TANGO / inference.py
H-Liu1997's picture
Update inference.py
dac4f1f verified
from utils.download_utils import download_files_from_repo
download_files_from_repo()
import os
import gc
import soundfile as sf
import shutil
import argparse
from omegaconf import OmegaConf
import random
import numpy as np
import librosa
import emage.mertic # noqa: F401 # somehow this must be imported, even though it is not used directly
from decord import VideoReader
from PIL import Image
import cv2
import subprocess
import importlib
import torch
import torch.nn.functional as F
import smplx
import igraph
import fire
from utils.video_io import save_videos_from_pil
from utils.genextend_inference_utils import adjust_statistics_to_match_reference
from create_graph import path_visualization, graph_pruning, get_motion_reps_tensor, path_visualization_v2
SCRIPT_PATH = os.path.dirname(os.path.realpath(__file__))
def search_path_dp(graph, audio_low_np, audio_high_np, loop_penalty=0.1, top_k=1, search_mode="both", continue_penalty=0.1):
T = audio_low_np.shape[0] # Total time steps
# N = len(graph.vs) # Total number of nodes in the graph
# Initialize DP tables
min_cost = [
{} for _ in range(T)
] # min_cost[t][node_index] = list of tuples: (cost, prev_node_index, prev_tuple_index, non_continue_count, visited_nodes)
# Initialize the first time step
start_nodes = [v for v in graph.vs if v["previous"] is None or v["previous"] == -1]
for node in start_nodes:
node_index = node.index
motion_low = node["motion_low"] # Shape: [C]
motion_high = node["motion_high"] # Shape: [C]
# Cost using cosine similarity
if search_mode == "both":
cost = 2 - (np.dot(audio_low_np[0], motion_low.T) + np.dot(audio_high_np[0], motion_high.T))
elif search_mode == "high_level":
cost = 1 - np.dot(audio_high_np[0], motion_high.T)
elif search_mode == "low_level":
cost = 1 - np.dot(audio_low_np[0], motion_low.T)
visited_nodes = {node_index: 1} # Initialize visit count as a dictionary
min_cost[0][node_index] = [(cost, None, None, 0, visited_nodes)] # Initialize with no predecessor and 0 non-continue count
# DP over time steps
for t in range(1, T):
for node in graph.vs:
node_index = node.index
candidates = []
# Incoming edges to the current node
incoming_edges = graph.es.select(_to=node_index)
for edge in incoming_edges:
prev_node_index = edge.source
edge_id = edge.index
is_continue_edge = graph.es[edge_id]["is_continue"]
# prev_node = graph.vs[prev_node_index]
if prev_node_index in min_cost[t - 1]:
for tuple_index, (prev_cost, _, _, prev_non_continue_count, prev_visited) in enumerate(min_cost[t - 1][prev_node_index]):
# Loop punishment
if node_index in prev_visited:
loop_time = prev_visited[node_index] # Get the count of previous visits
loop_cost = prev_cost + loop_penalty * np.exp(loop_time) # Apply exponential penalty
new_visited = prev_visited.copy()
new_visited[node_index] = loop_time + 1 # Increment visit count
else:
loop_cost = prev_cost
new_visited = prev_visited.copy()
new_visited[node_index] = 1 # Initialize visit count for the new node
motion_low = node["motion_low"] # Shape: [C]
motion_high = node["motion_high"] # Shape: [C]
if search_mode == "both":
cost_increment = 2 - (np.dot(audio_low_np[t], motion_low.T) + np.dot(audio_high_np[t], motion_high.T))
elif search_mode == "high_level":
cost_increment = 1 - np.dot(audio_high_np[t], motion_high.T)
elif search_mode == "low_level":
cost_increment = 1 - np.dot(audio_low_np[t], motion_low.T)
# Check if the edge is "is_continue"
if not is_continue_edge:
non_continue_count = prev_non_continue_count + 1 # Increment the count of non-continue edges
else:
non_continue_count = prev_non_continue_count
# Apply the penalty based on the square of the number of non-continuous edges
continue_penalty_cost = continue_penalty * non_continue_count
total_cost = loop_cost + cost_increment + continue_penalty_cost
candidates.append((total_cost, prev_node_index, tuple_index, non_continue_count, new_visited))
# Keep the top k candidates
if candidates:
# Sort candidates by total_cost
candidates.sort(key=lambda x: x[0])
# Keep top k
min_cost[t][node_index] = candidates[:top_k]
else:
# No candidates, do nothing
pass
# Collect all possible end paths at time T-1
end_candidates = []
for node_index, tuples in min_cost[T - 1].items():
for tuple_index, (cost, _, _, _, _) in enumerate(tuples):
end_candidates.append((cost, node_index, tuple_index))
if not end_candidates:
print("No valid path found.")
return [], []
# Sort end candidates by cost
end_candidates.sort(key=lambda x: x[0])
# Keep top k paths
top_k_paths_info = end_candidates[:top_k]
# Reconstruct the paths
optimal_paths = []
is_continue_lists = []
for final_cost, node_index, tuple_index in top_k_paths_info:
optimal_path_indices = []
current_node_index = node_index
current_tuple_index = tuple_index
for t in range(T - 1, -1, -1):
optimal_path_indices.append(current_node_index)
tuple_data = min_cost[t][current_node_index][current_tuple_index]
_, prev_node_index, prev_tuple_index, _, _ = tuple_data
current_node_index = prev_node_index
current_tuple_index = prev_tuple_index
if current_node_index is None:
break # Reached the start node
optimal_path_indices = optimal_path_indices[::-1] # Reverse to get correct order
optimal_path = [graph.vs[idx] for idx in optimal_path_indices]
optimal_paths.append(optimal_path)
# Extract continuity information
is_continue = []
for i in range(len(optimal_path) - 1):
edge_id = graph.get_eid(optimal_path[i].index, optimal_path[i + 1].index)
is_cont = graph.es[edge_id]["is_continue"]
is_continue.append(is_cont)
is_continue_lists.append(is_continue)
print("Top {} Paths:".format(len(optimal_paths)))
for i, path in enumerate(optimal_paths):
path_indices = [node.index for node in path]
print("Path {}: Cost: {}, Nodes: {}".format(i + 1, top_k_paths_info[i][0], path_indices))
return optimal_paths, is_continue_lists
def test_fn(model, device, iteration, candidate_json_path, test_path, cfg, audio_path, **kwargs):
create_graph = kwargs["create_graph"]
torch.set_grad_enabled(False)
pool_path = candidate_json_path.replace("data_json", "cached_graph").replace(".json", ".pkl")
graph = igraph.Graph.Read_Pickle(fname=pool_path)
# print(len(graph.vs))
save_dir = os.path.join(test_path, f"retrieved_motions_{iteration}")
os.makedirs(save_dir, exist_ok=True)
actual_model = model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model
actual_model.eval()
# with open(candidate_json_path, 'r') as f:
# candidate_data = json.load(f)
all_motions = {}
for i, node in enumerate(graph.vs):
if all_motions.get(node["name"]) is None:
all_motions[node["name"]] = [node["axis_angle"].reshape(-1)]
else:
all_motions[node["name"]].append(node["axis_angle"].reshape(-1))
for k, v in all_motions.items():
all_motions[k] = np.stack(v) # T, J*3
# print(k, all_motions[k].shape)
window_size = cfg.data.pose_length
motion_high_all = []
motion_low_all = []
for k, v in all_motions.items():
motion_tensor = torch.from_numpy(v).float().to(device).unsqueeze(0)
_, t, _ = motion_tensor.shape
if t >= window_size:
num_chunks = t // window_size
motion_high_list = []
motion_low_list = []
for i in range(num_chunks):
start_idx = i * window_size
end_idx = start_idx + window_size
motion_slice = motion_tensor[:, start_idx:end_idx, :]
motion_features = actual_model.get_motion_features(motion_slice)
motion_low = motion_features["motion_low"].cpu().numpy()
motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()
motion_high_list.append(motion_high[0])
motion_low_list.append(motion_low[0])
remain_length = t % window_size
if remain_length > 0:
start_idx = t - window_size
motion_slice = motion_tensor[:, start_idx:, :]
motion_features = actual_model.get_motion_features(motion_slice)
# motion_high = motion_features["motion_high_weight"].cpu().numpy()
motion_low = motion_features["motion_low"].cpu().numpy()
motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()
motion_high_list.append(motion_high[0][-remain_length:])
motion_low_list.append(motion_low[0][-remain_length:])
motion_high_all.append(np.concatenate(motion_high_list, axis=0))
motion_low_all.append(np.concatenate(motion_low_list, axis=0))
else: # t < window_size:
gap = window_size - t
motion_slice = torch.cat(
[motion_tensor, torch.zeros((motion_tensor.shape[0], gap, motion_tensor.shape[2])).to(motion_tensor.device)], 1
)
motion_features = actual_model.get_motion_features(motion_slice)
# motion_high = motion_features["motion_high_weight"].cpu().numpy()
motion_low = motion_features["motion_low"].cpu().numpy()
motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()
motion_high_all.append(motion_high[0][:t])
motion_low_all.append(motion_low[0][:t])
motion_high_all = np.concatenate(motion_high_all, axis=0)
motion_low_all = np.concatenate(motion_low_all, axis=0)
# print(motion_high_all.shape, motion_low_all.shape, len(graph.vs))
motion_low_all = motion_low_all / np.linalg.norm(motion_low_all, axis=1, keepdims=True)
motion_high_all = motion_high_all / np.linalg.norm(motion_high_all, axis=1, keepdims=True)
assert motion_high_all.shape[0] == len(graph.vs)
assert motion_low_all.shape[0] == len(graph.vs)
for i, node in enumerate(graph.vs):
node["motion_high"] = motion_high_all[i]
node["motion_low"] = motion_low_all[i]
graph = graph_pruning(graph)
# for gradio, use a subgraph
if len(graph.vs) > 1800:
gap = len(graph.vs) - 1800
start_d = random.randint(0, 1800)
graph.delete_vertices(range(start_d, start_d + gap))
ascc_2 = graph.clusters(mode="STRONG")
graph = ascc_2.giant()
# drop the id of gt
idx = 0
audio_waveform, sr = librosa.load(audio_path)
audio_waveform = librosa.resample(audio_waveform, orig_sr=sr, target_sr=cfg.data.audio_sr)
audio_tensor = torch.from_numpy(audio_waveform).float().to(device).unsqueeze(0)
target_length = audio_tensor.shape[1] // cfg.data.audio_sr * 30
window_size = int(cfg.data.audio_sr * (cfg.data.pose_length / 30))
_, t = audio_tensor.shape
audio_low_list = []
audio_high_list = []
if t >= window_size:
num_chunks = t // window_size
# print(num_chunks, t % window_size)
for i in range(num_chunks):
start_idx = i * window_size
end_idx = start_idx + window_size
# print(start_idx, end_idx, window_size)
audio_slice = audio_tensor[:, start_idx:end_idx]
model_out_candidates = actual_model.get_audio_features(audio_slice)
audio_low = model_out_candidates["audio_low"]
# audio_high = model_out_candidates["audio_high_weight"]
audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
# print(audio_low.shape, audio_high.shape)
audio_low = F.normalize(audio_low, dim=2)[0].cpu().numpy()
audio_high = F.normalize(audio_high, dim=2)[0].cpu().numpy()
audio_low_list.append(audio_low)
audio_high_list.append(audio_high)
# print(audio_low.shape, audio_high.shape)
remain_length = t % window_size
if remain_length > 1:
start_idx = t - window_size
audio_slice = audio_tensor[:, start_idx:]
model_out_candidates = actual_model.get_audio_features(audio_slice)
audio_low = model_out_candidates["audio_low"]
# audio_high = model_out_candidates["audio_high_weight"]
audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
gap = target_length - np.concatenate(audio_low_list, axis=0).shape[1]
audio_low = F.normalize(audio_low, dim=2)[0][-gap:].cpu().numpy()
audio_high = F.normalize(audio_high, dim=2)[0][-gap:].cpu().numpy()
# print(audio_low.shape, audio_high.shape)
audio_low_list.append(audio_low)
audio_high_list.append(audio_high)
else:
gap = window_size - t
audio_slice = audio_tensor
model_out_candidates = actual_model.get_audio_features(audio_slice)
audio_low = model_out_candidates["audio_low"]
# audio_high = model_out_candidates["audio_high_weight"]
audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
audio_low = F.normalize(audio_low, dim=2)[0].cpu().numpy()
audio_high = F.normalize(audio_high, dim=2)[0].cpu().numpy()
audio_low_list.append(audio_low)
audio_high_list.append(audio_high)
audio_low_all = np.concatenate(audio_low_list, axis=0)
audio_high_all = np.concatenate(audio_high_list, axis=0)
path_list, is_continue_list = search_path_dp(graph, audio_low_all, audio_high_all, top_k=1, search_mode="both")
res_motion = []
counter = 0
wav2lip_checkpoint_path = os.path.join(SCRIPT_PATH, "Wav2Lip/checkpoints/wav2lip_gan.pth") # Update this path to your Wav2Lip checkpoint
wav2lip_script_path = os.path.join(SCRIPT_PATH, "Wav2Lip/inference.py")
for path, is_continue in zip(path_list, is_continue_list):
if False:
# time is limited if we create graph on hugging face, lets skip blending.
res_motion_current = path_visualization(
graph,
path,
is_continue,
os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"),
audio_path=audio_path,
return_motion=True,
verbose_continue=True,
)
video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
else:
res_motion_current = path_visualization_v2(
graph,
path,
is_continue,
os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"),
audio_path=None,
return_motion=True,
verbose_continue=True,
)
video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
video_reader = VideoReader(video_temp_path)
video_np = []
for i in range(len(video_reader)):
if i == 0:
continue
video_frame = video_reader[i].asnumpy()
video_np.append(Image.fromarray(video_frame))
adjusted_video_pil = adjust_statistics_to_match_reference([video_np])
save_videos_from_pil(
adjusted_video_pil[0], os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), fps=graph.vs[0]["fps"], bitrate=2000000
)
audio_temp_path = audio_path
lipsync_output_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
cmd_wav2lip_1 = f"cd Wav2Lip; python {wav2lip_script_path} --checkpoint_path {wav2lip_checkpoint_path} --face {video_temp_path} --audio {audio_temp_path} --outfile {lipsync_output_path} --nosmooth --out_height 720"
subprocess.run(cmd_wav2lip_1, shell=True)
res_motion.append(res_motion_current)
np.savez(os.path.join(save_dir, f"audio_{idx}_retri_{counter}.npz"), motion=res_motion_current)
start_node = path[1].index
end_node = start_node + 100
if create_graph:
# time is limited if create graph, let us skip the second video
result = [
os.path.join(save_dir, f"audio_{idx}_retri_0.mp4"),
os.path.join(save_dir, f"audio_{idx}_retri_0.mp4"),
os.path.join(save_dir, f"audio_{idx}_retri_0.npz"),
os.path.join(save_dir, f"audio_{idx}_retri_0.npz"),
]
return result
print(f"delete gt-nodes {start_node}, {end_node}")
nodes_to_delete = list(range(start_node, end_node))
graph.delete_vertices(nodes_to_delete)
graph = graph_pruning(graph)
path_list, is_continue_list = search_path_dp(graph, audio_low_all, audio_high_all, top_k=1, search_mode="both")
res_motion = []
counter = 1
for path, is_continue in zip(path_list, is_continue_list):
res_motion_current = path_visualization_v2(
graph,
path,
is_continue,
os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"),
audio_path=None,
return_motion=True,
verbose_continue=True,
)
video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
video_reader = VideoReader(video_temp_path)
video_np = []
for i in range(len(video_reader)):
if i == 0:
continue
video_frame = video_reader[i].asnumpy()
video_np.append(Image.fromarray(video_frame))
adjusted_video_pil = adjust_statistics_to_match_reference([video_np])
save_videos_from_pil(
adjusted_video_pil[0], os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), fps=graph.vs[0]["fps"], bitrate=2000000
)
audio_temp_path = audio_path
lipsync_output_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
cmd_wav2lip_2 = f"cd Wav2Lip; python {wav2lip_script_path} --checkpoint_path {wav2lip_checkpoint_path} --face {video_temp_path} --audio {audio_temp_path} --outfile {lipsync_output_path} --nosmooth --out_height 720"
subprocess.run(cmd_wav2lip_2, shell=True)
res_motion.append(res_motion_current)
np.savez(os.path.join(save_dir, f"audio_{idx}_retri_{counter}.npz"), motion=res_motion_current)
result = [
os.path.join(save_dir, f"audio_{idx}_retri_0.mp4"),
os.path.join(save_dir, f"audio_{idx}_retri_1.mp4"),
os.path.join(save_dir, f"audio_{idx}_retri_0.npz"),
os.path.join(save_dir, f"audio_{idx}_retri_1.npz"),
]
return result
def init_class(module_name, class_name, config, **kwargs):
module = importlib.import_module(module_name)
model_class = getattr(module, class_name)
instance = model_class(config, **kwargs)
return instance
def seed_everything(seed):
torch.cuda.manual_seed_all(seed)
def prepare_all(yaml_name):
if yaml_name.endswith(".yaml"):
config = OmegaConf.load(yaml_name)
config.exp_name = os.path.basename(yaml_name)[:-5]
else:
raise ValueError("Unsupported config file format. Only .yaml files are allowed.")
save_dir = os.path.join(OUTPUT_DIR, config.exp_name)
os.makedirs(save_dir, exist_ok=True)
return config
def save_first_20_seconds(video_path, output_path="./save_video.mp4", max_length=512):
if os.path.exists(output_path):
os.remove(output_path)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return
fps = int(cap.get(cv2.CAP_PROP_FPS))
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Calculate the aspect ratio and resize dimensions
if original_width >= original_height:
new_width = max_length
new_height = int(original_height * (max_length / original_width))
else:
new_height = max_length
new_width = int(original_width * (max_length / original_height))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path.replace(".mp4", "_fps.mp4"), fourcc, fps, (new_width, new_height))
frames_to_save = fps * 20
frame_count = 0
while cap.isOpened() and frame_count < frames_to_save:
ret, frame = cap.read()
if not ret:
break
# Resize the frame while keeping the aspect ratio
resized_frame = cv2.resize(frame, (new_width, new_height))
# resized_frame = frame
out.write(resized_frame)
frame_count += 1
cap.release()
out.release()
command = [
"ffmpeg",
"-i",
output_path.replace(".mp4", "_fps.mp4"),
"-vf",
"minterpolate=fps=30:mi_mode=mci:mc_mode=aobmc:vsbmc=1",
output_path,
]
subprocess.run(command)
os.remove(output_path.replace(".mp4", "_fps.mp4"))
character_name_to_yaml = {
# "speaker8_jjRWaMCWs44_00-00-30.16_00-00-33.32.mp4": "./datasets/data_json/youtube_test/speaker8.json",
# "speaker7_iuYlGRnC7J8_00-00-0.00_00-00-3.25.mp4": "./datasets/data_json/youtube_test/speaker7.json",
"speaker9_o7Ik1OB4TaE_00-00-38.15_00-00-42.33.mp4": "./datasets/data_json/youtube_test/speaker9.json",
# "1wrQ6Msp7wM_00-00-39.69_00-00-45.68.mp4": "./datasets/data_json/youtube_test/speaker1.json",
# "101099-00_18_09-00_18_19.mp4": "./datasets/data_json/show_oliver_test/Stupid_Watergate_-_Last_Week_Tonight_with_John_Oliver_HBO-FVFdsl29s_Q.mkv.json",
}
TARGET_SR = 16000
OUTPUT_DIR = os.path.join(SCRIPT_PATH, "outputs/")
# @spaces.GPU(duration=200)
def tango(audio_path, character_name, seed=2024, create_graph=False, video_folder_path=None):
shutil.rmtree(OUTPUT_DIR, ignore_errors=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
cfg_file = os.path.join(SCRIPT_PATH, "configs/gradio.yaml")
cfg = prepare_all(cfg_file)
cfg.seed = seed
seed_everything(cfg.seed)
experiment_ckpt_dir = os.path.join(OUTPUT_DIR, cfg.exp_name)
if isinstance(audio_path, tuple):
# From Gradio: (sample_rate, audio_waveform)
sample_rate, audio_waveform = audio_path
elif isinstance(audio_path, str) and os.path.exists(audio_path):
# From CLI: file path
audio_waveform, sample_rate = librosa.load(audio_path, sr=None) # Load with original SR
else:
raise TypeError(f"Invalid audio_path provided. It must be a tuple from Gradio or a valid file path from CLI. Got: {audio_path}")
saved_audio_path = os.path.join(OUTPUT_DIR, "saved_audio.wav")
# Resample and truncate audio, then save to a canonical path
resampled_audio = librosa.resample(audio_waveform, orig_sr=sample_rate, target_sr=TARGET_SR)
required_length = int(TARGET_SR * (128 / 30)) * 2
resampled_audio = resampled_audio[:required_length]
sf.write(saved_audio_path, resampled_audio, TARGET_SR)
audio_path_for_model = saved_audio_path
video_folder_path = os.path.join(OUTPUT_DIR, "tmpvideo")
char_basename = os.path.basename(character_name)
if char_basename in character_name_to_yaml:
yaml_name = os.path.join(SCRIPT_PATH, character_name_to_yaml[char_basename])
else:
create_graph = True
# load video, and save it to "./save_video.mp4 for the first 20s of the video."
os.makedirs(video_folder_path, exist_ok=True)
save_first_20_seconds(character_name, os.path.join(video_folder_path, "save_video.mp4"))
cfg.data.test_meta_paths = yaml_name
print(f"Using character config: {yaml_name}")
if create_graph:
print("warning: make sure you are in the conda environment with python 3.9 and installed mmcv and mmpose")
data_save_path = os.path.join(OUTPUT_DIR, "tmpdata")
json_save_path = os.path.join(OUTPUT_DIR, "save_video.json")
graph_save_path = os.path.join(OUTPUT_DIR, "save_video.pkl")
cmd_smplx = f"cd ./SMPLer-X/ && python app.py --video_folder_path {video_folder_path} --data_save_path {data_save_path} --json_save_path {json_save_path} && cd .."
subprocess.run(cmd_smplx, shell=True)
print("cmd_smplx: ", cmd_smplx)
cmd_graph = f"python ./create_graph.py --json_save_path {json_save_path} --graph_save_path {graph_save_path}"
subprocess.run(cmd_graph, shell=True)
print("cmd_graph: ", cmd_graph)
cfg.data.test_meta_paths = json_save_path
gc.collect()
torch.cuda.empty_cache()
smplx_model = smplx.create(
"./emage/smplx_models/",
model_type="smplx",
gender="NEUTRAL_2020",
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext="npz",
use_pca=False,
)
model = init_class(cfg.model.name_pyfile, cfg.model.class_name, cfg)
for param in model.parameters():
param.requires_grad = False
model.smplx_model = smplx_model
model.get_motion_reps = get_motion_reps_tensor
assert torch.cuda.is_available(), "CUDA is not available"
device = torch.device("cuda:0")
smplx_model = smplx_model.to(device).eval()
model = model.to(device)
model.smplx_model = model.smplx_model.to(device)
checkpoint_path = os.path.join(SCRIPT_PATH, "datasets/cached_ckpts/ckpt.pth")
checkpoint = torch.load(checkpoint_path)
state_dict = checkpoint["model_state_dict"]
new_state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
model.load_state_dict(new_state_dict, strict=False)
test_path = os.path.join(experiment_ckpt_dir, f"test_{0}")
os.makedirs(test_path, exist_ok=True)
result = test_fn(model, device, 0, cfg.data.test_meta_paths, test_path, cfg, audio_path_for_model, create_graph=create_graph)
gc.collect()
torch.cuda.empty_cache()
return result
if __name__ == '__main__':
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "8675"
fire.Fire(tango)
# python inference.py --audio_path ./datasets/cached_audio/example_male_voice_9_seconds.wav --character_name ./datasets/cached_audio/speaker9_o7Ik1OB4TaE_00-00-38.15_00-00-42.33.mp4