Spaces:
Sleeping
Sleeping
Upload 10 files
Browse files- README.md +82 -6
- app.py +89 -305
- concept_libs/coffeemachine.bin +3 -0
- concept_libs/collage_style.bin +3 -0
- concept_libs/cube.bin +3 -0
- concept_libs/jerrymouse2.bin +3 -0
- concept_libs/zero.bin +3 -0
- requirements.txt +0 -0
- src/stable_diffusion.py +222 -0
- src/utils.py +11 -0
README.md
CHANGED
@@ -1,13 +1,89 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: "ERA SESSION20 - Stable Diffusion: Generative Art with Guidance"
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.48.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
**Styles Used:**
|
14 |
+
1. [Oil style](https://huggingface.co/sd-concepts-library/oil-style)
|
15 |
+
2. [Xyz](https://huggingface.co/sd-concepts-library/xyz)
|
16 |
+
3. [Allante](https://huggingface.co/sd-concepts-library/style-of-marc-allante)
|
17 |
+
4. [Moebius](https://huggingface.co/sd-concepts-library/moebius)
|
18 |
+
5. [Polygons](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons)
|
19 |
+
|
20 |
+
### Result of Experiments with different styles:
|
21 |
+
**Prompt:** `"a cat and dog in the style of cs"` \
|
22 |
+
_"cs" in the prompt refers to "custom style" whose embedding is replaced by each of the concept embeddings shown below_
|
23 |
+

|
24 |
+
|
25 |
+
---
|
26 |
+
**Prompt:** `"dolphin swimming on Mars in the style of cs"`
|
27 |
+

|
28 |
+
|
29 |
+
### Result of Experiments with Guidance loss functions:
|
30 |
+
**Prompt:** `"a mouse in the style of cs"`
|
31 |
+
**Loss Function:**
|
32 |
+
```python
|
33 |
+
def loss_fn(images):
|
34 |
+
return images.mean()
|
35 |
+
```
|
36 |
+

|
37 |
+
---
|
38 |
+
```python
|
39 |
+
def loss_fn(images):
|
40 |
+
return -images.median()/3
|
41 |
+
```
|
42 |
+

|
43 |
+
---
|
44 |
+
```python
|
45 |
+
def loss_fn(images):
|
46 |
+
error = (images - images.min()) / 255*(images.max() - images.min())
|
47 |
+
return error.mean()
|
48 |
+
```
|
49 |
+

|
50 |
+
---
|
51 |
+
**Prompt:** `"angry german shephard in the style of cs"`
|
52 |
+
```python
|
53 |
+
def loss_fn(images):
|
54 |
+
error1 = torch.abs(images[:, 0] - 0.9)
|
55 |
+
error2 = torch.abs(images[:, 1] - 0.9)
|
56 |
+
error3 = torch.abs(images[:, 2] - 0.9)
|
57 |
+
return (
|
58 |
+
torch.sin(error1.mean()) + torch.sin(error2.mean()) + torch.sin(error3.mean())
|
59 |
+
) / 3
|
60 |
+
```
|
61 |
+

|
62 |
+
|
63 |
+
---
|
64 |
+
**Prompt:** `"A campfire (oil on canvas)"`
|
65 |
+
```python
|
66 |
+
def loss_fn(images):
|
67 |
+
error1 = torch.abs(images[:, 0] - 0.9)
|
68 |
+
error2 = torch.abs(images[:, 1] - 0.9)
|
69 |
+
error3 = torch.abs(images[:, 2] - 0.9)
|
70 |
+
return (
|
71 |
+
torch.sin((error1 * error2 * error3)).mean()
|
72 |
+
+ torch.cos((error1 * error2 * error3)).mean()
|
73 |
+
)
|
74 |
+
```
|
75 |
+

|
76 |
+
|
77 |
+
---
|
78 |
+
```python
|
79 |
+
def loss_fn(images):
|
80 |
+
error1 = torch.abs(images[:, 0] - 0.9)
|
81 |
+
error2 = torch.abs(images[:, 1] - 0.9)
|
82 |
+
error3 = torch.abs(images[:, 2] - 0.9)
|
83 |
+
return (
|
84 |
+
torch.sin(error1.mean()) + torch.sin(error2.mean()) + torch.sin(error3.mean())
|
85 |
+
) / 3
|
86 |
+
```
|
87 |
+

|
88 |
+
|
89 |
+
|
app.py
CHANGED
@@ -1,307 +1,91 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import numpy
|
4 |
import torch
|
5 |
-
|
6 |
-
|
7 |
-
from
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
torch.
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
with
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
94 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
95 |
-
|
96 |
-
# Prep Scheduler
|
97 |
-
set_timesteps(scheduler, num_inference_steps)
|
98 |
-
|
99 |
-
# Prep latents
|
100 |
-
latents = torch.randn(
|
101 |
-
(batch_size, unet.in_channels, height // 8, width // 8),
|
102 |
-
generator=generator,
|
103 |
-
)
|
104 |
-
latents = latents.to(torch_device)
|
105 |
-
latents = latents * scheduler.init_noise_sigma
|
106 |
-
|
107 |
-
# Loop
|
108 |
-
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
109 |
-
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
110 |
-
latent_model_input = torch.cat([latents] * 2)
|
111 |
-
sigma = scheduler.sigmas[i]
|
112 |
-
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
113 |
-
|
114 |
-
# predict the noise residual
|
115 |
-
with torch.no_grad():
|
116 |
-
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
117 |
-
|
118 |
-
# perform guidance
|
119 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
120 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
121 |
-
|
122 |
-
# compute the previous noisy sample x_t -> x_t-1
|
123 |
-
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
124 |
-
|
125 |
-
return latents_to_pil(latents)[0]
|
126 |
-
|
127 |
-
# Prep Scheduler
|
128 |
-
def set_timesteps(scheduler, num_inference_steps):
|
129 |
-
scheduler.set_timesteps(num_inference_steps)
|
130 |
-
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
131 |
-
|
132 |
-
def embed_style(prompt, style_embed, style_seed):
|
133 |
-
# Tokenize
|
134 |
-
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
135 |
-
input_ids = text_input.input_ids.to(torch_device)
|
136 |
-
|
137 |
-
# Get token embeddings
|
138 |
-
token_embeddings = token_emb_layer(input_ids)
|
139 |
-
|
140 |
-
replacement_token_embedding = style_embed.to(torch_device)
|
141 |
-
|
142 |
-
# Insert this into the token embeddings
|
143 |
-
token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
|
144 |
-
|
145 |
-
# Combine with pos embs
|
146 |
-
input_embeddings = token_embeddings + position_embeddings
|
147 |
-
|
148 |
-
# Feed through to get final output embs
|
149 |
-
modified_output_embeddings = get_output_embeds(input_embeddings)
|
150 |
-
|
151 |
-
# And generate an image with this:
|
152 |
-
max_length = text_input.input_ids.shape[-1]
|
153 |
-
return generate_with_embs(modified_output_embeddings, style_seed, max_length)
|
154 |
-
|
155 |
-
def loss_style(prompt, style_embed, style_seed):
|
156 |
-
# Tokenize
|
157 |
-
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
158 |
-
input_ids = text_input.input_ids.to(torch_device)
|
159 |
-
|
160 |
-
# Get token embeddings
|
161 |
-
token_embeddings = token_emb_layer(input_ids)
|
162 |
-
|
163 |
-
# The new embedding - our special birb word
|
164 |
-
replacement_token_embedding = style_embed.to(torch_device)
|
165 |
-
|
166 |
-
# Insert this into the token embeddings
|
167 |
-
token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
|
168 |
-
|
169 |
-
# Combine with pos embs
|
170 |
-
input_embeddings = token_embeddings + position_embeddings
|
171 |
-
|
172 |
-
# Feed through to get final output embs
|
173 |
-
modified_output_embeddings = get_output_embeds(input_embeddings)
|
174 |
-
|
175 |
-
# And generate an image with this:
|
176 |
-
max_length = text_input.input_ids.shape[-1]
|
177 |
-
return generate_loss_based_image(modified_output_embeddings, style_seed,max_length)
|
178 |
-
|
179 |
-
|
180 |
-
def color_loss(image):
|
181 |
-
color_channel = image[:, 1]
|
182 |
-
target_value = 0.7
|
183 |
-
error = torch.abs(color_channel - target_value).mean()
|
184 |
-
return error
|
185 |
-
|
186 |
-
def generate_loss_based_image(text_embeddings, seed, max_length):
|
187 |
-
|
188 |
-
height = 64
|
189 |
-
width = 64
|
190 |
-
num_inference_steps = 10
|
191 |
-
guidance_scale = 8
|
192 |
-
generator = torch.manual_seed(64)
|
193 |
-
batch_size = 1
|
194 |
-
loss_scale = 200
|
195 |
-
|
196 |
-
uncond_input = tokenizer(
|
197 |
-
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
198 |
-
)
|
199 |
-
with torch.no_grad():
|
200 |
-
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
201 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
202 |
-
|
203 |
-
# Prep Scheduler
|
204 |
-
set_timesteps(scheduler, num_inference_steps+1)
|
205 |
-
|
206 |
-
# Prep latents
|
207 |
-
latents = torch.randn(
|
208 |
-
(batch_size, unet.in_channels, height // 8, width // 8),
|
209 |
-
generator=generator,
|
210 |
-
)
|
211 |
-
latents = latents.to(torch_device)
|
212 |
-
latents = latents * scheduler.init_noise_sigma
|
213 |
-
|
214 |
-
sched_out = None
|
215 |
-
|
216 |
-
# Loop
|
217 |
-
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
218 |
-
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
219 |
-
latent_model_input = torch.cat([latents] * 2)
|
220 |
-
sigma = scheduler.sigmas[i]
|
221 |
-
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
222 |
-
|
223 |
-
# predict the noise residual
|
224 |
-
with torch.no_grad():
|
225 |
-
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
226 |
-
|
227 |
-
# perform CFG
|
228 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
229 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
230 |
-
|
231 |
-
### ADDITIONAL GUIDANCE ###
|
232 |
-
if i%5 == 0 and i>0:
|
233 |
-
# Requires grad on the latents
|
234 |
-
latents = latents.detach().requires_grad_()
|
235 |
-
|
236 |
-
# Get the predicted x0:
|
237 |
-
scheduler._step_index -= 1
|
238 |
-
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
239 |
-
|
240 |
-
# Decode to image space
|
241 |
-
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
242 |
-
|
243 |
-
|
244 |
-
# Calculate loss
|
245 |
-
loss = color_loss(denoised_images) * loss_scale
|
246 |
-
|
247 |
-
# Occasionally print it out
|
248 |
-
# if i%10==0:
|
249 |
-
print(i, 'loss:', loss)
|
250 |
-
|
251 |
-
# Get gradient
|
252 |
-
cond_grad = torch.autograd.grad(loss, latents)[0]
|
253 |
-
|
254 |
-
# Modify the latents based on this gradient
|
255 |
-
latents = latents.detach() - cond_grad * sigma**2
|
256 |
-
# To PIL Images
|
257 |
-
im_t0 = latents_to_pil(latents_x0)[0]
|
258 |
-
im_next = latents_to_pil(latents)[0]
|
259 |
-
|
260 |
-
# Now step with scheduler
|
261 |
-
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
262 |
-
|
263 |
-
return latents_to_pil(latents)[0]
|
264 |
-
|
265 |
-
|
266 |
-
def generate_image_from_prompt(text_in, style_in):
|
267 |
-
STYLE_LIST = ['coffeemachine.bin', 'collage_style.bin', 'cube.bin', 'jerrymouse2.bin', 'zero.bin']
|
268 |
-
STYLE_SEEDS = [32, 64, 128, 16, 8]
|
269 |
-
|
270 |
-
print(text_in)
|
271 |
-
print(style_in)
|
272 |
-
style_file = style_in + '.bin'
|
273 |
-
idx = STYLE_LIST.index(style_file)
|
274 |
-
print(style_file)
|
275 |
-
print(idx)
|
276 |
-
|
277 |
-
prompt = text_in + ' a puppy'
|
278 |
-
|
279 |
-
style_seed = STYLE_SEEDS[idx]
|
280 |
-
style_dict = torch.load(style_file)
|
281 |
-
style_embed = [v for v in style_dict.values()]
|
282 |
-
|
283 |
-
generated_image = embed_style(prompt, style_embed[0], style_seed)
|
284 |
-
|
285 |
-
loss_generated_img = (loss_style(prompt, style_embed[0], style_seed))
|
286 |
-
|
287 |
-
return [generated_image, loss_generated_img]
|
288 |
-
|
289 |
-
|
290 |
-
# Define Interface
|
291 |
-
|
292 |
-
title = 'ERA-SESSION20 Generative Art and Stable Diffusion'
|
293 |
-
|
294 |
-
demo = gr.Interface(generate_image_from_prompt,
|
295 |
-
inputs = [gr.Textbox(1, label='prompt'),
|
296 |
-
gr.Dropdown(
|
297 |
-
['coffeemachine', 'collage_style', 'cube', 'jerrymouse2', 'zero'],value="cube", label="Pretrained Styles"
|
298 |
-
)
|
299 |
-
],
|
300 |
-
outputs = [
|
301 |
-
|
302 |
-
gr.Gallery(label="Generated images", show_label=True, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto")
|
303 |
-
],
|
304 |
-
|
305 |
-
title = title
|
306 |
-
)
|
307 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import random
|
|
|
3 |
import torch
|
4 |
+
import pathlib
|
5 |
+
|
6 |
+
from src.utils import concept_styles, loss_fn
|
7 |
+
from src.stable_diffusion import StableDiffusion
|
8 |
+
|
9 |
+
PROJECT_PATH = "."
|
10 |
+
CONCEPT_LIBS_PATH = f"{PROJECT_PATH}/concept_libs"
|
11 |
+
|
12 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
|
15 |
+
def generate(prompt, styles, gen_steps, loss_scale):
|
16 |
+
lossless_images, lossy_images = [], []
|
17 |
+
for style in styles:
|
18 |
+
concept_lib_path = f"{CONCEPT_LIBS_PATH}/{concept_styles[style]}"
|
19 |
+
concept_lib = pathlib.Path(concept_lib_path)
|
20 |
+
concept_embed = torch.load(concept_lib)
|
21 |
+
|
22 |
+
manual_seed = random.randint(0, 100)
|
23 |
+
diffusion = StableDiffusion(
|
24 |
+
device=DEVICE,
|
25 |
+
num_inference_steps=gen_steps,
|
26 |
+
manual_seed=manual_seed,
|
27 |
+
)
|
28 |
+
generated_image_lossless = diffusion.generate_image(
|
29 |
+
prompt=prompt,
|
30 |
+
loss_fn=loss_fn,
|
31 |
+
loss_scale=0,
|
32 |
+
concept_embed=concept_embed,
|
33 |
+
)
|
34 |
+
generated_image_lossy = diffusion.generate_image(
|
35 |
+
prompt=prompt,
|
36 |
+
loss_fn=loss_fn,
|
37 |
+
loss_scale=loss_scale,
|
38 |
+
concept_embed=concept_embed,
|
39 |
+
)
|
40 |
+
lossless_images.append((generated_image_lossless, style))
|
41 |
+
lossy_images.append((generated_image_lossy, style))
|
42 |
+
return {lossless_gallery: lossless_images, lossy_gallery: lossy_images}
|
43 |
+
|
44 |
+
|
45 |
+
with gr.Blocks() as app:
|
46 |
+
gr.Markdown("## ERA Session20 - Stable Diffusion: Generative Art with Guidance")
|
47 |
+
with gr.Row():
|
48 |
+
with gr.Column():
|
49 |
+
prompt_box = gr.Textbox(label="Prompt", interactive=True)
|
50 |
+
style_selector = gr.Dropdown(
|
51 |
+
choices=list(concept_styles.keys()),
|
52 |
+
value=list(concept_styles.keys())[0],
|
53 |
+
multiselect=True,
|
54 |
+
label="Select a Concept Style",
|
55 |
+
interactive=True,
|
56 |
+
)
|
57 |
+
gen_steps = gr.Slider(
|
58 |
+
minimum=10,
|
59 |
+
maximum=50,
|
60 |
+
value=30,
|
61 |
+
step=10,
|
62 |
+
label="Select Number of Steps",
|
63 |
+
interactive=True,
|
64 |
+
)
|
65 |
+
|
66 |
+
loss_scale = gr.Slider(
|
67 |
+
minimum=0,
|
68 |
+
maximum=32,
|
69 |
+
value=8,
|
70 |
+
step=8,
|
71 |
+
label="Select Guidance Scale",
|
72 |
+
interactive=True,
|
73 |
+
)
|
74 |
+
|
75 |
+
submit_btn = gr.Button(value="Generate")
|
76 |
+
|
77 |
+
with gr.Column():
|
78 |
+
lossless_gallery = gr.Gallery(
|
79 |
+
label="Generated Images without Guidance", show_label=True
|
80 |
+
)
|
81 |
+
lossy_gallery = gr.Gallery(
|
82 |
+
label="Generated Images with Guidance", show_label=True
|
83 |
+
)
|
84 |
+
|
85 |
+
submit_btn.click(
|
86 |
+
generate,
|
87 |
+
inputs=[prompt_box, style_selector, gen_steps, loss_scale],
|
88 |
+
outputs=[lossless_gallery, lossy_gallery],
|
89 |
+
)
|
90 |
+
|
91 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
concept_libs/coffeemachine.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc3a85dc9cbdf6ab5fca4056c473da1b632c0565030be918682ce3e62095b4b1
|
3 |
+
size 3840
|
concept_libs/collage_style.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b143c4841c5f2d39d0eb2015d62c17d1b18da9bb0a42c76320df7acfe1e144bf
|
3 |
+
size 3840
|
concept_libs/cube.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a6d6394f0cd38847259c42746a6b0e50ca1e76e6ddc8e217ff14f2feb7dbca4
|
3 |
+
size 3819
|
concept_libs/jerrymouse2.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9713d9367f1faa6ebd753db5c8a209c565be0b25e32051c723c4533dd9df605
|
3 |
+
size 3840
|
concept_libs/zero.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78286aa910deafe4e46c6e38a86f464a246aef95ad5611a756dd99405f418a85
|
3 |
+
size 3819
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|
src/stable_diffusion.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
3 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class StableDiffusion:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
vae_arch="CompVis/stable-diffusion-v1-4",
|
12 |
+
tokenizer_arch="openai/clip-vit-large-patch14",
|
13 |
+
encoder_arch="openai/clip-vit-large-patch14",
|
14 |
+
unet_arch="CompVis/stable-diffusion-v1-4",
|
15 |
+
device="cpu",
|
16 |
+
height=512,
|
17 |
+
width=512,
|
18 |
+
num_inference_steps=30,
|
19 |
+
guidance_scale=7.5,
|
20 |
+
manual_seed=1,
|
21 |
+
) -> None:
|
22 |
+
self.height = height # default height of Stable Diffusion
|
23 |
+
self.width = width # default width of Stable Diffusion
|
24 |
+
self.num_inference_steps = num_inference_steps # Number of denoising steps
|
25 |
+
self.guidance_scale = guidance_scale # Scale for classifier-free guidance
|
26 |
+
self.device = device
|
27 |
+
self.manual_seed = manual_seed
|
28 |
+
|
29 |
+
vae = AutoencoderKL.from_pretrained(vae_arch, subfolder="vae")
|
30 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
31 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_arch)
|
32 |
+
text_encoder = CLIPTextModel.from_pretrained(encoder_arch)
|
33 |
+
|
34 |
+
# The UNet model for generating the latents.
|
35 |
+
unet = UNet2DConditionModel.from_pretrained(unet_arch, subfolder="unet")
|
36 |
+
|
37 |
+
# The noise scheduler
|
38 |
+
self.scheduler = LMSDiscreteScheduler(
|
39 |
+
beta_start=0.00085,
|
40 |
+
beta_end=0.012,
|
41 |
+
beta_schedule="scaled_linear",
|
42 |
+
num_train_timesteps=1000,
|
43 |
+
)
|
44 |
+
|
45 |
+
# To the GPU we go!
|
46 |
+
self.vae = vae.to(self.device)
|
47 |
+
self.text_encoder = text_encoder.to(self.device)
|
48 |
+
self.unet = unet.to(self.device)
|
49 |
+
|
50 |
+
self.token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
51 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
52 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
53 |
+
self.position_embeddings = pos_emb_layer(position_ids)
|
54 |
+
|
55 |
+
def get_output_embeds(self, input_embeddings):
|
56 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
57 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
58 |
+
causal_attention_mask = (
|
59 |
+
self.text_encoder.text_model._build_causal_attention_mask(
|
60 |
+
bsz, seq_len, dtype=input_embeddings.dtype
|
61 |
+
)
|
62 |
+
)
|
63 |
+
|
64 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
65 |
+
# so that it doesn't just return the pooled final predictions:
|
66 |
+
encoder_outputs = self.text_encoder.text_model.encoder(
|
67 |
+
inputs_embeds=input_embeddings,
|
68 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
69 |
+
causal_attention_mask=causal_attention_mask.to(self.device),
|
70 |
+
output_attentions=None,
|
71 |
+
output_hidden_states=True, # We want the output embs not the final output
|
72 |
+
return_dict=None,
|
73 |
+
)
|
74 |
+
|
75 |
+
# We're interested in the output hidden state only
|
76 |
+
output = encoder_outputs[0]
|
77 |
+
|
78 |
+
# There is a final layer norm we need to pass these through
|
79 |
+
output = self.text_encoder.text_model.final_layer_norm(output)
|
80 |
+
|
81 |
+
# And now they're ready!
|
82 |
+
return output
|
83 |
+
|
84 |
+
def set_timesteps(self, scheduler, num_inference_steps):
|
85 |
+
scheduler.set_timesteps(num_inference_steps)
|
86 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
87 |
+
|
88 |
+
def latents_to_pil(self, latents):
|
89 |
+
# bath of latents -> list of images
|
90 |
+
latents = (1 / 0.18215) * latents
|
91 |
+
with torch.no_grad():
|
92 |
+
image = self.vae.decode(latents).sample
|
93 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
94 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
95 |
+
images = (image * 255).round().astype("uint8")
|
96 |
+
pil_images = [Image.fromarray(image) for image in images]
|
97 |
+
return pil_images
|
98 |
+
|
99 |
+
def generate_with_embs(self, text_embeddings, text_input, loss_fn, loss_scale):
|
100 |
+
generator = torch.manual_seed(
|
101 |
+
self.manual_seed
|
102 |
+
) # Seed generator to create the inital latent noise
|
103 |
+
batch_size = 1
|
104 |
+
|
105 |
+
max_length = text_input.input_ids.shape[-1]
|
106 |
+
uncond_input = self.tokenizer(
|
107 |
+
[""] * batch_size,
|
108 |
+
padding="max_length",
|
109 |
+
max_length=max_length,
|
110 |
+
return_tensors="pt",
|
111 |
+
)
|
112 |
+
with torch.no_grad():
|
113 |
+
uncond_embeddings = self.text_encoder(
|
114 |
+
uncond_input.input_ids.to(self.device)
|
115 |
+
)[0]
|
116 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
117 |
+
|
118 |
+
# Prep Scheduler
|
119 |
+
self.set_timesteps(self.scheduler, self.num_inference_steps)
|
120 |
+
|
121 |
+
# Prep latents
|
122 |
+
latents = torch.randn(
|
123 |
+
(batch_size, self.unet.in_channels, self.height // 8, self.width // 8),
|
124 |
+
generator=generator,
|
125 |
+
)
|
126 |
+
latents = latents.to(self.device)
|
127 |
+
latents = latents * self.scheduler.init_noise_sigma
|
128 |
+
|
129 |
+
# Loop
|
130 |
+
for i, t in tqdm(
|
131 |
+
enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps)
|
132 |
+
):
|
133 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
134 |
+
latent_model_input = torch.cat([latents] * 2)
|
135 |
+
sigma = self.scheduler.sigmas[i]
|
136 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
137 |
+
|
138 |
+
# predict the noise residual
|
139 |
+
with torch.no_grad():
|
140 |
+
noise_pred = self.unet(
|
141 |
+
latent_model_input, t, encoder_hidden_states=text_embeddings
|
142 |
+
)["sample"]
|
143 |
+
|
144 |
+
# perform guidance
|
145 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
146 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
147 |
+
noise_pred_text - noise_pred_uncond
|
148 |
+
)
|
149 |
+
if i % 5 == 0:
|
150 |
+
# Requires grad on the latents
|
151 |
+
latents = latents.detach().requires_grad_()
|
152 |
+
|
153 |
+
# Get the predicted x0:
|
154 |
+
# latents_x0 = latents - sigma * noise_pred
|
155 |
+
latents_x0 = self.scheduler.step(
|
156 |
+
noise_pred, t, latents
|
157 |
+
).pred_original_sample
|
158 |
+
|
159 |
+
# Decode to image space
|
160 |
+
denoised_images = (
|
161 |
+
self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
|
162 |
+
) # range (0, 1)
|
163 |
+
|
164 |
+
# Calculate loss
|
165 |
+
loss = loss_fn(denoised_images) * loss_scale
|
166 |
+
|
167 |
+
# Occasionally print it out
|
168 |
+
# if i % 10 == 0:
|
169 |
+
# print(i, "loss:", loss.item())
|
170 |
+
|
171 |
+
# Get gradient
|
172 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
173 |
+
|
174 |
+
# Modify the latents based on this gradient
|
175 |
+
latents = latents.detach() - cond_grad * sigma**2
|
176 |
+
self.scheduler._step_index = self.scheduler._step_index - 1
|
177 |
+
|
178 |
+
# compute the previous noisy sample x_t -> x_t-1
|
179 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
180 |
+
|
181 |
+
return self.latents_to_pil(latents)[0]
|
182 |
+
|
183 |
+
def generate_image(
|
184 |
+
self,
|
185 |
+
prompt="A campfire (oil on canvas)",
|
186 |
+
loss_fn=None,
|
187 |
+
loss_scale=200,
|
188 |
+
concept_embed=None, # birb_embed["<birb-style>"]
|
189 |
+
):
|
190 |
+
prompt += " in the style of cs"
|
191 |
+
text_input = self.tokenizer(
|
192 |
+
prompt,
|
193 |
+
padding="max_length",
|
194 |
+
max_length=self.tokenizer.model_max_length,
|
195 |
+
truncation=True,
|
196 |
+
return_tensors="pt",
|
197 |
+
)
|
198 |
+
input_ids = text_input.input_ids.to(self.device)
|
199 |
+
custom_style_token = self.tokenizer.encode("cs", add_special_tokens=False)[0]
|
200 |
+
# Get token embeddings
|
201 |
+
token_embeddings = self.token_emb_layer(input_ids)
|
202 |
+
|
203 |
+
# The new embedding - our special birb word
|
204 |
+
embed_key = list(concept_embed.keys())[0]
|
205 |
+
replacement_token_embedding = concept_embed[embed_key]
|
206 |
+
|
207 |
+
# Insert this into the token embeddings
|
208 |
+
token_embeddings[
|
209 |
+
0, torch.where(input_ids[0] == custom_style_token)
|
210 |
+
] = replacement_token_embedding.to(self.device)
|
211 |
+
# token_embeddings = token_embeddings + (replacement_token_embedding * 0.9)
|
212 |
+
# Combine with pos embs
|
213 |
+
input_embeddings = token_embeddings + self.position_embeddings
|
214 |
+
|
215 |
+
# Feed through to get final output embs
|
216 |
+
modified_output_embeddings = self.get_output_embeds(input_embeddings)
|
217 |
+
|
218 |
+
# And generate an image with this:
|
219 |
+
generated_image = self.generate_with_embs(
|
220 |
+
modified_output_embeddings, text_input, loss_fn, loss_scale
|
221 |
+
)
|
222 |
+
return generated_image
|
src/utils.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def loss_fn(images):
|
2 |
+
return -images.median() / 3
|
3 |
+
|
4 |
+
|
5 |
+
concept_styles = {
|
6 |
+
"Coffee Machine": "coffeemachine.bin",
|
7 |
+
"College Style": "college_style.bin",
|
8 |
+
"Cube": "cube.bin",
|
9 |
+
"Jerry Mouse": "jerrymouse",
|
10 |
+
"Zero": "zero.bin",
|
11 |
+
}
|