import os import argparse import torch import torch.nn.functional as F from torchvision.io import write_video import librosa import time import numpy as np from tqdm import tqdm from emage_utils.motion_io import beat_format_save from emage_utils import fast_render from models.emage_audio import EmageAudioModel, EmageVQVAEConv, EmageVAEConv, EmageVQModel def inference(model, motion_vq, audio_path, device, save_folder, sr, pose_fps,): audio, _ = librosa.load(audio_path, sr=sr) audio = torch.from_numpy(audio).to(device).unsqueeze(0) speaker_id = torch.zeros(1,1).long().to(device) with torch.no_grad(): # motion seed # motion_path = audio_path.replace("audio", "motion").replace(".wav", ".npz") # motion_data = np.load(motion_path, allow_pickle=True) # poses = torch.from_numpy(motion_data["poses"]).unsqueeze(0).to(device).float() # foot_contact = torch.from_numpy(np.load(motion_path.replace("smplxflame_30", "footcontact").replace(".npz", ".npy"))).unsqueeze(0).to(device).float() # trans = torch.from_numpy(motion_data["trans"]).unsqueeze(0).to(device).float() # bs, t, _ = poses.shape # poses_6d = rc.axis_angle_to_rotation_6d(poses.reshape(bs, t, -1, 3)).reshape(bs, t, -1) # masked_motion = torch.cat([poses_6d, trans, foot_contact], dim=-1) # bs t 337 trans = torch.zeros(1, 1, 3).to(device) latent_dict = model.inference(audio, speaker_id, motion_vq, masked_motion=None, mask=None) face_latent = latent_dict["rec_face"] if model.cfg.lf > 0 and model.cfg.cf == 0 else None upper_latent = latent_dict["rec_upper"] if model.cfg.lu > 0 and model.cfg.cu == 0 else None hands_latent = latent_dict["rec_hands"] if model.cfg.lh > 0 and model.cfg.ch == 0 else None lower_latent = latent_dict["rec_lower"] if model.cfg.ll > 0 and model.cfg.cl == 0 else None face_index = torch.max(F.log_softmax(latent_dict["cls_face"], dim=2), dim=2)[1] if model.cfg.cf > 0 else None upper_index = torch.max(F.log_softmax(latent_dict["cls_upper"], dim=2), dim=2)[1] if model.cfg.cu > 0 else None hands_index = torch.max(F.log_softmax(latent_dict["cls_hands"], dim=2), dim=2)[1] if model.cfg.ch > 0 else None lower_index = torch.max(F.log_softmax(latent_dict["cls_lower"], dim=2), dim=2)[1] if model.cfg.cl > 0 else None all_pred = motion_vq.decode( face_latent=face_latent, upper_latent=upper_latent, lower_latent=lower_latent, hands_latent=hands_latent, face_index=face_index, upper_index=upper_index, lower_index=lower_index, hands_index=hands_index, get_global_motion=True, ref_trans=trans[:,0]) motion_pred = all_pred["motion_axis_angle"] t = motion_pred.shape[1] motion_pred = motion_pred.cpu().numpy().reshape(t, -1) face_pred = all_pred["expression"].cpu().numpy().reshape(t, -1) trans_pred = all_pred["trans"].cpu().numpy().reshape(t, -1) beat_format_save(os.path.join(save_folder, f"{os.path.splitext(os.path.basename(audio_path))[0]}_output.npz"), motion_pred, upsample=30//pose_fps, expressions=face_pred, trans=trans_pred) return t def visualize_one(save_folder, audio_path, nopytorch3d=False): npz_path = os.path.join(save_folder, f"{os.path.splitext(os.path.basename(audio_path))[0]}_output.npz") motion_dict = np.load(npz_path, allow_pickle=True) if not nopytorch3d: from emage_utils.npz2pose import render2d v2d_face = render2d(motion_dict, (512, 512), face_only=True, remove_global=True) write_video(npz_path.replace(".npz", "_2dface.mp4"), v2d_face.permute(0, 2, 3, 1), fps=30) fast_render.add_audio_to_video(npz_path.replace(".npz", "_2dface.mp4"), audio_path, npz_path.replace(".npz", "_2dface_audio.mp4")) v2d_body = render2d(motion_dict, (720, 480), face_only=False, remove_global=True) write_video(npz_path.replace(".npz", "_2dbody.mp4"), v2d_body.permute(0, 2, 3, 1), fps=30) fast_render.add_audio_to_video(npz_path.replace(".npz", "_2dbody.mp4"), audio_path, npz_path.replace(".npz", "_2dbody_audio.mp4")) fast_render.render_one_sequence_with_face(npz_path, os.path.dirname(npz_path), audio_path, model_folder="./emage_evaltools/smplx_models/") def main(): parser = argparse.ArgumentParser() parser.add_argument("--audio_folder", type=str, default="./examples/audio") parser.add_argument("--save_folder", type=str, default="./examples/motion") parser.add_argument("--visualization", action="store_true") parser.add_argument("--nopytorch3d", action="store_true") args = parser.parse_args() os.makedirs(args.save_folder, exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") face_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/face").to(device) upper_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/upper").to(device) lower_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/lower").to(device) hands_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/hands").to(device) global_motion_ae = EmageVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/global").to(device) motion_vq = EmageVQModel( face_model=face_motion_vq, upper_model=upper_motion_vq, lower_model=lower_motion_vq, hands_model=hands_motion_vq, global_model=global_motion_ae).to(device) motion_vq.eval() model = EmageAudioModel.from_pretrained("H-Liu1997/emage_audio").to(device) model.eval() audio_files = [os.path.join(args.audio_folder, f) for f in os.listdir(args.audio_folder) if f.endswith(".wav")] sr, pose_fps = model.cfg.audio_sr, model.cfg.pose_fps all_t = 0 start_time = time.time() for audio_path in tqdm(audio_files, desc="Inference"): all_t += inference(model, motion_vq, audio_path, device, args.save_folder, sr, pose_fps) if args.visualization: visualize_one(args.save_folder, audio_path, args.nopytorch3d) print(f"generate total {all_t/pose_fps:.2f} seconds motion in {time.time()-start_time:.2f} seconds") if __name__ == "__main__": main()