import os import cv2 from torch.utils.model_zoo import load_url from ..core import FaceDetector from .net_s3fd import s3fd from .bbox import * from .detect import * models_urls = { 's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth', } class SFDDetector(FaceDetector): @classmethod def load_model(cls, device): path_to_detector = os.path.join(os.path.dirname(os.path.abspath(__file__)), 's3fd.pth') # Initialise the face detector if not os.path.isfile(path_to_detector): model_weights = load_url(models_urls['s3fd']) else: model_weights = torch.load(path_to_detector) cls.face_detector = s3fd() cls.face_detector.load_state_dict(model_weights) cls.face_detector.to(device) cls.face_detector.eval() def detect_from_image(self, tensor_or_path): image = self.tensor_or_path_to_ndarray(tensor_or_path) bboxlist = detect(self.face_detector, image, device=self.device) keep = nms(bboxlist, 0.3) bboxlist = bboxlist[keep, :] bboxlist = [x for x in bboxlist if x[-1] > 0.5] return bboxlist def detect_from_batch(self, images): bboxlists = batch_detect(self.face_detector, images, device=self.device) keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])] bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)] bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists] return bboxlists @property def reference_scale(self): return 195 @property def reference_x_shift(self): return 0 @property def reference_y_shift(self): return 0