application"
|
| 76 |
|
| 77 |
|
| 78 |
# Database
|
| 79 |
# https://docs.djangoproject.com/en/5.1/ref/settings/#databases
|
| 80 |
|
| 81 |
DATABASES = {
|
| 82 |
+
"default": {
|
| 83 |
+
"ENGINE": "django.db.backends.sqlite3",
|
| 84 |
+
"NAME": BASE_DIR / "db.sqlite3",
|
| 85 |
}
|
| 86 |
}
|
| 87 |
|
|
|
|
| 91 |
|
| 92 |
AUTH_PASSWORD_VALIDATORS = [
|
| 93 |
{
|
| 94 |
+
"NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator",
|
| 95 |
},
|
| 96 |
{
|
| 97 |
+
"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
|
| 98 |
},
|
| 99 |
{
|
| 100 |
+
"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",
|
| 101 |
},
|
| 102 |
{
|
| 103 |
+
"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",
|
| 104 |
},
|
| 105 |
]
|
| 106 |
|
|
|
|
| 108 |
# Internationalization
|
| 109 |
# https://docs.djangoproject.com/en/5.1/topics/i18n/
|
| 110 |
|
| 111 |
+
LANGUAGE_CODE = "en-us"
|
| 112 |
|
| 113 |
+
TIME_ZONE = "UTC"
|
| 114 |
|
| 115 |
USE_I18N = True
|
| 116 |
|
|
|
|
| 120 |
# Static files (CSS, JavaScript, Images)
|
| 121 |
# https://docs.djangoproject.com/en/5.1/howto/static-files/
|
| 122 |
|
| 123 |
+
STATIC_URL = "static/"
|
| 124 |
|
| 125 |
# Default primary key field type
|
| 126 |
# https://docs.djangoproject.com/en/5.1/ref/settings/#default-auto-field
|
| 127 |
|
| 128 |
+
DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField"
|