ricklamers commited on
Commit
99e6996
·
1 Parent(s): 60ed75d

fix: get rid of custom cache

Browse files
Files changed (1) hide show
  1. app.py +104 -42
app.py CHANGED
@@ -2,22 +2,22 @@ import gradio as gr
2
  import json
3
  import os
4
  import numexpr
5
- import uuid
6
  from groq import Groq
7
  from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
8
 
9
  MODEL = "llama3-groq-8b-8192-tool-use-preview"
10
  client = Groq(api_key=os.environ["GROQ_API_KEY"])
11
 
 
12
  def evaluate_math_expression(expression: str):
13
  return json.dumps(numexpr.evaluate(expression).tolist())
14
 
 
15
  calculator_tool: ChatCompletionToolParam = {
16
  "type": "function",
17
  "function": {
18
  "name": "evaluate_math_expression",
19
- "description":
20
- "Calculator tool: use this for evaluating numeric expressions with Python. Ensure the expression is valid Python syntax (e.g., use '**' for exponentiation, not '^').",
21
  "parameters": {
22
  "type": "object",
23
  "properties": {
@@ -33,6 +33,7 @@ calculator_tool: ChatCompletionToolParam = {
33
 
34
  tools = [calculator_tool]
35
 
 
36
  def call_function(tool_call, available_functions):
37
  function_name = tool_call.function.name
38
  if function_name not in available_functions:
@@ -51,11 +52,35 @@ def call_function(tool_call, available_functions):
51
  "content": json.dumps(function_response),
52
  }
53
 
54
- def get_model_response(messages):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  try:
56
  return client.chat.completions.create(
57
  model=MODEL,
58
- messages=messages,
59
  tools=tools,
60
  temperature=0.5,
61
  top_p=0.65,
@@ -63,70 +88,107 @@ def get_model_response(messages):
63
  )
64
  except Exception as e:
65
  print(f"An error occurred while getting model response: {str(e)}")
66
- print(messages)
67
  return None
68
 
69
- conversation_state = {}
70
 
71
  def respond(message, history, system_message):
72
- if not history or not isinstance(history[0][0], str):
73
- session_id = str(uuid.uuid4())
74
- history.insert(0, (session_id, "Confirmed."))
75
- else:
76
- session_id = history[0][0]
77
-
78
- if session_id not in conversation_state:
79
- conversation_state[session_id] = []
80
-
81
- if len(conversation_state[session_id]) == 0:
82
- conversation_state[session_id].append({"role": "system", "content": system_message})
83
-
84
- conversation_state[session_id].append({"role": "user", "content": message})
85
 
86
  available_functions = {
87
  "evaluate_math_expression": evaluate_math_expression,
88
  }
89
 
90
- function_calls = []
 
 
91
  while True:
92
- response = get_model_response(conversation_state[session_id])
93
- response_message = response.choices[0].message
94
- conversation_state[session_id].append(response_message)
 
 
95
 
96
  if not response_message.tool_calls and response_message.content is not None:
97
  break
98
 
99
  if response_message.tool_calls is not None:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  for tool_call in response_message.tool_calls:
101
- function_call = {
102
- "name": tool_call.function.name,
103
- "arguments": json.loads(tool_call.function.arguments)
104
- }
105
- function_calls.append(function_call)
106
  function_response = call_function(tool_call, available_functions)
107
- conversation_state[session_id].append(function_response)
108
- function_calls.append({
109
- "name": function_response["name"],
110
- "result": json.loads(function_response["content"])
111
- })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
- function_calls_md = "\n\n"
114
- for i in range(0, len(function_calls), 2):
115
- call = function_calls[i]
116
- result = function_calls[i + 1] if i + 1 < len(function_calls) else None
117
- function_calls_md += f"**Tool call:**\n```json\n{json.dumps({'name': call['name'], 'arguments': call['arguments'], 'result': result['result'] if result else None}, indent=2)}\n```\n"
118
 
119
- return response_message.content + function_calls_md
 
 
 
 
 
 
120
 
121
 
122
  demo = gr.ChatInterface(
123
  respond,
124
  additional_inputs=[
125
- gr.Textbox(value="You are a friendly Chatbot with access to a calculator. Don't mention that we are using functions defined in Python.", label="System message"),
 
 
 
126
  ],
 
127
  title="Groq Tool Use Chat",
128
  description="This chatbot uses the `llama3-groq-8b-8192-tool-use-preview` LLM with tool use capabilities, including a calculator function.",
129
  )
130
 
131
  if __name__ == "__main__":
132
- demo.launch()
 
2
  import json
3
  import os
4
  import numexpr
 
5
  from groq import Groq
6
  from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
7
 
8
  MODEL = "llama3-groq-8b-8192-tool-use-preview"
9
  client = Groq(api_key=os.environ["GROQ_API_KEY"])
10
 
11
+
12
  def evaluate_math_expression(expression: str):
13
  return json.dumps(numexpr.evaluate(expression).tolist())
14
 
15
+
16
  calculator_tool: ChatCompletionToolParam = {
17
  "type": "function",
18
  "function": {
19
  "name": "evaluate_math_expression",
20
+ "description": "Calculator tool: use this for evaluating numeric expressions with Python. Ensure the expression is valid Python syntax (e.g., use '**' for exponentiation, not '^').",
 
21
  "parameters": {
22
  "type": "object",
23
  "properties": {
 
33
 
34
  tools = [calculator_tool]
35
 
36
+
37
  def call_function(tool_call, available_functions):
38
  function_name = tool_call.function.name
39
  if function_name not in available_functions:
 
52
  "content": json.dumps(function_response),
53
  }
54
 
55
+
56
+ def get_model_response(messages, inner_messages, message, system_message):
57
+ messages_for_model = []
58
+ for msg in messages:
59
+ native_messages = msg.get("metadata", {}).get("native_messages", [msg])
60
+ if isinstance(native_messages, list):
61
+ messages_for_model.extend(native_messages)
62
+ else:
63
+ messages_for_model.append(native_messages)
64
+
65
+ messages_for_model.insert(
66
+ 0,
67
+ {
68
+ "role": "system",
69
+ "content": system_message,
70
+ },
71
+ )
72
+ messages_for_model.append(
73
+ {
74
+ "role": "user",
75
+ "content": message,
76
+ }
77
+ )
78
+ messages_for_model.extend(inner_messages)
79
+
80
  try:
81
  return client.chat.completions.create(
82
  model=MODEL,
83
+ messages=messages_for_model,
84
  tools=tools,
85
  temperature=0.5,
86
  top_p=0.65,
 
88
  )
89
  except Exception as e:
90
  print(f"An error occurred while getting model response: {str(e)}")
91
+ print(messages_for_model)
92
  return None
93
 
 
94
 
95
  def respond(message, history, system_message):
96
+ inner_history = []
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  available_functions = {
99
  "evaluate_math_expression": evaluate_math_expression,
100
  }
101
 
102
+ assistant_content = ""
103
+ assistant_native_message_list = []
104
+
105
  while True:
106
+ response_message = (
107
+ get_model_response(history, inner_history, message, system_message)
108
+ .choices[0]
109
+ .message
110
+ )
111
 
112
  if not response_message.tool_calls and response_message.content is not None:
113
  break
114
 
115
  if response_message.tool_calls is not None:
116
+ assistant_native_message_list.append(response_message)
117
+ inner_history.append(response_message)
118
+
119
+ assistant_content += (
120
+ "```json\n"
121
+ + json.dumps(
122
+ [
123
+ tool_call.model_dump()
124
+ for tool_call in response_message.tool_calls
125
+ ],
126
+ indent=2,
127
+ )
128
+ + "\n```\n"
129
+ )
130
+ assistant_message = {
131
+ "role": "assistant",
132
+ "content": assistant_content,
133
+ "metadata": {"native_messages": assistant_native_message_list},
134
+ }
135
+
136
+ yield assistant_message
137
+
138
  for tool_call in response_message.tool_calls:
 
 
 
 
 
139
  function_response = call_function(tool_call, available_functions)
140
+ assistant_content += (
141
+ "```json\n"
142
+ + json.dumps(
143
+ {
144
+ "name": tool_call.function.name,
145
+ "arguments": json.loads(tool_call.function.arguments),
146
+ "response": json.loads(function_response["content"]),
147
+ },
148
+ indent=2,
149
+ )
150
+ + "\n```\n"
151
+ )
152
+ native_tool_message = {
153
+ "tool_call_id": tool_call.id,
154
+ "role": "tool",
155
+ "content": function_response["content"],
156
+ }
157
+ assistant_native_message_list.append(
158
+ native_tool_message
159
+ )
160
+ tool_message = {
161
+ "role": "assistant",
162
+ "content": assistant_content,
163
+ "metadata": {"native_messages": assistant_native_message_list},
164
+ }
165
+ yield tool_message
166
+ inner_history.append(native_tool_message)
167
 
168
+ assistant_content += response_message.content
169
+ assistant_native_message_list.append(response_message)
 
 
 
170
 
171
+ final_message = {
172
+ "role": "assistant",
173
+ "content": assistant_content,
174
+ "metadata": {"native_messages": assistant_native_message_list},
175
+ }
176
+
177
+ yield final_message
178
 
179
 
180
  demo = gr.ChatInterface(
181
  respond,
182
  additional_inputs=[
183
+ gr.Textbox(
184
+ value="You are a friendly Chatbot with access to a calculator. Don't mention that we are using functions defined in Python.",
185
+ label="System message",
186
+ ),
187
  ],
188
+ type="messages",
189
  title="Groq Tool Use Chat",
190
  description="This chatbot uses the `llama3-groq-8b-8192-tool-use-preview` LLM with tool use capabilities, including a calculator function.",
191
  )
192
 
193
  if __name__ == "__main__":
194
+ demo.launch()