Commit
·
af6755e
1
Parent(s):
9546428
Add Gradio app and model files
Browse files- app.py +28 -0
- model.pkl +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
# Load your trained model from the model file
|
6 |
+
model = joblib.load("model.pkl")
|
7 |
+
|
8 |
+
# Define a function to use with the Gradio interface
|
9 |
+
def predict_sentiment(text):
|
10 |
+
prediction = model.predict([text])[0]
|
11 |
+
probabilities = model.predict_proba([text])[0]
|
12 |
+
return {
|
13 |
+
"Prediction": prediction,
|
14 |
+
"Probabilities": dict(zip(model.classes_, probabilities))
|
15 |
+
}
|
16 |
+
|
17 |
+
# Create a Gradio interface
|
18 |
+
interface = gr.Interface(
|
19 |
+
fn=predict_sentiment,
|
20 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
21 |
+
outputs=gr.JSON(label="Prediction and Probabilities"),
|
22 |
+
title="Sentiment Analysis App",
|
23 |
+
description="This app predicts sentiment responses using a trained logistic regression model."
|
24 |
+
)
|
25 |
+
|
26 |
+
# Launch the interface
|
27 |
+
if __name__ == "__main__":
|
28 |
+
interface.launch()
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c0f66e2084a15e883d8ee26675d93e88f70ba07689ebe512c24ab1e3e151db8
|
3 |
+
size 2397780
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
scikit-learn
|
3 |
+
joblib
|