import gradio as gr from openai import OpenAI import requests import json import httpx import os import logging from fake_useragent import UserAgent from typing import Optional, List, Dict, Tuple from itertools import cycle from datetime import datetime from bs4 import BeautifulSoup from googlesearch import search from newsapi import NewsApiClient import markdown import re import time import random from tenacity import retry, wait_exponential, stop_after_attempt # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) class RaindropSearchBot: def __init__(self): self.openai_api_key = os.getenv('openaikey') self.raindrop_api_token = os.getenv('raindroptoken') self.newsapi_key = os.getenv('newsapikey') if not all([self.openai_api_key, self.raindrop_api_token, self.newsapi_key]): raise EnvironmentError( "Missing required environment variables. Please ensure all API keys are set." ) # Updated OpenAI client initialization self.client = OpenAI( api_key=self.openai_api_key, http_client=httpx.Client( timeout=60.0, follow_redirects=True ) ) self.newsapi = NewsApiClient(api_key=self.newsapi_key) self.min_delay = 5 # Increased minimum delay self.max_delay = 15 # Increased maximum delay self.ua = UserAgent() self.setup_proxies() def get_next_proxy(self) -> dict: """Get next proxy from the rotation""" try: proxy = next(self.proxy_cycle) return { 'http': proxy, 'https': proxy } except StopIteration: logger.warning("No proxies available, returning empty proxy dict") return {} def get_alternative_search_results(self, query: str) -> List[Dict]: """Implement alternative search engine if Google fails""" try: from duckduckgo_search import DDGS self.random_delay() with DDGS() as ddgs: results = list(ddgs.text(query, max_results=5)) return [{ 'title': result.get('title', ''), 'link': result.get('link', ''), 'snippet': result.get('body', '') } for result in results] except Exception as e: logger.error(f"Alternative search failed: {e}") return [] def search_with_fallback(self, query: str) -> List[Dict]: """Search with fallback to alternative search engines""" try: return self.get_google_results(query) except Exception as e: logger.warning(f"Google search failed: {e}") try: # Implement alternative search engine here # For example: DuckDuckGo, Bing, etc. return self.get_alternative_search_results(query) except Exception as e: logger.error(f"All search attempts failed: {e}") return [] def setup_proxies(self): """Setup proxy rotation""" # Free proxy list - replace with your paid proxy service for better reliability self.proxies = [ 'http://proxy1.example.com:8080', 'http://proxy2.example.com:8080', # Add more proxies here ] self.proxy_cycle = cycle(self.proxies) def random_delay(self): """Enhanced random delay with jitter""" base_delay = random.uniform(self.min_delay, self.max_delay) jitter = random.uniform(-1, 1) # Add/subtract up to 1 second delay = max(0, base_delay + jitter) time.sleep(delay) def get_google_results(self, query: str, num_results: int = 5) -> List[Dict]: """Get Google search results with improved handling""" try: search_results = [] session = self.create_session() # Break the search into smaller chunks chunk_size = 3 for i in range(0, num_results, chunk_size): # Add substantial random delay between chunks self.random_delay() try: chunk_results = list(search( query, num_results=min(chunk_size, num_results - i), advanced=True, lang="en", sleep_interval=random.uniform(5, 10), # Random delay between requests timeout=30 )) for result in chunk_results: search_results.append({ 'title': result.title, 'link': result.url, 'snippet': result.description }) # Add random delay between chunks time.sleep(random.uniform(8, 15)) except Exception as e: logger.warning(f"Error in search chunk {i}: {e}") continue return search_results except Exception as e: logger.error(f"Google search error: {e}") raise def get_news_results(self, query: str, num_results: int = 5) -> List[Dict]: """Get news articles using NewsAPI with retry and delay.""" try: # Add random delay before making the request self.random_delay() news_results = self.newsapi.get_everything( q=query, language='en', sort_by='relevancy', page_size=num_results ) return news_results.get('articles', []) except Exception as e: logger.error(f"News API error: {e}") return [] @retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3)) def extract_content_from_url(self, url: str) -> Optional[str]: """Extract main content from a URL using BeautifulSoup with retry and delay.""" try: # Add random delay before making the request self.random_delay() headers = { 'User-Agent': self.get_random_user_agent(), 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate, br', 'DNT': '1', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1' } response = requests.get(url, headers=headers, timeout=10) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') # Remove unwanted elements for element in soup(['script', 'style', 'nav', 'header', 'footer', 'iframe']): element.decompose() # Get title title = soup.title.string if soup.title else '' # Get main content # First try common content containers content_containers = soup.select('article, main, .content, .post-content, .entry-content') if content_containers: content = content_containers[0].get_text(separator='\n', strip=True) else: # Fallback to all paragraphs paragraphs = soup.find_all('p') content = '\n'.join(p.get_text(strip=True) for p in paragraphs) # Combine and clean full_content = f"{title}\n\n{content}" # Clean up the text full_content = re.sub(r'\n\s*\n', '\n\n', full_content) # Remove extra newlines full_content = re.sub(r'\s+', ' ', full_content) # Normalize whitespace return full_content if full_content.strip() else None except Exception as e: logger.error(f"Error extracting content from {url}: {e}") return None def get_random_user_agent(self) -> str: """Get random user agent using fake-useragent""" return self.ua.random def create_session(self) -> requests.Session: """Create a session with random user agent and proxy""" session = requests.Session() session.headers.update({ 'User-Agent': self.get_random_user_agent(), 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate, br', 'DNT': '1', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'Sec-Fetch-Dest': 'document', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-Site': 'none', 'Sec-Fetch-User': '?1', 'Cache-Control': 'max-age=0' }) session.proxies = self.get_next_proxy() return session @retry( wait=wait_exponential(multiplier=1, min=4, max=20), stop=stop_after_attempt(3), reraise=True ) def get_content_and_summary(self, request: str, item: Dict, source_type: str) -> Dict: """Get content and generate summary for a single item.""" try: # Get URL based on source type url = item.get('link') or item.get('url') if not url: logger.warning(f"No URL found in item from {source_type}") return item # For Raindrop items, use existing excerpt if available if source_type == 'raindrop' and item.get('excerpt'): content = item['excerpt'] else: content = self.extract_content_from_url(url) if not content: logger.warning(f"No content extracted from {url}") item['detailed_summary'] = "Content extraction failed." return item # Generate summary focused on the query topic try: prompt = f""" Analyze this content and provide a detailed summary focusing on key points related to the user request: {request} Content: {content[:4000]} # Limit content length for token constraints Requirements: 1. Focus on the most important facts and findings related to the topic 2. Include specific data points and quotes if relevant 3. Organize the information logically 4. Keep the summary to 2-3 paragraphs 5. Highlight any unique insights from this source 6. No need to add a conclusion """ response = self.client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0.3, max_tokens=300 ) item['detailed_summary'] = response.choices[0].message.content item['processed_content'] = content[:1000] # Store truncated content for later use except Exception as e: logger.error(f"Error generating summary: {e}") item['detailed_summary'] = "Summary generation failed." return item except Exception as e: logger.error(f"Error processing item from {source_type}: {e}") return item def search_raindrop(self, search_query: str) -> List[Dict]: """Search Raindrop.io with enhanced error handling and logging.""" logger.info(f"Searching Raindrop with query: {search_query}") headers = { "Authorization": f"Bearer {self.raindrop_api_token}" } # Test API connection first try: test_response = requests.get( "https://api.raindrop.io/rest/v1/user", headers=headers ) if test_response.status_code != 200: logger.error(f"API test failed: {test_response.status_code}") return [] except Exception as e: logger.error(f"API connection error: {e}") return [] # Perform search try: params = { "search": search_query, "perpage": 50, "sort": "-created", "page": 0 } response = requests.get( "https://api.raindrop.io/rest/v1/raindrops/0", headers=headers, params=params ) if response.status_code == 200: data = response.json() items = data.get("items", []) logger.info(f"Found {len(items)} results") return items else: logger.error(f"Search failed: {response.status_code}") return [] except Exception as e: logger.error(f"Search error: {e}") return [] def process_all_results(self, request, raindrop_results: List[Dict], google_results: List[Dict], news_results: List[Dict]) -> Tuple[List[Dict], List[Dict], List[Dict]]: """Process and enrich all results with content and summaries.""" processed_raindrop = [] for item in raindrop_results: processed_item = self.get_content_and_summary(request, item, 'raindrop') if processed_item.get('detailed_summary'): processed_raindrop.append(processed_item) # Add delay between processing items self.random_delay() processed_google = [] for item in google_results: processed_item = self.get_content_and_summary(request, item, 'google') if processed_item.get('detailed_summary'): processed_google.append(processed_item) # Add delay between processing items self.random_delay() processed_news = [] for item in news_results: processed_item = self.get_content_and_summary(request, item, 'news') if processed_item.get('detailed_summary'): processed_news.append(processed_item) # Add delay between processing items self.random_delay() return processed_raindrop, processed_google, processed_news def generate_essay_response(self, results: Tuple[List[Dict], List[Dict], List[Dict]], user_query: str) -> str: """Generate a structured essay-style response with references.""" raindrop_results, google_results, news_results = results # Collect all content for analysis all_content = "" reference_map = {} ref_counter = 1 def get_url(item): """Helper function to get URL from item regardless of field name""" if 'link' in item: return item['link'] elif 'url' in item: return item['url'] return None # Process Raindrop results for item in raindrop_results: url = get_url(item) if url and item.get('detailed_summary'): all_content += f"\n{item['detailed_summary']}\n" reference_map[url] = ref_counter ref_counter += 1 # Process Google results for item in google_results: url = get_url(item) if url and item.get('detailed_summary'): all_content += f"\n{item['detailed_summary']}\n" reference_map[url] = ref_counter ref_counter += 1 # Process News results for item in news_results: url = get_url(item) if url and item.get('detailed_summary'): all_content += f"\n{item['detailed_summary']}\n" reference_map[url] = ref_counter ref_counter += 1 try: prompt = f""" Create a comprehensive essay-style analysis about: {user_query} Use this content as your reference source material: {all_content} Requirements: 1. Structure the response in clear sections with markdown headers 2. Include an introduction and conclusion 3. Use reference numbers [n] to cite sources 4. Make connections between different sources 5. Highlight key findings and trends 6. Address any contradictions or gaps 7. Use markdown formatting for better readability Format the response as a proper academic essay with sections and sources. """ response = self.client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0.5, max_tokens=1500 ) essay = response.choices[0].message.content # Replace reference placeholders with actual reference numbers for url, ref_num in reference_map.items(): essay = essay.replace(f'[URL:{url}]', f'[{ref_num}]') return essay except Exception as e: logger.error(f"Error generating essay: {e}") return "Error generating analysis." def format_results(self, results: Tuple[List[Dict], List[Dict], List[Dict]], essay: str) -> str: """Format the essay and results with detailed summaries.""" raindrop_results, google_results, news_results = results output = f"{essay}\n\n" output += "---\n\n" output += "# References and Detailed Summaries\n\n" ref_counter = 1 # Format Raindrop results if raindrop_results: output += "## 🔍 Bookmarked Sources\n\n" for item in raindrop_results: output += f"### [{ref_counter}] {item.get('title', 'No Title')}\n" output += f"**Link**: {item.get('link')}\n" if item.get('tags'): output += f"**Tags**: {', '.join(item['tags'])}\n" if item.get('created'): output += f"**Created**: {item['created'][:10]}\n" output += "\n**Summary**:\n" output += f"{item.get('detailed_summary', 'No summary available.')}\n\n" ref_counter += 1 # Format Google results if google_results: output += "## 🌐 Web Sources\n\n" for item in google_results: output += f"### [{ref_counter}] {item.get('title', 'No Title')}\n" output += f"**Link**: {item.get('link')}\n" output += "\n**Summary**:\n" output += f"{item.get('detailed_summary', 'No summary available.')}\n\n" ref_counter += 1 # Format News results if news_results: output += "## 📰 Recent News\n\n" for item in news_results: output += f"### [{ref_counter}] {item.get('title', 'No Title')}\n" output += f"**Link**: {item.get('url')}\n" if item.get('source', {}).get('name'): output += f"**Source**: {item['source']['name']}\n" if item.get('publishedAt'): output += f"**Published**: {item['publishedAt'][:10]}\n" output += "\n**Summary**:\n" output += f"{item.get('detailed_summary', 'No summary available.')}\n\n" ref_counter += 1 return output def process_request(self, user_request: str) -> str: """Process user request with improved error handling and query generation.""" try: # Generate optimized search query search_query = self.generate_search_queries(user_request) logger.info(f"Processing request: {search_query}") # Get search results with fallback google_results = self.search_with_fallback(search_query) # Add delay before news API call self.random_delay() # Get news results news_results = self.get_news_results(search_query) # Process all results - Fix: Pass the user_request as first argument processed_results = self.process_all_results( request=user_request, raindrop_results=[], # Empty list for raindrop results google_results=google_results, news_results=news_results ) # Generate response essay = self.generate_essay_response(processed_results, user_request) # Format and return results return self.format_results(processed_results, essay) except Exception as e: logger.error(f"Error processing request: {e}") return f""" An error occurred while processing your request: {str(e)} Please try again with a different search query or contact support if the problem persists. """ def generate_search_queries(self, user_request: str) -> str: """ Generate optimized search queries from user request. Args: user_request (str): The original user query Returns: str: Optimized search query """ try: # Clean and preprocess the user request cleaned_request = self.preprocess_query(user_request) # Generate search query using GPT prompt = f""" Convert this search request into an optimized search query using proper search operators. Request: {cleaned_request} Guidelines: - Focus on key concepts and synonyms - Use combination of keywords that would appear in titles or descriptions - Return only the search terms, no explanation - Include alternative phrasings - Keep it concise (max 6-8 key terms/phrases) - use the formatting authorised in raindrop search: o use " for exact search (ex: "artificial intelligence") o use - to exclude some terms (ex: -math) // Do not exclude terms that are potentially relevant o use match:OR for alternatives (ex: apple match:OR banana ) o use match:AND for inclusion of both cases systematically (ex: apple match:AND banana ) o use parenthesis for combinations ( ex: sugar match:AND (banana match:OR apple) ) Example elaborate request: ("artificial intelligence" match:OR AI) -"machine learning" Use your judgement, think step by steps. Return only the search query terms. """ response = self.client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0.3, max_tokens=100 ) optimized_query = response.choices[0].message.content.strip() logger.info(f"Generated search query: {optimized_query}") return optimized_query except Exception as e: logger.error(f"Error generating search queries: {e}") # Fallback to using the original request if query generation fails return user_request def preprocess_query(self, query: str) -> str: """ Preprocess the user query to remove unnecessary elements and standardize format. Args: query (str): Original query string Returns: str: Cleaned query string """ try: # Convert to lowercase query = query.lower() # Remove extra whitespace query = ' '.join(query.split()) # Remove special characters except basic punctuation query = re.sub(r'[^a-z0-9\s\'".,?!-]', '', query) # Remove multiple punctuation marks query = re.sub(r'([.,?!])\1+', r'\1', query) # Ensure proper spacing around quotes query = re.sub(r'(?<=[^\s])"', ' "', query) query = re.sub(r'"(?=[^\s])', '" ', query) return query except Exception as e: logger.error(f"Error preprocessing query: {e}") return query # Initialize bot bot = RaindropSearchBot() # Create Gradio interface def chatbot_interface(user_input: str) -> str: return bot.process_request(user_input) def convert_to_markdown(output_text: str) -> gr.Markdown: try: # Create a new Gradio Markdown component with the output text output_textMarkdown = gr.Markdown( value=output_text, render=True, visible=True ) return output_textMarkdown except Exception as e: logger.error(f"Error converting to markdown: {e}") # Return error message as markdown if conversion fails return gr.Markdown( value="Error converting content to markdown format. Please try again.", visible=True ) # Define and launch the interface with gr.Blocks(title="Enhanced Search Assistant", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🔍 Enhanced Search Assistant Enter your search request in natural language, and I'll find and analyze information from multiple sources: - Your bookmarked content - Web search results - Recent news articles """) with gr.Row(): input_text = gr.Textbox( label="What would you like to search for?", placeholder="Enter your search query here...", lines=2 ) with gr.Row(): searchbutton = gr.Button("🔍 Search", variant="primary") with gr.Column(): with gr.Accordion("Editable version", open=False): with gr.Column(): output_text = gr.Textbox( label="Analysis and Results - editable", lines=20, interactive=True ) refreshbutton = gr.Button("Refresh", variant="primary") output_textMarkdown = gr.Markdown( label="Analysis and Results", height=600, max_height=800 ) searchbutton.click( fn=chatbot_interface, inputs=input_text, outputs=output_text ).then( fn=convert_to_markdown, inputs=output_text, outputs=output_textMarkdown) refreshbutton.click( fn=convert_to_markdown, inputs=output_text, outputs=output_textMarkdown) # Launch the interface if __name__ == "__main__": demo.launch(share=True)