import os import binascii import warnings import json import argparse import copy import numpy as np import matplotlib.pyplot as plt import torch import tqdm import librosa import librosa.display import soundfile as sf import gradio as gr import pytube as pt from pytube.exceptions import VideoUnavailable from inference.style_transfer import * from inference.mastering_transfer import * yt_video_dir = "./yt_dir/0" os.makedirs(yt_video_dir, exist_ok=True) def get_audio_from_yt_video_input(yt_link: str, start_point_in_second=0, duration_in_second=30): try: yt = pt.YouTube(yt_link) t = yt.streams.filter(only_audio=True) filename_in = os.path.join(yt_video_dir, "input.wav") t[0].download(filename=filename_in) except VideoUnavailable as e: warnings.warn(f"Video Not Found at {yt_link} ({e})") filename_in = None # trim audio length - due to computation time on HuggingFace environment trim_audio(target_file_path=filename_in, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second) return filename_in, filename_in def get_audio_from_yt_video_ref(yt_link: str, start_point_in_second=0, duration_in_second=30): try: yt = pt.YouTube(yt_link) t = yt.streams.filter(only_audio=True) filename_ref = os.path.join(yt_video_dir, "reference.wav") t[0].download(filename=filename_ref) except VideoUnavailable as e: warnings.warn(f"Video Not Found at {yt_link} ({e})") filename_ref = None # trim audio length - due to computation time on HuggingFace environment trim_audio(target_file_path=filename_ref, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second) return filename_ref, filename_ref def inference(file_uploaded_in, file_uploaded_ref): # Perform music mixing style transfer args = set_up() inference_style_transfer = Mixing_Style_Transfer_Inference(args) output_wav_path = inference_style_transfer.inference(None, None) return output_wav_path, output_wav_path def inference_mastering(file_uploaded_in, file_uploaded_ref): # Perform music mastering style transfer args = set_up() inference_mastering_style_transfer = Mastering_Style_Transfer_Inference(args) output_wav_path_mastering = inference_mastering_style_transfer.inference(file_uploaded_in, file_uploaded_ref) return output_wav_path_mastering, output_wav_path_mastering with gr.Blocks() as demo: gr.HTML( """
Hugging Face interactive demo of the paper ["Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"](https://huggingface.co/papers/2211.02247) (ICASSP 2023).
Transfer the input track's mixing style to that of reference's by uploading files or downloading via YouTube links. This demo page also provides mastering style transfer, which can be interpreted as an extended work of [this paper](https://huggingface.co/papers/2202.08520).