Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +28 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "AventIQ-AI/distilbert-base-uncased-sentiment-analysis"
|
7 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
|
8 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def predict_sentiment(text):
|
11 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
12 |
+
with torch.no_grad():
|
13 |
+
logits = model(**inputs).logits
|
14 |
+
predicted_class_id = torch.argmax(logits, dim=-1).item()
|
15 |
+
sentiment = "Positive" if predicted_class_id == 1 else "Negative"
|
16 |
+
return sentiment
|
17 |
+
|
18 |
+
# Create Gradio interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=predict_sentiment,
|
21 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter text for sentiment analysis..."),
|
22 |
+
outputs=gr.Textbox(label="Sentiment"),
|
23 |
+
title="DistilBERT Sentiment Analysis",
|
24 |
+
description="Enter a sentence to classify its sentiment as Positive or Negative using a fine-tuned DistilBERT model.",
|
25 |
+
)
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
sentencepiece
|
4 |
+
gradio
|