""" Train a super-resolution model. """ import argparse import torch.nn.functional as F from pixel_guide_diffusion import dist_util, logger from pixel_guide_diffusion.image_datasets import load_data from pixel_guide_diffusion.resample import create_named_schedule_sampler from pixel_guide_diffusion.script_util import ( sr_model_and_diffusion_defaults, sr_create_model_and_diffusion, args_to_dict, add_dict_to_argparser, ) from pixel_guide_diffusion.train_util import TrainLoop def main(): args = create_argparser().parse_args() dist_util.setup_dist() logger.configure() logger.log("creating model...") model, diffusion = sr_create_model_and_diffusion( **args_to_dict(args, sr_model_and_diffusion_defaults().keys()) ) model.to(dist_util.dev()) schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) logger.log("creating data loader...") data = load_superres_data( args.data_dir, args.batch_size, large_size=args.large_size, small_size=args.small_size, class_cond=args.class_cond, ) logger.log("training...") TrainLoop( model=model, diffusion=diffusion, data=data, batch_size=args.batch_size, microbatch=args.microbatch, lr=args.lr, ema_rate=args.ema_rate, log_interval=args.log_interval, save_interval=args.save_interval, resume_checkpoint=args.resume_checkpoint, use_fp16=args.use_fp16, fp16_scale_growth=args.fp16_scale_growth, schedule_sampler=schedule_sampler, weight_decay=args.weight_decay, lr_anneal_steps=args.lr_anneal_steps, ).run_loop() def load_superres_data(data_dir, batch_size, large_size, small_size, class_cond=False): data = load_data( data_dir=data_dir, batch_size=batch_size, image_size=large_size, class_cond=class_cond, ) for large_batch, model_kwargs in data: model_kwargs["low_res"] = F.interpolate(large_batch, small_size, mode="area") yield large_batch, model_kwargs def create_argparser(): defaults = dict( data_dir="", schedule_sampler="uniform", lr=1e-4, weight_decay=0.0, lr_anneal_steps=0, batch_size=1, microbatch=-1, ema_rate="0.9999", log_interval=10, save_interval=10000, resume_checkpoint="", use_fp16=False, fp16_scale_growth=1e-3, ) defaults.update(sr_model_and_diffusion_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": main()