""" TypeGPT @author: NiansuhAI @email: niansuhtech@gmail.com """ import numpy as np import streamlit as st from openai import OpenAI import os import sys from dotenv import load_dotenv, dotenv_values load_dotenv() # initialize the client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('API_KEY') # Replace with your token ) # Create supported models model_links = { "GPT-4o": "meta-llama/Meta-Llama-3-8B-Instruct", "GPT-4": "meta-llama/Meta-Llama-3.1-70B-Instruct", } def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None # Define the available models models =[key for key in model_links.keys()] # Create the sidebar with the dropdown for model selection selected_model = st.sidebar.selectbox("Select a GPT model", models) #Add reset button to clear conversation st.sidebar.button('New Chat', on_click=reset_conversation) #Reset button # Create a temperature slider temp_values = st.sidebar.slider('ChatGPT Temperature', 0.0, 1.0, (0.5)) st.sidebar.markdown("Temperature in ChatGPT affects the quality and coherence of the generated text.") st.sidebar.markdown("**For optimum results, we recommend selecting a temperature between 0.5 and 0.7**") # Create model description st.sidebar.markdown("*The content created may not be accurate.*") st.sidebar.markdown("\n Our website: [Chat-GPT-Free.com](https://chat-gpt-free.com/).") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() #Pull in the model we want to use repo_id = model_links[selected_model] st.subheader(f'[Chat-GPT-Free.com](https://chat-gpt-free.com/) with AI model {selected_model}') # st.title(f'Chat-GPT-Free is now using {selected_model}') # Set a default model if selected_model not in st.session_state: st.session_state[selected_model] = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input(f"Hi. I'm {selected_model}. How can I help you today?"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container with st.chat_message("assistant"): try: stream = client.chat.completions.create( model=model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=temp_values,#0.5, stream=True, max_tokens=3000, ) response = st.write_stream(stream) except Exception as e: # st.empty() response = "The GPT is overloaded!\ \n Repeat your request later :( " st.write(response) st.session_state.messages.append({"role": "assistant", "content": response})