Grandediw
commited on
Commit
·
2d8b72c
1
Parent(s):
7e7729e
Update
Browse files
app.py
CHANGED
@@ -1,61 +1,64 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from peft import PeftModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
base_model_name,
|
11 |
-
device_map="auto", # Automatically map layers to available devices
|
12 |
-
torch_dtype=torch.float16 # Ensure compatibility with 4-bit quantization
|
13 |
-
)
|
14 |
|
15 |
-
# Load the LoRA adapter
|
16 |
-
adapter_path = "Grandediw/lora_model" # Replace with your model path
|
17 |
-
model = PeftModel.from_pretrained(base_model, adapter_path)
|
18 |
-
model.eval() # Set the model to evaluation mode
|
19 |
|
20 |
-
# Define the inference function
|
21 |
def respond(
|
22 |
message,
|
23 |
history: list[tuple[str, str]],
|
|
|
24 |
max_tokens,
|
25 |
temperature,
|
26 |
top_p,
|
27 |
):
|
28 |
-
|
29 |
-
|
30 |
-
for
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
temperature=temperature,
|
42 |
top_p=top_p,
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
# Decode and return the response
|
47 |
-
response = tokenizer.decode(outputs[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
|
48 |
-
return response
|
49 |
|
50 |
-
|
|
|
|
|
51 |
demo = gr.ChatInterface(
|
52 |
-
|
53 |
additional_inputs=[
|
54 |
-
gr.
|
55 |
-
gr.Slider(minimum=
|
56 |
-
gr.Slider(minimum=0.1, maximum=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
],
|
58 |
)
|
59 |
|
|
|
60 |
if __name__ == "__main__":
|
61 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("Grandediw/lora_model")
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
additional_inputs=[
|
49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
+
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch()
|