Grandediw commited on
Commit
2d8b72c
·
1 Parent(s): 7e7729e
Files changed (1) hide show
  1. app.py +43 -40
app.py CHANGED
@@ -1,61 +1,64 @@
1
- import torch
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- from peft import PeftModel
4
  import gradio as gr
 
5
 
6
- # Load the base model
7
- base_model_name = "unsloth/llama-3.2-3b-instruct-bnb-4bit"
8
- tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_fast=False)
9
- base_model = AutoModelForCausalLM.from_pretrained(
10
- base_model_name,
11
- device_map="auto", # Automatically map layers to available devices
12
- torch_dtype=torch.float16 # Ensure compatibility with 4-bit quantization
13
- )
14
 
15
- # Load the LoRA adapter
16
- adapter_path = "Grandediw/lora_model" # Replace with your model path
17
- model = PeftModel.from_pretrained(base_model, adapter_path)
18
- model.eval() # Set the model to evaluation mode
19
 
20
- # Define the inference function
21
  def respond(
22
  message,
23
  history: list[tuple[str, str]],
 
24
  max_tokens,
25
  temperature,
26
  top_p,
27
  ):
28
- # Build context from history
29
- context = ""
30
- for user_message, assistant_message in history:
31
- context += f"User: {user_message}\nAssistant: {assistant_message}\n"
32
- context += f"User: {message}\nAssistant:"
33
-
34
- # Tokenize the input
35
- inputs = tokenizer(context, return_tensors="pt").to("cuda")
36
-
37
- # Generate a response
38
- outputs = model.generate(
39
- input_ids=inputs.input_ids,
40
- max_new_tokens=max_tokens,
 
 
 
41
  temperature=temperature,
42
  top_p=top_p,
43
- do_sample=True
44
- )
 
 
 
45
 
46
- # Decode and return the response
47
- response = tokenizer.decode(outputs[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
48
- return response
49
 
50
- # Build the Gradio ChatInterface
 
 
51
  demo = gr.ChatInterface(
52
- fn=respond,
53
  additional_inputs=[
54
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
55
- gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
56
- gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
 
 
 
 
 
 
 
57
  ],
58
  )
59
 
 
60
  if __name__ == "__main__":
61
- demo.launch()
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("Grandediw/lora_model")
 
 
 
 
8
 
 
 
 
 
9
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
13
+ system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
 
 
 
 
42
 
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
  demo = gr.ChatInterface(
47
+ respond,
48
  additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
  ],
60
  )
61
 
62
+
63
  if __name__ == "__main__":
64
+ demo.launch()