import os import pathlib import random import shlex import subprocess import gradio as gr from gradio import inputs, outputs import torch from huggingface_hub import snapshot_download from modelscope.pipelines import pipeline from modelscope.outputs import OutputKeys import boto3 from botocore.client import Config import gradio as gr # Downloading and setting up the model model_dir = pathlib.Path('weights') if not model_dir.exists(): model_dir.mkdir() snapshot_download('damo-vilab/modelscope-damo-text-to-video-synthesis', repo_type='model', local_dir=model_dir) s3_access_key = "juj22qxqxql7u2pl6nomgxu3ip7a" s3_secret_key = "j3uwidtozhboy5vczhymhzkkjsaumznnqlzck5zjs5qxgsung4ukk" s3_endpoint = "https://gateway.storjshare.io" s3 = boto3.client("s3", aws_access_key_id=s3_access_key, aws_secret_access_key=s3_secret_key, endpoint_url=s3_endpoint, config=Config(signature_version="s3v4")) # Function to generate video and upload it to Storj def generate_video(prompt: str, seed: int) -> str: if seed == -1: seed = random.randint(0, 1000000) torch.manual_seed(seed) result = pipe({'text': prompt})[OutputKeys.OUTPUT_VIDEO] # Upload video to Storj bucket_name = "huggingface-demo" # Add the code to upload the video to the Storj bucket # and return the URL of the uploaded video return result # Gradio Interface examples = [ ['An astronaut riding a horse.', 0], ['A panda eating bamboo on a rock.', 0], ['Spiderman is surfing.', 0], ] # Import Storj Theme from the hub storj_theme = gr.Theme.from_hub("bethecloud/storj_theme") inputs = [ gr.inputs.Textbox(lines=1, placeholder="Enter your text here..."), gr.inputs.Slider(minimum=-1, maximum=1000000, step=1, default=-1, label="Seed") ] iface = gr.Interface( fn=generate_video, inputs=inputs, outputs=gr.outputs.Video(), theme=storj_theme, allow_flagging=False, examples=examples ) ## Run app iface.launch(share=True, debug=True)