diff --git a/CITATION.cff b/CITATION.cff
new file mode 100644
index 0000000000000000000000000000000000000000..c90cef80cdee682bb9b4dfd890bc590e845173de
--- /dev/null
+++ b/CITATION.cff
@@ -0,0 +1,9 @@
+cff-version: 1.2.0
+message: "If you use this code, please cite it as below."
+authors:
+- family-names: "Wu"
+ given-names: "Hecong"
+title: "Pixel Guide Diffusion For Anime Colorization"
+version: 1.0.0
+date-released: 2021-10-26
+url: "https://github.com/HighCWu/pixel-guide-diffusion-for-anime-colorization"
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..046b2c98cff6af9c1e6103ac9740debbc8214f12
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2021 Wu Hecong
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/README.md b/README.md
index 8365cdd81fd7dcafe28b7da133f408f7828ac23e..b416200f6309f6d3d578f0697668de8fe18c1f99 100644
--- a/README.md
+++ b/README.md
@@ -1,13 +1,176 @@
----
-title: Anime Colorization
-emoji: 😻
-colorFrom: indigo
-colorTo: pink
-sdk: gradio
-sdk_version: 3.0.5
-app_file: app.py
-pinned: false
-license: mit
----
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
+# Pixel Guide Diffusion For Anime Colorization
+
+![avatar](docs/imgs/sample.png)
+
+Use denoising diffusion probabilistic model to do the anime colorization task.
+
+v1 test result is in branch [v1_result](https://github.com/HighCWu/pixel-guide-diffusion-for-anime-colorization/tree/v1_result).
+
+The dataset is not clean enough and the sketch as the guide is generated using sketch2keras, so the generalization is not good.
+
+In the future, I may try to use only anime portraits as the target images, and look for some more diverse sketch models.
+
+# Introduction and Usage
+
+Pixel Guide Denoising Diffusion Probabilistic Models ( One Channel Guide Version )
+
+This repo is modified from [improved-diffusion](https://github.com/openai/improved-diffusion).
+
+Use [danbooru-sketch-pair-128x](https://www.kaggle.com/wuhecong/danbooru-sketch-pair-128x) as the dataset. Maybe you should move folders in the dataset first to make guide-target pair dataset.
+
+Modify `train_danbooru*.sh`, `test_danbooru*.sh` to meet your needs.
+
+The model is divided into a 32px part and a super-divided part, which can be cascaded during testing to get the final result. But there is no cascade during training.
+
+QQ Group: 1044867291
+
+Discord: https://discord.gg/YwWcAS47qb
+
+# Original README
+
+# improved-diffusion
+
+This is the codebase for [Improved Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2102.09672).
+
+# Usage
+
+This section of the README walks through how to train and sample from a model.
+
+## Installation
+
+Clone this repository and navigate to it in your terminal. Then run:
+
+```
+pip install -e .
+```
+
+This should install the ~~`improved_diffusion`~~ `pixel_guide_diffusion` python package that the scripts depend on.
+
+## Preparing Data
+
+The training code reads images from a directory of image files. In the [datasets](datasets) folder, we have provided instructions/scripts for preparing these directories for ImageNet, LSUN bedrooms, and CIFAR-10.
+
+For creating your own dataset, simply dump all of your images into a directory with ".jpg", ".jpeg", or ".png" extensions. If you wish to train a class-conditional model, name the files like "mylabel1_XXX.jpg", "mylabel2_YYY.jpg", etc., so that the data loader knows that "mylabel1" and "mylabel2" are the labels. Subdirectories will automatically be enumerated as well, so the images can be organized into a recursive structure (although the directory names will be ignored, and the underscore prefixes are used as names).
+
+The images will automatically be scaled and center-cropped by the data-loading pipeline. Simply pass `--data_dir path/to/images` to the training script, and it will take care of the rest.
+
+## Training
+
+To train your model, you should first decide some hyperparameters. We will split up our hyperparameters into three groups: model architecture, diffusion process, and training flags. Here are some reasonable defaults for a baseline:
+
+```
+MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear"
+TRAIN_FLAGS="--lr 1e-4 --batch_size 128"
+```
+
+Here are some changes we experiment with, and how to set them in the flags:
+
+ * **Learned sigmas:** add `--learn_sigma True` to `MODEL_FLAGS`
+ * **Cosine schedule:** change `--noise_schedule linear` to `--noise_schedule cosine`
+ * **Reweighted VLB:** add `--use_kl True` to `DIFFUSION_FLAGS` and add `--schedule_sampler loss-second-moment` to `TRAIN_FLAGS`.
+ * **Class-conditional:** add `--class_cond True` to `MODEL_FLAGS`.
+
+Once you have setup your hyper-parameters, you can run an experiment like so:
+
+```
+python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
+```
+
+You may also want to train in a distributed manner. In this case, run the same command with `mpiexec`:
+
+```
+mpiexec -n $NUM_GPUS python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
+```
+
+When training in a distributed manner, you must manually divide the `--batch_size` argument by the number of ranks. In lieu of distributed training, you may use `--microbatch 16` (or `--microbatch 1` in extreme memory-limited cases) to reduce memory usage.
+
+The logs and saved models will be written to a logging directory determined by the `OPENAI_LOGDIR` environment variable. If it is not set, then a temporary directory will be created in `/tmp`.
+
+## Sampling
+
+The above training script saves checkpoints to `.pt` files in the logging directory. These checkpoints will have names like `ema_0.9999_200000.pt` and `model200000.pt`. You will likely want to sample from the EMA models, since those produce much better samples.
+
+Once you have a path to your model, you can generate a large batch of samples like so:
+
+```
+python scripts/image_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS
+```
+
+Again, this will save results to a logging directory. Samples are saved as a large `npz` file, where `arr_0` in the file is a large batch of samples.
+
+Just like for training, you can run `image_sample.py` through MPI to use multiple GPUs and machines.
+
+You can change the number of sampling steps using the `--timestep_respacing` argument. For example, `--timestep_respacing 250` uses 250 steps to sample. Passing `--timestep_respacing ddim250` is similar, but uses the uniform stride from the [DDIM paper](https://arxiv.org/abs/2010.02502) rather than our stride.
+
+To sample using [DDIM](https://arxiv.org/abs/2010.02502), pass `--use_ddim True`.
+
+## Models and Hyperparameters
+
+This section includes model checkpoints and run flags for the main models in the paper.
+
+Note that the batch sizes are specified for single-GPU training, even though most of these runs will not naturally fit on a single GPU. To address this, either set `--microbatch` to a small value (e.g. 4) to train on one GPU, or run with MPI and divide `--batch_size` by the number of GPUs.
+
+Unconditional ImageNet-64 with our `L_hybrid` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_uncond_100M_1500K.pt)]:
+
+```bash
+MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --learn_sigma True"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TRAIN_FLAGS="--lr 1e-4 --batch_size 128"
+```
+
+Unconditional CIFAR-10 with our `L_hybrid` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/cifar10_uncond_50M_500K.pt)]:
+
+```bash
+MODEL_FLAGS="--image_size 32 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.3"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TRAIN_FLAGS="--lr 1e-4 --batch_size 128"
+```
+
+Class-conditional ImageNet-64 model (270M parameters, trained for 250K iterations) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_cond_270M_250K.pt)]:
+
+```bash
+MODEL_FLAGS="--image_size 64 --num_channels 192 --num_res_blocks 3 --learn_sigma True --class_cond True"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine --rescale_learned_sigmas False --rescale_timesteps False"
+TRAIN_FLAGS="--lr 3e-4 --batch_size 2048"
+```
+
+Upsampling 256x256 model (280M parameters, trained for 500K iterations) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/upsample_cond_500K.pt)]:
+
+```bash
+MODEL_FLAGS="--num_channels 192 --num_res_blocks 2 --learn_sigma True --class_cond True"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False"
+TRAIN_FLAGS="--lr 3e-4 --batch_size 256"
+```
+
+LSUN bedroom model (lr=1e-4) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/lsun_uncond_100M_1200K_bs128.pt)]:
+
+```bash
+MODEL_FLAGS="--image_size 256 --num_channels 128 --num_res_blocks 2 --num_heads 1 --learn_sigma True --use_scale_shift_norm False --attention_resolutions 16"
+DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False"
+TRAIN_FLAGS="--lr 1e-4 --batch_size 128"
+```
+
+LSUN bedroom model (lr=2e-5) [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/lsun_uncond_100M_2400K_bs64.pt)]:
+
+```bash
+MODEL_FLAGS="--image_size 256 --num_channels 128 --num_res_blocks 2 --num_heads 1 --learn_sigma True --use_scale_shift_norm False --attention_resolutions 16"
+DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False --use_scale_shift_norm False"
+TRAIN_FLAGS="--lr 2e-5 --batch_size 128"
+```
+
+Unconditional ImageNet-64 with the `L_vlb` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/imagenet64_uncond_vlb_100M_1500K.pt)]:
+
+```bash
+MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --learn_sigma True"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TRAIN_FLAGS="--lr 1e-4 --batch_size 128 --schedule_sampler loss-second-moment"
+```
+
+Unconditional CIFAR-10 with the `L_vlb` objective and cosine noise schedule [[checkpoint](https://openaipublic.blob.core.windows.net/diffusion/march-2021/cifar10_uncond_vlb_50M_500K.pt)]:
+
+```bash
+MODEL_FLAGS="--image_size 32 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.3"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TRAIN_FLAGS="--lr 1e-4 --batch_size 128 --schedule_sampler loss-second-moment"
+```
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..560fe908e4b0ea261d50fb36c72a53fa24f01953
--- /dev/null
+++ b/app.py
@@ -0,0 +1,246 @@
+"""
+A Gradio Blocks Demo App.
+Generate a large batch of samples from a super resolution model, given a batch
+of samples from a regular model from image_sample.py.
+"""
+
+import gradio as gr
+import argparse
+import os
+import glob
+
+import blobfile as bf
+import numpy as np
+import torch as th
+import torch.distributed as dist
+
+from PIL import Image, ImageDraw
+from torchvision import utils
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.script_util import (
+ pg_model_and_diffusion_defaults,
+ pg_create_model_and_diffusion,
+ pgsr_model_and_diffusion_defaults,
+ pgsr_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+
+MODEL_FLAGS="--image_size=32 --small_size=32 --large_size=128 --guide_size=128 --num_channels=128 --num_channels2=64 --num_res_blocks=3 --learn_sigma=True --dropout=0.0 --use_attention2=False"
+DIFFUSION_FLAGS="--diffusion_steps=4000 --noise_schedule=cosine"
+TEST_FLAGS="--batch_size=1 --seed=233 --num_samples=4"
+OTHER_FLAGS = '''\
+--timestep_respacing=16 \
+--use_ddim=False \
+--model_path=./danbooru2017_guided_log/ema_0.9999_360000.pt \
+--model_path2=./danbooru2017_guided_sr_log/ema_0.9999_360000.pt'''
+OTHER_FLAGS = OTHER_FLAGS.replace('\r\n', ' ').replace('\n', ' ')
+flags = OTHER_FLAGS.split(' ') + MODEL_FLAGS.split(' ') + DIFFUSION_FLAGS.split(' ') + TEST_FLAGS.split(' ')
+
+
+def norm_size(img, size=128, add_edges=True):
+ img = img.convert('L')
+ w, h = img.size
+ if w != h:
+ scale = 1024 / max(img.size)
+ img = img.resize([int(round(s*scale)) for s in img.size])
+ w, h = img.size
+ max_size = max(w, h)
+ x0 = (max_size - w) // 2
+ y0 = (max_size - h) // 2
+ x1 = x0 + w
+ y1 = y0 + h
+ canvas = Image.new('L', (max_size,max_size), 255)
+ canvas.paste(img, (x0,y0,x1,y1))
+
+ if add_edges:
+ draw = ImageDraw.Draw(canvas)
+ draw.line((x0-5,0,x0-1,max_size), fill=0)
+ draw.line((0,y0-5,max_size,y0-1), fill=0)
+ draw.line((x1+1,0,x1+5,max_size), fill=0)
+ draw.line((0,y1+1,max_size,y1+5), fill=0)
+
+ img = canvas
+ img = img.resize((size,size), resample=Image.LANCZOS)
+
+ return img
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ guide_dir="",
+ clip_denoised=True,
+ num_samples=100,
+ batch_size=4,
+ use_ddim=False,
+ base_samples="",
+ model_path="",
+ seed=-1,
+ )
+ defaults.update(pg_model_and_diffusion_defaults())
+ defaults.update(pgsr_model_and_diffusion_defaults())
+ defaults.update(dict(
+ num_channels2=128,
+ use_attention2=True,
+ model_path2="",
+ ))
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+@th.inference_mode()
+def main():
+ args = create_argparser().parse_args(flags)
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = pg_create_model_and_diffusion(
+ **args_to_dict(args, pg_model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ dist_util.load_state_dict(args.model_path, map_location="cpu")
+ )
+ model.to(dist_util.dev())
+ model.eval()
+
+ logger.log("creating model2...")
+ args.num_channels = args.num_channels2
+ args.use_attention = args.use_attention2
+ model2, diffusion2 = pgsr_create_model_and_diffusion(
+ **args_to_dict(args, pgsr_model_and_diffusion_defaults().keys())
+ )
+ model2.load_state_dict(
+ dist_util.load_state_dict(args.model_path2, map_location="cpu")
+ )
+ model2.to(dist_util.dev())
+ model2.eval()
+
+ def inference(img, seed, add_edges):
+ th.manual_seed(int(seed))
+ sketch = sketch_out = norm_size(img, size=128, add_edges=add_edges)
+ sketch = np.asarray(sketch).astype(np.float32) / 127.5 - 1
+ sketch = th.from_numpy(sketch).float()[None,None].to(dist_util.dev())
+ model_kwargs = { "guide": sketch }
+ sample_fn = (
+ diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
+ )
+ sample = sample_fn(
+ model,
+ (args.batch_size, 3, args.image_size, args.image_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+
+ model_kwargs["low_res"] = sample
+ sample_fn2 = (
+ diffusion2.p_sample_loop if not args.use_ddim else diffusion2.ddim_sample_loop
+ )
+ sample2 = sample_fn2(
+ model2,
+ (args.batch_size, 3, args.large_size, args.large_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+ out = (sample2[0].clamp(-1,1).cpu().numpy() + 1) / 2 * 255
+ out = np.uint8(out)
+ out = out.transpose([1,2,0])
+ out = Image.fromarray(out)
+
+ return sketch_out, out
+
+ with gr.Blocks() as demo:
+ gr.Markdown('''
Anime-Colorization
+Colorize your anime sketches with this app.
+This is a Gradio Blocks app of
+
+HighCWu/pixel-guide-diffusion-for-anime-colorization
+.
+(PS: Training Datasets are made from
+HighCWu/danbooru-sketch-pair-128x
+ which processed real anime images to sketches by
+SketchKeras.
+So the model is not very sensitive to some different styles of sketches,
+and the colorized results of such sketches are not very good.)
+''')
+ with gr.Row():
+ with gr.Box():
+ with gr.Column():
+ with gr.Row():
+ seed_in = gr.Number(
+ value=233,
+ label='Seed'
+ )
+ with gr.Row():
+ edges_in = gr.Checkbox(
+ label="Add Edges"
+ )
+ with gr.Row():
+ sketch_in = gr.Image(
+ type="pil",
+ label="Sketch"
+ )
+ with gr.Row():
+ generate_button = gr.Button('Generate')
+ with gr.Row():
+ gr.Markdown('Click to add example as input.👇')
+ with gr.Row():
+ example_sketch_paths = [[p] for p in sorted(glob.glob('docs/imgs/anime_sketch/*.png'))]
+ example_sketch = gr.Dataset(
+ components=[sketch_in],
+ samples=example_sketch_paths
+ )
+ with gr.Row():
+ gr.Markdown('These are expect real outputs.👇')
+ with gr.Row():
+ example_real_paths = [[p] for p in sorted(glob.glob('docs/imgs/anime/*.png'))]
+ example_real = gr.Dataset(
+ components=[sketch_in],
+ samples=example_real_paths
+ )
+
+ with gr.Box():
+ with gr.Column():
+ with gr.Row():
+ with gr.Column():
+ sketch_out = gr.Image(
+ type="pil",
+ label="Input"
+ )
+ with gr.Column():
+ colorized_out = gr.Image(
+ type="pil",
+ label="Colorization Result"
+ )
+ with gr.Row():
+ gr.Markdown(
+ 'Here are some samples 👇 [top: sketch, center: generated, bottom: real]'
+ )
+ with gr.Row():
+ gr.Image(
+ value="docs/imgs/sample.png",
+ type="filepath",
+ interactive=False,
+ label="Samples"
+ )
+ gr.Markdown(
+ ''
+ )
+
+ generate_button.click(
+ inference, inputs=[sketch_in, seed_in, edges_in], outputs=[sketch_out, colorized_out]
+ )
+ example_sketch.click(
+ fn=lambda examples: gr.Image.update(value=examples[0]),
+ inputs=example_sketch,
+ outputs=example_sketch.components
+ )
+
+ demo.launch()
+
+if __name__ == '__main__':
+ main()
diff --git a/danbooru2017_guided_log/ema_0.9999_360000.pt b/danbooru2017_guided_log/ema_0.9999_360000.pt
new file mode 100644
index 0000000000000000000000000000000000000000..b45f431cb5d709d7b51621a121f0f4fe6f591ac3
--- /dev/null
+++ b/danbooru2017_guided_log/ema_0.9999_360000.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b614305acf2d30b7c63bcbc56f646a3ee06579a8430f9c55c8de5014c977f397
+size 210354744
diff --git a/danbooru2017_guided_sr_log/ema_0.9999_360000.pt b/danbooru2017_guided_sr_log/ema_0.9999_360000.pt
new file mode 100644
index 0000000000000000000000000000000000000000..e0d6788b51d472a81a39e220637a7b343a66059f
--- /dev/null
+++ b/danbooru2017_guided_sr_log/ema_0.9999_360000.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cc1c29c293ad2625cf616f0d1a33e2d708c061ac7f439d3df53e9b22cafe36d7
+size 48757368
diff --git a/data/.gitkeep b/data/.gitkeep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/datasets/README.md b/datasets/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..148cfea9a04f0361543b471772f94a9ce3d4c484
--- /dev/null
+++ b/datasets/README.md
@@ -0,0 +1,37 @@
+# Downloading datasets
+
+This directory includes instructions and scripts for downloading ImageNet, LSUN bedrooms, and CIFAR-10 for use in this codebase.
+
+## ImageNet-64
+
+To download unconditional ImageNet-64, go to [this page on image-net.org](http://www.image-net.org/small/download.php) and click on "Train (64x64)". Simply download the file and unzip it, and use the resulting directory as the data directory (the `--data_dir` argument for the training script).
+
+## Class-conditional ImageNet
+
+For our class-conditional models, we use the official ILSVRC2012 dataset with manual center cropping and downsampling. To obtain this dataset, navigate to [this page on image-net.org](http://www.image-net.org/challenges/LSVRC/2012/downloads) and sign in (or create an account if you do not already have one). Then click on the link reading "Training images (Task 1 & 2)". This is a 138GB tar file containing 1000 sub-tar files, one per class.
+
+Once the file is downloaded, extract it and look inside. You should see 1000 `.tar` files. You need to extract each of these, which may be impractical to do by hand on your operating system. To automate the process on a Unix-based system, you can `cd` into the directory and run this short shell script:
+
+```
+for file in *.tar; do tar xf "$file"; rm "$file"; done
+```
+
+This will extract and remove each tar file in turn.
+
+Once all of the images have been extracted, the resulting directory should be usable as a data directory (the `--data_dir` argument for the training script). The filenames should all start with WNID (class ids) followed by underscores, like `n01440764_2708.JPEG`. Conveniently (but not by accident) this is how the automated data-loader expects to discover class labels.
+
+## CIFAR-10
+
+For CIFAR-10, we created a script [cifar10.py](cifar10.py) that creates `cifar_train` and `cifar_test` directories. These directories contain files named like `truck_49997.png`, so that the class name is discernable to the data loader.
+
+The `cifar_train` and `cifar_test` directories can be passed directly to the training scripts via the `--data_dir` argument.
+
+## LSUN bedroom
+
+To download and pre-process LSUN bedroom, clone [fyu/lsun](https://github.com/fyu/lsun) on GitHub and run their download script `python3 download.py bedroom`. The result will be an "lmdb" database named like `bedroom_train_lmdb`. You can pass this to our [lsun_bedroom.py](lsun_bedroom.py) script like so:
+
+```
+python lsun_bedroom.py bedroom_train_lmdb lsun_train_output_dir
+```
+
+This creates a directory called `lsun_train_output_dir`. This directory can be passed to the training scripts via the `--data_dir` argument.
diff --git a/datasets/cifar10.py b/datasets/cifar10.py
new file mode 100644
index 0000000000000000000000000000000000000000..38c72f04d2eb18442fb1687b1f4daf51693419a3
--- /dev/null
+++ b/datasets/cifar10.py
@@ -0,0 +1,43 @@
+import os
+import tempfile
+
+import torchvision
+from tqdm.auto import tqdm
+
+CLASSES = (
+ "plane",
+ "car",
+ "bird",
+ "cat",
+ "deer",
+ "dog",
+ "frog",
+ "horse",
+ "ship",
+ "truck",
+)
+
+
+def main():
+ for split in ["train", "test"]:
+ out_dir = f"cifar_{split}"
+ if os.path.exists(out_dir):
+ print(f"skipping split {split} since {out_dir} already exists.")
+ continue
+
+ print("downloading...")
+ with tempfile.TemporaryDirectory() as tmp_dir:
+ dataset = torchvision.datasets.CIFAR10(
+ root=tmp_dir, train=split == "train", download=True
+ )
+
+ print("dumping images...")
+ os.mkdir(out_dir)
+ for i in tqdm(range(len(dataset))):
+ image, label = dataset[i]
+ filename = os.path.join(out_dir, f"{CLASSES[label]}_{i:05d}.png")
+ image.save(filename)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/datasets/lsun_bedroom.py b/datasets/lsun_bedroom.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a5be22eef8c7434331a76ef5ed7332a98a446ef
--- /dev/null
+++ b/datasets/lsun_bedroom.py
@@ -0,0 +1,54 @@
+"""
+Convert an LSUN lmdb database into a directory of images.
+"""
+
+import argparse
+import io
+import os
+
+from PIL import Image
+import lmdb
+import numpy as np
+
+
+def read_images(lmdb_path, image_size):
+ env = lmdb.open(lmdb_path, map_size=1099511627776, max_readers=100, readonly=True)
+ with env.begin(write=False) as transaction:
+ cursor = transaction.cursor()
+ for _, webp_data in cursor:
+ img = Image.open(io.BytesIO(webp_data))
+ width, height = img.size
+ scale = image_size / min(width, height)
+ img = img.resize(
+ (int(round(scale * width)), int(round(scale * height))),
+ resample=Image.BOX,
+ )
+ arr = np.array(img)
+ h, w, _ = arr.shape
+ h_off = (h - image_size) // 2
+ w_off = (w - image_size) // 2
+ arr = arr[h_off : h_off + image_size, w_off : w_off + image_size]
+ yield arr
+
+
+def dump_images(out_dir, images, prefix):
+ if not os.path.exists(out_dir):
+ os.mkdir(out_dir)
+ for i, img in enumerate(images):
+ Image.fromarray(img).save(os.path.join(out_dir, f"{prefix}_{i:07d}.png"))
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--image-size", help="new image size", type=int, default=256)
+ parser.add_argument("--prefix", help="class name", type=str, default="bedroom")
+ parser.add_argument("lmdb_path", help="path to an LSUN lmdb database")
+ parser.add_argument("out_dir", help="path to output directory")
+ args = parser.parse_args()
+
+ images = read_images(args.lmdb_path, args.image_size)
+ dump_images(args.out_dir, images, args.prefix)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/docs/imgs/anime/1000000.png b/docs/imgs/anime/1000000.png
new file mode 100644
index 0000000000000000000000000000000000000000..13d1bac479cd7a970b93e6a0baa8e03fd6821be0
Binary files /dev/null and b/docs/imgs/anime/1000000.png differ
diff --git a/docs/imgs/anime/1002000.png b/docs/imgs/anime/1002000.png
new file mode 100644
index 0000000000000000000000000000000000000000..3eafe1504c1b38dd3db8105ece055b3023527a75
Binary files /dev/null and b/docs/imgs/anime/1002000.png differ
diff --git a/docs/imgs/anime/1003000.png b/docs/imgs/anime/1003000.png
new file mode 100644
index 0000000000000000000000000000000000000000..afa6d2f12b742a1afc262c2ee2111f23a7c45d91
Binary files /dev/null and b/docs/imgs/anime/1003000.png differ
diff --git a/docs/imgs/anime/1004000.png b/docs/imgs/anime/1004000.png
new file mode 100644
index 0000000000000000000000000000000000000000..24eebed2ec5a257004140a7e361273b4352b329f
Binary files /dev/null and b/docs/imgs/anime/1004000.png differ
diff --git a/docs/imgs/anime/1006000.png b/docs/imgs/anime/1006000.png
new file mode 100644
index 0000000000000000000000000000000000000000..fd61f1f211ba7dc9c6a2bfe30284db8346d9e75a
Binary files /dev/null and b/docs/imgs/anime/1006000.png differ
diff --git a/docs/imgs/anime/1012000.png b/docs/imgs/anime/1012000.png
new file mode 100644
index 0000000000000000000000000000000000000000..31219c49a9c0e244c12e7e488a89251e1e328709
Binary files /dev/null and b/docs/imgs/anime/1012000.png differ
diff --git a/docs/imgs/anime_sketch/1000000.png b/docs/imgs/anime_sketch/1000000.png
new file mode 100644
index 0000000000000000000000000000000000000000..2a15ae479eff46b951f735517de1dd8be6916d33
Binary files /dev/null and b/docs/imgs/anime_sketch/1000000.png differ
diff --git a/docs/imgs/anime_sketch/1002000.png b/docs/imgs/anime_sketch/1002000.png
new file mode 100644
index 0000000000000000000000000000000000000000..6545cfd1f7ce0539cdd94bddcdeda4b924fd07ef
Binary files /dev/null and b/docs/imgs/anime_sketch/1002000.png differ
diff --git a/docs/imgs/anime_sketch/1003000.png b/docs/imgs/anime_sketch/1003000.png
new file mode 100644
index 0000000000000000000000000000000000000000..d5f4a0ed7f2698facbd4da7c25bb2dcc4d490b89
Binary files /dev/null and b/docs/imgs/anime_sketch/1003000.png differ
diff --git a/docs/imgs/anime_sketch/1004000.png b/docs/imgs/anime_sketch/1004000.png
new file mode 100644
index 0000000000000000000000000000000000000000..354b84b4374226f7b3e7bd9184ee7fe401566ca6
Binary files /dev/null and b/docs/imgs/anime_sketch/1004000.png differ
diff --git a/docs/imgs/anime_sketch/1006000.png b/docs/imgs/anime_sketch/1006000.png
new file mode 100644
index 0000000000000000000000000000000000000000..27cea614fd5143aea10aca4f9da8f749885d8850
Binary files /dev/null and b/docs/imgs/anime_sketch/1006000.png differ
diff --git a/docs/imgs/anime_sketch/1012000.png b/docs/imgs/anime_sketch/1012000.png
new file mode 100644
index 0000000000000000000000000000000000000000..67b8cc380c7247045bbe0cb70b36cae0a95a2c0a
Binary files /dev/null and b/docs/imgs/anime_sketch/1012000.png differ
diff --git a/docs/imgs/sample.png b/docs/imgs/sample.png
new file mode 100644
index 0000000000000000000000000000000000000000..f7fe032a08c1e960218e0a616acbeabf401d2e10
Binary files /dev/null and b/docs/imgs/sample.png differ
diff --git a/openai.LICENSE b/openai.LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..9e84fcbc4d81a1f433c90caf9f1cef373c12edae
--- /dev/null
+++ b/openai.LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2021 OpenAI
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
\ No newline at end of file
diff --git a/packages.txt b/packages.txt
new file mode 100644
index 0000000000000000000000000000000000000000..cdf993adc3fe9a401a84dcdd5a3b7bfa1012e85f
--- /dev/null
+++ b/packages.txt
@@ -0,0 +1 @@
+libopenmpi-dev
\ No newline at end of file
diff --git a/pixel_guide_diffusion/__init__.py b/pixel_guide_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9665a0d63f695eab303318d824dad14041c7cde9
--- /dev/null
+++ b/pixel_guide_diffusion/__init__.py
@@ -0,0 +1,3 @@
+"""
+Codebase for "Improved Denoising Diffusion Probabilistic Models".
+"""
diff --git a/pixel_guide_diffusion/dist_util.py b/pixel_guide_diffusion/dist_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..f665604d6baaf5df6008f131c86cf0779c8b208a
--- /dev/null
+++ b/pixel_guide_diffusion/dist_util.py
@@ -0,0 +1,82 @@
+"""
+Helpers for distributed training.
+"""
+
+import io
+import os
+import socket
+
+import blobfile as bf
+from mpi4py import MPI
+import torch as th
+import torch.distributed as dist
+
+# Change this to reflect your cluster layout.
+# The GPU for a given rank is (rank % GPUS_PER_NODE).
+GPUS_PER_NODE = 8
+
+SETUP_RETRY_COUNT = 3
+
+
+def setup_dist():
+ """
+ Setup a distributed process group.
+ """
+ if dist.is_initialized():
+ return
+
+ comm = MPI.COMM_WORLD
+ backend = "gloo" if not th.cuda.is_available() else "nccl"
+
+ if backend == "gloo":
+ hostname = "localhost"
+ else:
+ hostname = socket.gethostbyname(socket.getfqdn())
+ os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0)
+ os.environ["RANK"] = str(comm.rank)
+ os.environ["WORLD_SIZE"] = str(comm.size)
+
+ port = comm.bcast(_find_free_port(), root=0)
+ os.environ["MASTER_PORT"] = str(port)
+ dist.init_process_group(backend=backend, init_method="env://")
+
+
+def dev():
+ """
+ Get the device to use for torch.distributed.
+ """
+ if th.cuda.is_available():
+ return th.device(f"cuda:{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}")
+ return th.device("cpu")
+
+
+def load_state_dict(path, **kwargs):
+ """
+ Load a PyTorch file without redundant fetches across MPI ranks.
+ """
+ if MPI.COMM_WORLD.Get_rank() == 0:
+ with bf.BlobFile(path, "rb") as f:
+ data = f.read()
+ else:
+ data = None
+ data = MPI.COMM_WORLD.bcast(data)
+ return th.load(io.BytesIO(data), **kwargs)
+
+
+def sync_params(params):
+ """
+ Synchronize a sequence of Tensors across ranks from rank 0.
+ """
+ for p in params:
+ with th.no_grad():
+ dist.broadcast(p, 0)
+
+
+def _find_free_port():
+ try:
+ s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ s.bind(("", 0))
+ s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
+ return s.getsockname()[1]
+ finally:
+ s.close()
diff --git a/pixel_guide_diffusion/fp16_util.py b/pixel_guide_diffusion/fp16_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..23e0418153143200a718f56077b3360f30f4c663
--- /dev/null
+++ b/pixel_guide_diffusion/fp16_util.py
@@ -0,0 +1,76 @@
+"""
+Helpers to train with 16-bit precision.
+"""
+
+import torch.nn as nn
+from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
+
+
+def convert_module_to_f16(l):
+ """
+ Convert primitive modules to float16.
+ """
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
+ l.weight.data = l.weight.data.half()
+ l.bias.data = l.bias.data.half()
+
+
+def convert_module_to_f32(l):
+ """
+ Convert primitive modules to float32, undoing convert_module_to_f16().
+ """
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
+ l.weight.data = l.weight.data.float()
+ l.bias.data = l.bias.data.float()
+
+
+def make_master_params(model_params):
+ """
+ Copy model parameters into a (differently-shaped) list of full-precision
+ parameters.
+ """
+ master_params = _flatten_dense_tensors(
+ [param.detach().float() for param in model_params]
+ )
+ master_params = nn.Parameter(master_params)
+ master_params.requires_grad = True
+ return [master_params]
+
+
+def model_grads_to_master_grads(model_params, master_params):
+ """
+ Copy the gradients from the model parameters into the master parameters
+ from make_master_params().
+ """
+ master_params[0].grad = _flatten_dense_tensors(
+ [param.grad.data.detach().float() for param in model_params]
+ )
+
+
+def master_params_to_model_params(model_params, master_params):
+ """
+ Copy the master parameter data back into the model parameters.
+ """
+ # Without copying to a list, if a generator is passed, this will
+ # silently not copy any parameters.
+ model_params = list(model_params)
+
+ for param, master_param in zip(
+ model_params, unflatten_master_params(model_params, master_params)
+ ):
+ param.detach().copy_(master_param)
+
+
+def unflatten_master_params(model_params, master_params):
+ """
+ Unflatten the master parameters to look like model_params.
+ """
+ return _unflatten_dense_tensors(master_params[0].detach(), model_params)
+
+
+def zero_grad(model_params):
+ for param in model_params:
+ # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
+ if param.grad is not None:
+ param.grad.detach_()
+ param.grad.zero_()
diff --git a/pixel_guide_diffusion/gaussian_diffusion.py b/pixel_guide_diffusion/gaussian_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..403d474f3bc3486dff7618d262f6437b2ab43e5c
--- /dev/null
+++ b/pixel_guide_diffusion/gaussian_diffusion.py
@@ -0,0 +1,841 @@
+"""
+This code started out as a PyTorch port of Ho et al's diffusion models:
+https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
+
+Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
+"""
+
+import enum
+import math
+
+import numpy as np
+import torch as th
+
+from .nn import mean_flat
+from .losses import normal_kl, discretized_gaussian_log_likelihood
+
+
+def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
+ """
+ Get a pre-defined beta schedule for the given name.
+
+ The beta schedule library consists of beta schedules which remain similar
+ in the limit of num_diffusion_timesteps.
+ Beta schedules may be added, but should not be removed or changed once
+ they are committed to maintain backwards compatibility.
+ """
+ if schedule_name == "linear":
+ # Linear schedule from Ho et al, extended to work for any number of
+ # diffusion steps.
+ scale = 1000 / num_diffusion_timesteps
+ beta_start = scale * 0.0001
+ beta_end = scale * 0.02
+ return np.linspace(
+ beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
+ )
+ elif schedule_name == "cosine":
+ return betas_for_alpha_bar(
+ num_diffusion_timesteps,
+ lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
+ )
+ else:
+ raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
+
+
+class ModelMeanType(enum.Enum):
+ """
+ Which type of output the model predicts.
+ """
+
+ PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
+ START_X = enum.auto() # the model predicts x_0
+ EPSILON = enum.auto() # the model predicts epsilon
+
+
+class ModelVarType(enum.Enum):
+ """
+ What is used as the model's output variance.
+
+ The LEARNED_RANGE option has been added to allow the model to predict
+ values between FIXED_SMALL and FIXED_LARGE, making its job easier.
+ """
+
+ LEARNED = enum.auto()
+ FIXED_SMALL = enum.auto()
+ FIXED_LARGE = enum.auto()
+ LEARNED_RANGE = enum.auto()
+
+
+class LossType(enum.Enum):
+ MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
+ RESCALED_MSE = (
+ enum.auto()
+ ) # use raw MSE loss (with RESCALED_KL when learning variances)
+ KL = enum.auto() # use the variational lower-bound
+ RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
+
+ def is_vb(self):
+ return self == LossType.KL or self == LossType.RESCALED_KL
+
+
+class GaussianDiffusion:
+ """
+ Utilities for training and sampling diffusion models.
+
+ Ported directly from here, and then adapted over time to further experimentation.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
+
+ :param betas: a 1-D numpy array of betas for each diffusion timestep,
+ starting at T and going to 1.
+ :param model_mean_type: a ModelMeanType determining what the model outputs.
+ :param model_var_type: a ModelVarType determining how variance is output.
+ :param loss_type: a LossType determining the loss function to use.
+ :param rescale_timesteps: if True, pass floating point timesteps into the
+ model so that they are always scaled like in the
+ original paper (0 to 1000).
+ """
+
+ def __init__(
+ self,
+ *,
+ betas,
+ model_mean_type,
+ model_var_type,
+ loss_type,
+ rescale_timesteps=False,
+ ):
+ self.model_mean_type = model_mean_type
+ self.model_var_type = model_var_type
+ self.loss_type = loss_type
+ self.rescale_timesteps = rescale_timesteps
+
+ # Use float64 for accuracy.
+ betas = np.array(betas, dtype=np.float64)
+ self.betas = betas
+ assert len(betas.shape) == 1, "betas must be 1-D"
+ assert (betas > 0).all() and (betas <= 1).all()
+
+ self.num_timesteps = int(betas.shape[0])
+
+ alphas = 1.0 - betas
+ self.alphas_cumprod = np.cumprod(alphas, axis=0)
+ self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
+ self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
+ assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
+ self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
+ self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
+ self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
+ self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ self.posterior_variance = (
+ betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
+ )
+ # log calculation clipped because the posterior variance is 0 at the
+ # beginning of the diffusion chain.
+ self.posterior_log_variance_clipped = np.log(
+ np.append(self.posterior_variance[1], self.posterior_variance[1:])
+ )
+ self.posterior_mean_coef1 = (
+ betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
+ )
+ self.posterior_mean_coef2 = (
+ (1.0 - self.alphas_cumprod_prev)
+ * np.sqrt(alphas)
+ / (1.0 - self.alphas_cumprod)
+ )
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ )
+ variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = _extract_into_tensor(
+ self.log_one_minus_alphas_cumprod, t, x_start.shape
+ )
+ return mean, variance, log_variance
+
+ def q_sample(self, x_start, t, noise=None):
+ """
+ Diffuse the data for a given number of diffusion steps.
+
+ In other words, sample from q(x_t | x_0).
+
+ :param x_start: the initial data batch.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :param noise: if specified, the split-out normal noise.
+ :return: A noisy version of x_start.
+ """
+ if noise is None:
+ noise = th.randn_like(x_start)
+ assert noise.shape == x_start.shape
+ return (
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
+ * noise
+ )
+
+ def q_posterior_mean_variance(self, x_start, x_t, t):
+ """
+ Compute the mean and variance of the diffusion posterior:
+
+ q(x_{t-1} | x_t, x_0)
+
+ """
+ assert x_start.shape == x_t.shape
+ posterior_mean = (
+ _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = _extract_into_tensor(
+ self.posterior_log_variance_clipped, t, x_t.shape
+ )
+ assert (
+ posterior_mean.shape[0]
+ == posterior_variance.shape[0]
+ == posterior_log_variance_clipped.shape[0]
+ == x_start.shape[0]
+ )
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(
+ self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
+ ):
+ """
+ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
+ the initial x, x_0.
+
+ :param model: the model, which takes a signal and a batch of timesteps
+ as input.
+ :param x: the [N x C x ...] tensor at time t.
+ :param t: a 1-D Tensor of timesteps.
+ :param clip_denoised: if True, clip the denoised signal into [-1, 1].
+ :param denoised_fn: if not None, a function which applies to the
+ x_start prediction before it is used to sample. Applies before
+ clip_denoised.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :return: a dict with the following keys:
+ - 'mean': the model mean output.
+ - 'variance': the model variance output.
+ - 'log_variance': the log of 'variance'.
+ - 'pred_xstart': the prediction for x_0.
+ """
+ if model_kwargs is None:
+ model_kwargs = {}
+
+ B, C = x.shape[:2]
+ assert t.shape == (B,)
+ model_output = model(x, self._scale_timesteps(t), **model_kwargs)
+
+ if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
+ assert model_output.shape == (B, C * 2, *x.shape[2:])
+ model_output, model_var_values = th.split(model_output, C, dim=1)
+ if self.model_var_type == ModelVarType.LEARNED:
+ model_log_variance = model_var_values
+ model_variance = th.exp(model_log_variance)
+ else:
+ min_log = _extract_into_tensor(
+ self.posterior_log_variance_clipped, t, x.shape
+ )
+ max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
+ # The model_var_values is [-1, 1] for [min_var, max_var].
+ frac = (model_var_values + 1) / 2
+ model_log_variance = frac * max_log + (1 - frac) * min_log
+ model_variance = th.exp(model_log_variance)
+ else:
+ model_variance, model_log_variance = {
+ # for fixedlarge, we set the initial (log-)variance like so
+ # to get a better decoder log likelihood.
+ ModelVarType.FIXED_LARGE: (
+ np.append(self.posterior_variance[1], self.betas[1:]),
+ np.log(np.append(self.posterior_variance[1], self.betas[1:])),
+ ),
+ ModelVarType.FIXED_SMALL: (
+ self.posterior_variance,
+ self.posterior_log_variance_clipped,
+ ),
+ }[self.model_var_type]
+ model_variance = _extract_into_tensor(model_variance, t, x.shape)
+ model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
+
+ def process_xstart(x):
+ if denoised_fn is not None:
+ x = denoised_fn(x)
+ if clip_denoised:
+ return x.clamp(-1, 1)
+ return x
+
+ if self.model_mean_type == ModelMeanType.PREVIOUS_X:
+ pred_xstart = process_xstart(
+ self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
+ )
+ model_mean = model_output
+ elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
+ if self.model_mean_type == ModelMeanType.START_X:
+ pred_xstart = process_xstart(model_output)
+ else:
+ pred_xstart = process_xstart(
+ self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
+ )
+ model_mean, _, _ = self.q_posterior_mean_variance(
+ x_start=pred_xstart, x_t=x, t=t
+ )
+ else:
+ raise NotImplementedError(self.model_mean_type)
+
+ assert (
+ model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
+ )
+ return {
+ "mean": model_mean,
+ "variance": model_variance,
+ "log_variance": model_log_variance,
+ "pred_xstart": pred_xstart,
+ }
+
+ def _predict_xstart_from_eps(self, x_t, t, eps):
+ assert x_t.shape == eps.shape
+ return (
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
+ - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
+ )
+
+ def _predict_xstart_from_xprev(self, x_t, t, xprev):
+ assert x_t.shape == xprev.shape
+ return ( # (xprev - coef2*x_t) / coef1
+ _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
+ - _extract_into_tensor(
+ self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
+ )
+ * x_t
+ )
+
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+ return (
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
+ - pred_xstart
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+ def _scale_timesteps(self, t):
+ if self.rescale_timesteps:
+ return t.float() * (1000.0 / self.num_timesteps)
+ return t
+
+ def p_sample(
+ self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
+ ):
+ """
+ Sample x_{t-1} from the model at the given timestep.
+
+ :param model: the model to sample from.
+ :param x: the current tensor at x_{t-1}.
+ :param t: the value of t, starting at 0 for the first diffusion step.
+ :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
+ :param denoised_fn: if not None, a function which applies to the
+ x_start prediction before it is used to sample.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :return: a dict containing the following keys:
+ - 'sample': a random sample from the model.
+ - 'pred_xstart': a prediction of x_0.
+ """
+ out = self.p_mean_variance(
+ model,
+ x,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ )
+ noise = th.randn_like(x)
+ nonzero_mask = (
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
+ ) # no noise when t == 0
+ sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
+
+ def p_sample_loop(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ ):
+ """
+ Generate samples from the model.
+
+ :param model: the model module.
+ :param shape: the shape of the samples, (N, C, H, W).
+ :param noise: if specified, the noise from the encoder to sample.
+ Should be of the same shape as `shape`.
+ :param clip_denoised: if True, clip x_start predictions to [-1, 1].
+ :param denoised_fn: if not None, a function which applies to the
+ x_start prediction before it is used to sample.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :param device: if specified, the device to create the samples on.
+ If not specified, use a model parameter's device.
+ :param progress: if True, show a tqdm progress bar.
+ :return: a non-differentiable batch of samples.
+ """
+ final = None
+ for sample in self.p_sample_loop_progressive(
+ model,
+ shape,
+ noise=noise,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ device=device,
+ progress=progress,
+ ):
+ final = sample
+ return final["sample"]
+
+ def p_sample_loop_progressive(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ ):
+ """
+ Generate samples from the model and yield intermediate samples from
+ each timestep of diffusion.
+
+ Arguments are the same as p_sample_loop().
+ Returns a generator over dicts, where each dict is the return value of
+ p_sample().
+ """
+ if device is None:
+ device = next(model.parameters()).device
+ assert isinstance(shape, (tuple, list))
+ if noise is not None:
+ img = noise
+ else:
+ img = th.randn(*shape, device=device)
+ indices = list(range(self.num_timesteps))[::-1]
+
+ if progress:
+ # Lazy import so that we don't depend on tqdm.
+ from tqdm.auto import tqdm
+
+ indices = tqdm(indices)
+
+ for i in indices:
+ t = th.tensor([i] * shape[0], device=device)
+ with th.no_grad():
+ out = self.p_sample(
+ model,
+ img,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ )
+ yield out
+ img = out["sample"]
+
+ def ddim_sample(
+ self,
+ model,
+ x,
+ t,
+ clip_denoised=True,
+ denoised_fn=None,
+ model_kwargs=None,
+ eta=0.0,
+ ):
+ """
+ Sample x_{t-1} from the model using DDIM.
+
+ Same usage as p_sample().
+ """
+ out = self.p_mean_variance(
+ model,
+ x,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ )
+ # Usually our model outputs epsilon, but we re-derive it
+ # in case we used x_start or x_prev prediction.
+ eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
+ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
+ alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
+ sigma = (
+ eta
+ * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
+ * th.sqrt(1 - alpha_bar / alpha_bar_prev)
+ )
+ # Equation 12.
+ noise = th.randn_like(x)
+ mean_pred = (
+ out["pred_xstart"] * th.sqrt(alpha_bar_prev)
+ + th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
+ )
+ nonzero_mask = (
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
+ ) # no noise when t == 0
+ sample = mean_pred + nonzero_mask * sigma * noise
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
+
+ def ddim_reverse_sample(
+ self,
+ model,
+ x,
+ t,
+ clip_denoised=True,
+ denoised_fn=None,
+ model_kwargs=None,
+ eta=0.0,
+ ):
+ """
+ Sample x_{t+1} from the model using DDIM reverse ODE.
+ """
+ assert eta == 0.0, "Reverse ODE only for deterministic path"
+ out = self.p_mean_variance(
+ model,
+ x,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ )
+ # Usually our model outputs epsilon, but we re-derive it
+ # in case we used x_start or x_prev prediction.
+ eps = (
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
+ - out["pred_xstart"]
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
+ alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
+
+ # Equation 12. reversed
+ mean_pred = (
+ out["pred_xstart"] * th.sqrt(alpha_bar_next)
+ + th.sqrt(1 - alpha_bar_next) * eps
+ )
+
+ return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
+
+ def ddim_sample_loop(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ eta=0.0,
+ ):
+ """
+ Generate samples from the model using DDIM.
+
+ Same usage as p_sample_loop().
+ """
+ final = None
+ for sample in self.ddim_sample_loop_progressive(
+ model,
+ shape,
+ noise=noise,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ device=device,
+ progress=progress,
+ eta=eta,
+ ):
+ final = sample
+ return final["sample"]
+
+ def ddim_sample_loop_progressive(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ eta=0.0,
+ ):
+ """
+ Use DDIM to sample from the model and yield intermediate samples from
+ each timestep of DDIM.
+
+ Same usage as p_sample_loop_progressive().
+ """
+ if device is None:
+ device = next(model.parameters()).device
+ assert isinstance(shape, (tuple, list))
+ if noise is not None:
+ img = noise
+ else:
+ img = th.randn(*shape, device=device)
+ indices = list(range(self.num_timesteps))[::-1]
+
+ if progress:
+ # Lazy import so that we don't depend on tqdm.
+ from tqdm.auto import tqdm
+
+ indices = tqdm(indices)
+
+ for i in indices:
+ t = th.tensor([i] * shape[0], device=device)
+ with th.no_grad():
+ out = self.ddim_sample(
+ model,
+ img,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ eta=eta,
+ )
+ yield out
+ img = out["sample"]
+
+ def _vb_terms_bpd(
+ self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
+ ):
+ """
+ Get a term for the variational lower-bound.
+
+ The resulting units are bits (rather than nats, as one might expect).
+ This allows for comparison to other papers.
+
+ :return: a dict with the following keys:
+ - 'output': a shape [N] tensor of NLLs or KLs.
+ - 'pred_xstart': the x_0 predictions.
+ """
+ true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
+ x_start=x_start, x_t=x_t, t=t
+ )
+ out = self.p_mean_variance(
+ model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
+ )
+ kl = normal_kl(
+ true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
+ )
+ kl = mean_flat(kl) / np.log(2.0)
+
+ decoder_nll = -discretized_gaussian_log_likelihood(
+ x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
+ )
+ assert decoder_nll.shape == x_start.shape
+ decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
+
+ # At the first timestep return the decoder NLL,
+ # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
+ output = th.where((t == 0), decoder_nll, kl)
+ return {"output": output, "pred_xstart": out["pred_xstart"]}
+
+ def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
+ """
+ Compute training losses for a single timestep.
+
+ :param model: the model to evaluate loss on.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :param t: a batch of timestep indices.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :param noise: if specified, the specific Gaussian noise to try to remove.
+ :return: a dict with the key "loss" containing a tensor of shape [N].
+ Some mean or variance settings may also have other keys.
+ """
+ if model_kwargs is None:
+ model_kwargs = {}
+ if noise is None:
+ noise = th.randn_like(x_start)
+ x_t = self.q_sample(x_start, t, noise=noise)
+
+ terms = {}
+
+ if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
+ terms["loss"] = self._vb_terms_bpd(
+ model=model,
+ x_start=x_start,
+ x_t=x_t,
+ t=t,
+ clip_denoised=False,
+ model_kwargs=model_kwargs,
+ )["output"]
+ if self.loss_type == LossType.RESCALED_KL:
+ terms["loss"] *= self.num_timesteps
+ elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
+ model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
+
+ if self.model_var_type in [
+ ModelVarType.LEARNED,
+ ModelVarType.LEARNED_RANGE,
+ ]:
+ B, C = x_t.shape[:2]
+ assert model_output.shape == (B, C * 2, *x_t.shape[2:])
+ model_output, model_var_values = th.split(model_output, C, dim=1)
+ # Learn the variance using the variational bound, but don't let
+ # it affect our mean prediction.
+ frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
+ terms["vb"] = self._vb_terms_bpd(
+ model=lambda *args, r=frozen_out: r,
+ x_start=x_start,
+ x_t=x_t,
+ t=t,
+ clip_denoised=False,
+ )["output"]
+ if self.loss_type == LossType.RESCALED_MSE:
+ # Divide by 1000 for equivalence with initial implementation.
+ # Without a factor of 1/1000, the VB term hurts the MSE term.
+ terms["vb"] *= self.num_timesteps / 1000.0
+
+ target = {
+ ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
+ x_start=x_start, x_t=x_t, t=t
+ )[0],
+ ModelMeanType.START_X: x_start,
+ ModelMeanType.EPSILON: noise,
+ }[self.model_mean_type]
+ assert model_output.shape == target.shape == x_start.shape
+ terms["mse"] = mean_flat((target - model_output) ** 2)
+ if "vb" in terms:
+ terms["loss"] = terms["mse"] + terms["vb"]
+ else:
+ terms["loss"] = terms["mse"]
+ else:
+ raise NotImplementedError(self.loss_type)
+
+ return terms
+
+ def _prior_bpd(self, x_start):
+ """
+ Get the prior KL term for the variational lower-bound, measured in
+ bits-per-dim.
+
+ This term can't be optimized, as it only depends on the encoder.
+
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :return: a batch of [N] KL values (in bits), one per batch element.
+ """
+ batch_size = x_start.shape[0]
+ t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+ kl_prior = normal_kl(
+ mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
+ )
+ return mean_flat(kl_prior) / np.log(2.0)
+
+ def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
+ """
+ Compute the entire variational lower-bound, measured in bits-per-dim,
+ as well as other related quantities.
+
+ :param model: the model to evaluate loss on.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :param clip_denoised: if True, clip denoised samples.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+
+ :return: a dict containing the following keys:
+ - total_bpd: the total variational lower-bound, per batch element.
+ - prior_bpd: the prior term in the lower-bound.
+ - vb: an [N x T] tensor of terms in the lower-bound.
+ - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
+ - mse: an [N x T] tensor of epsilon MSEs for each timestep.
+ """
+ device = x_start.device
+ batch_size = x_start.shape[0]
+
+ vb = []
+ xstart_mse = []
+ mse = []
+ for t in list(range(self.num_timesteps))[::-1]:
+ t_batch = th.tensor([t] * batch_size, device=device)
+ noise = th.randn_like(x_start)
+ x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
+ # Calculate VLB term at the current timestep
+ with th.no_grad():
+ out = self._vb_terms_bpd(
+ model,
+ x_start=x_start,
+ x_t=x_t,
+ t=t_batch,
+ clip_denoised=clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+ vb.append(out["output"])
+ xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
+ eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
+ mse.append(mean_flat((eps - noise) ** 2))
+
+ vb = th.stack(vb, dim=1)
+ xstart_mse = th.stack(xstart_mse, dim=1)
+ mse = th.stack(mse, dim=1)
+
+ prior_bpd = self._prior_bpd(x_start)
+ total_bpd = vb.sum(dim=1) + prior_bpd
+ return {
+ "total_bpd": total_bpd,
+ "prior_bpd": prior_bpd,
+ "vb": vb,
+ "xstart_mse": xstart_mse,
+ "mse": mse,
+ }
+
+
+def _extract_into_tensor(arr, timesteps, broadcast_shape):
+ """
+ Extract values from a 1-D numpy array for a batch of indices.
+
+ :param arr: the 1-D numpy array.
+ :param timesteps: a tensor of indices into the array to extract.
+ :param broadcast_shape: a larger shape of K dimensions with the batch
+ dimension equal to the length of timesteps.
+ :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
+ """
+ res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
+ while len(res.shape) < len(broadcast_shape):
+ res = res[..., None]
+ return res.expand(broadcast_shape)
diff --git a/pixel_guide_diffusion/image_datasets.py b/pixel_guide_diffusion/image_datasets.py
new file mode 100644
index 0000000000000000000000000000000000000000..2eec69426004e2f325960df7d0ccef79be0453c3
--- /dev/null
+++ b/pixel_guide_diffusion/image_datasets.py
@@ -0,0 +1,173 @@
+from PIL import Image
+import blobfile as bf
+from mpi4py import MPI
+import numpy as np
+from torch.utils.data import DataLoader, Dataset
+
+import PIL.ImageFile
+PIL.ImageFile.LOAD_TRUNCATED_IMAGES = True
+
+
+def load_data(
+ *, data_dir, batch_size, image_size, class_cond=False, guide_size=0, guide_dir=None, crop_size=0, deterministic=False
+):
+ """
+ For a dataset, create a generator over (images, kwargs) pairs.
+
+ Each images is an NCHW float tensor, and the kwargs dict contains zero or
+ more keys, each of which map to a batched Tensor of their own.
+ The kwargs dict can be used for class labels, in which case the key is "y"
+ and the values are integer tensors of class labels.
+
+ :param data_dir: a dataset directory.
+ :param batch_size: the batch size of each returned pair.
+ :param image_size: the size to which images are resized.
+ :param class_cond: if True, include a "y" key in returned dicts for class
+ label. If classes are not available and this is true, an
+ exception will be raised.
+ :param guide_size: the size to which images are resized for guide tensors.
+ :param guide_dir: a dataset directory for guide tensors.
+ :param crop_size: the size to which images are resized and cropped.
+ :param deterministic: if True, yield results in a deterministic order.
+ """
+ if not data_dir:
+ raise ValueError("unspecified data directory")
+ all_files = _list_image_files_recursively(data_dir)
+ guide_files = None
+ if guide_dir:
+ guide_files = _list_image_files_recursively(guide_dir)
+ guide_files2 = _list_image_files_recursively('data/danbooru2017/anime_sketch_noise')
+ classes = None
+ if class_cond:
+ # Assume classes are the first part of the filename,
+ # before an underscore.
+ class_names = [bf.basename(path).split("_")[0] for path in all_files]
+ sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
+ classes = [sorted_classes[x] for x in class_names]
+ dataset = ImageDataset(
+ image_size,
+ all_files,
+ guide_resolution=guide_size,
+ guide_paths=guide_files,
+ guide_paths2=guide_files2,
+ crop_resolution=crop_size,
+ classes=classes,
+ shard=MPI.COMM_WORLD.Get_rank(),
+ num_shards=MPI.COMM_WORLD.Get_size(),
+ )
+ if deterministic:
+ loader = DataLoader(
+ dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True
+ )
+ else:
+ loader = DataLoader(
+ dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True
+ )
+ while True:
+ yield from loader
+
+
+def _list_image_files_recursively(data_dir):
+ results = []
+ for entry in sorted(bf.listdir(data_dir)):
+ full_path = bf.join(data_dir, entry)
+ ext = entry.split(".")[-1]
+ if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
+ results.append(full_path)
+ elif bf.isdir(full_path):
+ results.extend(_list_image_files_recursively(full_path))
+ return sorted(results)
+
+
+class ImageDataset(Dataset):
+ def __init__(self, resolution, image_paths, guide_resolution=0, guide_paths=None, guide_paths2=None, crop_resolution=0, classes=None, shard=0, num_shards=1):
+ super().__init__()
+ self.resolution = resolution
+ self.guide_resolution = guide_resolution
+ self.local_images = image_paths[shard:][::num_shards]
+ self.local_guides = guide_paths[shard:][::num_shards] if guide_paths else None
+ self.local_guides2 = guide_paths2[shard:][::num_shards] if guide_paths else None
+ self.crop_resolution = crop_resolution if crop_resolution > 0 else resolution
+ self.local_classes = None if classes is None else classes[shard:][::num_shards]
+
+ def __len__(self):
+ return len(self.local_images) * 1000000
+
+ def __getitem__(self, idx):
+ idx = idx % len(self.local_images)
+ path = self.local_images[idx]
+ with bf.BlobFile(path, "rb") as f:
+ pil_image = Image.open(f)
+ pil_image.load()
+
+ # We are not on a new enough PIL to support the `reducing_gap`
+ # argument, which uses BOX downsampling at powers of two first.
+ # Thus, we do it by hand to improve downsample quality.
+ while min(*pil_image.size) >= 2 * self.resolution:
+ pil_image = pil_image.resize(
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
+ )
+
+ scale = self.resolution / min(*pil_image.size)
+ pil_image = pil_image.resize(
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
+ )
+
+ arr = np.array(pil_image.convert("RGB"))
+ crop_y = (arr.shape[0] - self.crop_resolution) // 2
+ crop_x = (arr.shape[1] - self.crop_resolution) // 2
+ arr = arr[crop_y : crop_y + self.crop_resolution, crop_x : crop_x + self.crop_resolution]
+ arr = arr.astype(np.float32) / 127.5 - 1
+
+ out_dict = {}
+
+ if self.local_guides:
+ path = self.local_guides[idx] if np.random.rand() < 0.5 else self.local_guides2[idx]
+ with bf.BlobFile(path, "rb") as f:
+ pil_image = Image.open(f)
+ pil_image.load()
+
+ # We are not on a new enough PIL to support the `reducing_gap`
+ # argument, which uses BOX downsampling at powers of two first.
+ # Thus, we do it by hand to improve downsample quality.
+ while min(*pil_image.size) >= 2 * self.guide_resolution:
+ pil_image = pil_image.resize(
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
+ )
+
+ scale = self.guide_resolution / min(*pil_image.size)
+ pil_image = pil_image.resize(
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
+ )
+
+ crop_resolution = self.guide_resolution // self.resolution * self.crop_resolution
+
+ guide_arr = np.array(pil_image.convert("L"))[...,None] # np.array(pil_image.convert("RGB"))
+
+ # extra noise
+ if np.random.rand() < 0.5:
+ w, h = guide_arr.shape[:2][::-1]
+ a = np.random.randint(2,12)
+ mean = np.asarray(
+ Image.fromarray(
+ np.random.randint(0,255,[a,a],dtype='uint8')
+ ).resize([w,h], Image.NEAREST)
+ ).astype('float32') / 255.0 * 2 - 1
+ std = np.asarray(
+ Image.fromarray(
+ np.random.randint(0,255,[a,a],dtype='uint8')
+ ).resize([w, h], Image.NEAREST)
+ ).astype('float32') / 255.0 * 7.5 + 0.125
+ guide_arr = (guide_arr - mean[...,None]) * std[...,None]
+
+ crop_y = (guide_arr.shape[0] - crop_resolution) // 2
+ crop_x = (guide_arr.shape[1] - crop_resolution) // 2
+ guide_arr = guide_arr[crop_y : crop_y + crop_resolution, crop_x : crop_x + crop_resolution]
+ guide_arr = guide_arr.astype(np.float32) / 127.5 - 1
+
+ out_dict["guide"] = np.transpose(guide_arr, [2, 0, 1]).astype('float32')
+
+ if self.local_classes is not None:
+ out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
+
+ return np.transpose(arr, [2, 0, 1]), out_dict
diff --git a/pixel_guide_diffusion/logger.py b/pixel_guide_diffusion/logger.py
new file mode 100644
index 0000000000000000000000000000000000000000..b1d856dcfea6b56a2ee8d37b286887430dbfac30
--- /dev/null
+++ b/pixel_guide_diffusion/logger.py
@@ -0,0 +1,495 @@
+"""
+Logger copied from OpenAI baselines to avoid extra RL-based dependencies:
+https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py
+"""
+
+import os
+import sys
+import shutil
+import os.path as osp
+import json
+import time
+import datetime
+import tempfile
+import warnings
+from collections import defaultdict
+from contextlib import contextmanager
+
+DEBUG = 10
+INFO = 20
+WARN = 30
+ERROR = 40
+
+DISABLED = 50
+
+
+class KVWriter(object):
+ def writekvs(self, kvs):
+ raise NotImplementedError
+
+
+class SeqWriter(object):
+ def writeseq(self, seq):
+ raise NotImplementedError
+
+
+class HumanOutputFormat(KVWriter, SeqWriter):
+ def __init__(self, filename_or_file):
+ if isinstance(filename_or_file, str):
+ self.file = open(filename_or_file, "wt")
+ self.own_file = True
+ else:
+ assert hasattr(filename_or_file, "read"), (
+ "expected file or str, got %s" % filename_or_file
+ )
+ self.file = filename_or_file
+ self.own_file = False
+
+ def writekvs(self, kvs):
+ # Create strings for printing
+ key2str = {}
+ for (key, val) in sorted(kvs.items()):
+ if hasattr(val, "__float__"):
+ valstr = "%-8.3g" % val
+ else:
+ valstr = str(val)
+ key2str[self._truncate(key)] = self._truncate(valstr)
+
+ # Find max widths
+ if len(key2str) == 0:
+ print("WARNING: tried to write empty key-value dict")
+ return
+ else:
+ keywidth = max(map(len, key2str.keys()))
+ valwidth = max(map(len, key2str.values()))
+
+ # Write out the data
+ dashes = "-" * (keywidth + valwidth + 7)
+ lines = [dashes]
+ for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
+ lines.append(
+ "| %s%s | %s%s |"
+ % (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val)))
+ )
+ lines.append(dashes)
+ self.file.write("\n".join(lines) + "\n")
+
+ # Flush the output to the file
+ self.file.flush()
+
+ def _truncate(self, s):
+ maxlen = 30
+ return s[: maxlen - 3] + "..." if len(s) > maxlen else s
+
+ def writeseq(self, seq):
+ seq = list(seq)
+ for (i, elem) in enumerate(seq):
+ self.file.write(elem)
+ if i < len(seq) - 1: # add space unless this is the last one
+ self.file.write(" ")
+ self.file.write("\n")
+ self.file.flush()
+
+ def close(self):
+ if self.own_file:
+ self.file.close()
+
+
+class JSONOutputFormat(KVWriter):
+ def __init__(self, filename):
+ self.file = open(filename, "wt")
+
+ def writekvs(self, kvs):
+ for k, v in sorted(kvs.items()):
+ if hasattr(v, "dtype"):
+ kvs[k] = float(v)
+ self.file.write(json.dumps(kvs) + "\n")
+ self.file.flush()
+
+ def close(self):
+ self.file.close()
+
+
+class CSVOutputFormat(KVWriter):
+ def __init__(self, filename):
+ self.file = open(filename, "w+t")
+ self.keys = []
+ self.sep = ","
+
+ def writekvs(self, kvs):
+ # Add our current row to the history
+ extra_keys = list(kvs.keys() - self.keys)
+ extra_keys.sort()
+ if extra_keys:
+ self.keys.extend(extra_keys)
+ self.file.seek(0)
+ lines = self.file.readlines()
+ self.file.seek(0)
+ for (i, k) in enumerate(self.keys):
+ if i > 0:
+ self.file.write(",")
+ self.file.write(k)
+ self.file.write("\n")
+ for line in lines[1:]:
+ self.file.write(line[:-1])
+ self.file.write(self.sep * len(extra_keys))
+ self.file.write("\n")
+ for (i, k) in enumerate(self.keys):
+ if i > 0:
+ self.file.write(",")
+ v = kvs.get(k)
+ if v is not None:
+ self.file.write(str(v))
+ self.file.write("\n")
+ self.file.flush()
+
+ def close(self):
+ self.file.close()
+
+
+class TensorBoardOutputFormat(KVWriter):
+ """
+ Dumps key/value pairs into TensorBoard's numeric format.
+ """
+
+ def __init__(self, dir):
+ os.makedirs(dir, exist_ok=True)
+ self.dir = dir
+ self.step = 1
+ prefix = "events"
+ path = osp.join(osp.abspath(dir), prefix)
+ import tensorflow as tf
+ from tensorflow.python import pywrap_tensorflow
+ from tensorflow.core.util import event_pb2
+ from tensorflow.python.util import compat
+
+ self.tf = tf
+ self.event_pb2 = event_pb2
+ self.pywrap_tensorflow = pywrap_tensorflow
+ self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
+
+ def writekvs(self, kvs):
+ def summary_val(k, v):
+ kwargs = {"tag": k, "simple_value": float(v)}
+ return self.tf.Summary.Value(**kwargs)
+
+ summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
+ event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
+ event.step = (
+ self.step
+ ) # is there any reason why you'd want to specify the step?
+ self.writer.WriteEvent(event)
+ self.writer.Flush()
+ self.step += 1
+
+ def close(self):
+ if self.writer:
+ self.writer.Close()
+ self.writer = None
+
+
+def make_output_format(format, ev_dir, log_suffix=""):
+ os.makedirs(ev_dir, exist_ok=True)
+ if format == "stdout":
+ return HumanOutputFormat(sys.stdout)
+ elif format == "log":
+ return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix))
+ elif format == "json":
+ return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix))
+ elif format == "csv":
+ return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix))
+ elif format == "tensorboard":
+ return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix))
+ else:
+ raise ValueError("Unknown format specified: %s" % (format,))
+
+
+# ================================================================
+# API
+# ================================================================
+
+
+def logkv(key, val):
+ """
+ Log a value of some diagnostic
+ Call this once for each diagnostic quantity, each iteration
+ If called many times, last value will be used.
+ """
+ get_current().logkv(key, val)
+
+
+def logkv_mean(key, val):
+ """
+ The same as logkv(), but if called many times, values averaged.
+ """
+ get_current().logkv_mean(key, val)
+
+
+def logkvs(d):
+ """
+ Log a dictionary of key-value pairs
+ """
+ for (k, v) in d.items():
+ logkv(k, v)
+
+
+def dumpkvs():
+ """
+ Write all of the diagnostics from the current iteration
+ """
+ return get_current().dumpkvs()
+
+
+def getkvs():
+ return get_current().name2val
+
+
+def log(*args, level=INFO):
+ """
+ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
+ """
+ get_current().log(*args, level=level)
+
+
+def debug(*args):
+ log(*args, level=DEBUG)
+
+
+def info(*args):
+ log(*args, level=INFO)
+
+
+def warn(*args):
+ log(*args, level=WARN)
+
+
+def error(*args):
+ log(*args, level=ERROR)
+
+
+def set_level(level):
+ """
+ Set logging threshold on current logger.
+ """
+ get_current().set_level(level)
+
+
+def set_comm(comm):
+ get_current().set_comm(comm)
+
+
+def get_dir():
+ """
+ Get directory that log files are being written to.
+ will be None if there is no output directory (i.e., if you didn't call start)
+ """
+ return get_current().get_dir()
+
+
+record_tabular = logkv
+dump_tabular = dumpkvs
+
+
+@contextmanager
+def profile_kv(scopename):
+ logkey = "wait_" + scopename
+ tstart = time.time()
+ try:
+ yield
+ finally:
+ get_current().name2val[logkey] += time.time() - tstart
+
+
+def profile(n):
+ """
+ Usage:
+ @profile("my_func")
+ def my_func(): code
+ """
+
+ def decorator_with_name(func):
+ def func_wrapper(*args, **kwargs):
+ with profile_kv(n):
+ return func(*args, **kwargs)
+
+ return func_wrapper
+
+ return decorator_with_name
+
+
+# ================================================================
+# Backend
+# ================================================================
+
+
+def get_current():
+ if Logger.CURRENT is None:
+ _configure_default_logger()
+
+ return Logger.CURRENT
+
+
+class Logger(object):
+ DEFAULT = None # A logger with no output files. (See right below class definition)
+ # So that you can still log to the terminal without setting up any output files
+ CURRENT = None # Current logger being used by the free functions above
+
+ def __init__(self, dir, output_formats, comm=None):
+ self.name2val = defaultdict(float) # values this iteration
+ self.name2cnt = defaultdict(int)
+ self.level = INFO
+ self.dir = dir
+ self.output_formats = output_formats
+ self.comm = comm
+
+ # Logging API, forwarded
+ # ----------------------------------------
+ def logkv(self, key, val):
+ self.name2val[key] = val
+
+ def logkv_mean(self, key, val):
+ oldval, cnt = self.name2val[key], self.name2cnt[key]
+ self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
+ self.name2cnt[key] = cnt + 1
+
+ def dumpkvs(self):
+ if self.comm is None:
+ d = self.name2val
+ else:
+ d = mpi_weighted_mean(
+ self.comm,
+ {
+ name: (val, self.name2cnt.get(name, 1))
+ for (name, val) in self.name2val.items()
+ },
+ )
+ if self.comm.rank != 0:
+ d["dummy"] = 1 # so we don't get a warning about empty dict
+ out = d.copy() # Return the dict for unit testing purposes
+ for fmt in self.output_formats:
+ if isinstance(fmt, KVWriter):
+ fmt.writekvs(d)
+ self.name2val.clear()
+ self.name2cnt.clear()
+ return out
+
+ def log(self, *args, level=INFO):
+ if self.level <= level:
+ self._do_log(args)
+
+ # Configuration
+ # ----------------------------------------
+ def set_level(self, level):
+ self.level = level
+
+ def set_comm(self, comm):
+ self.comm = comm
+
+ def get_dir(self):
+ return self.dir
+
+ def close(self):
+ for fmt in self.output_formats:
+ fmt.close()
+
+ # Misc
+ # ----------------------------------------
+ def _do_log(self, args):
+ for fmt in self.output_formats:
+ if isinstance(fmt, SeqWriter):
+ fmt.writeseq(map(str, args))
+
+
+def get_rank_without_mpi_import():
+ # check environment variables here instead of importing mpi4py
+ # to avoid calling MPI_Init() when this module is imported
+ for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]:
+ if varname in os.environ:
+ return int(os.environ[varname])
+ return 0
+
+
+def mpi_weighted_mean(comm, local_name2valcount):
+ """
+ Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110
+ Perform a weighted average over dicts that are each on a different node
+ Input: local_name2valcount: dict mapping key -> (value, count)
+ Returns: key -> mean
+ """
+ all_name2valcount = comm.gather(local_name2valcount)
+ if comm.rank == 0:
+ name2sum = defaultdict(float)
+ name2count = defaultdict(float)
+ for n2vc in all_name2valcount:
+ for (name, (val, count)) in n2vc.items():
+ try:
+ val = float(val)
+ except ValueError:
+ if comm.rank == 0:
+ warnings.warn(
+ "WARNING: tried to compute mean on non-float {}={}".format(
+ name, val
+ )
+ )
+ else:
+ name2sum[name] += val * count
+ name2count[name] += count
+ return {name: name2sum[name] / name2count[name] for name in name2sum}
+ else:
+ return {}
+
+
+def configure(dir=None, format_strs=None, comm=None, log_suffix=""):
+ """
+ If comm is provided, average all numerical stats across that comm
+ """
+ if dir is None:
+ dir = os.getenv("OPENAI_LOGDIR")
+ if dir is None:
+ dir = osp.join(
+ tempfile.gettempdir(),
+ datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"),
+ )
+ assert isinstance(dir, str)
+ dir = os.path.expanduser(dir)
+ os.makedirs(os.path.expanduser(dir), exist_ok=True)
+
+ rank = get_rank_without_mpi_import()
+ if rank > 0:
+ log_suffix = log_suffix + "-rank%03i" % rank
+
+ if format_strs is None:
+ if rank == 0:
+ format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",")
+ else:
+ format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",")
+ format_strs = filter(None, format_strs)
+ output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
+
+ Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
+ if output_formats:
+ log("Logging to %s" % dir)
+
+
+def _configure_default_logger():
+ configure()
+ Logger.DEFAULT = Logger.CURRENT
+
+
+def reset():
+ if Logger.CURRENT is not Logger.DEFAULT:
+ Logger.CURRENT.close()
+ Logger.CURRENT = Logger.DEFAULT
+ log("Reset logger")
+
+
+@contextmanager
+def scoped_configure(dir=None, format_strs=None, comm=None):
+ prevlogger = Logger.CURRENT
+ configure(dir=dir, format_strs=format_strs, comm=comm)
+ try:
+ yield
+ finally:
+ Logger.CURRENT.close()
+ Logger.CURRENT = prevlogger
+
diff --git a/pixel_guide_diffusion/losses.py b/pixel_guide_diffusion/losses.py
new file mode 100644
index 0000000000000000000000000000000000000000..251e42e4f36a31bb5e1aeda874b3a45d722000a2
--- /dev/null
+++ b/pixel_guide_diffusion/losses.py
@@ -0,0 +1,77 @@
+"""
+Helpers for various likelihood-based losses. These are ported from the original
+Ho et al. diffusion models codebase:
+https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py
+"""
+
+import numpy as np
+
+import torch as th
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+ """
+ Compute the KL divergence between two gaussians.
+
+ Shapes are automatically broadcasted, so batches can be compared to
+ scalars, among other use cases.
+ """
+ tensor = None
+ for obj in (mean1, logvar1, mean2, logvar2):
+ if isinstance(obj, th.Tensor):
+ tensor = obj
+ break
+ assert tensor is not None, "at least one argument must be a Tensor"
+
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
+ # Tensors, but it does not work for th.exp().
+ logvar1, logvar2 = [
+ x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
+ for x in (logvar1, logvar2)
+ ]
+
+ return 0.5 * (
+ -1.0
+ + logvar2
+ - logvar1
+ + th.exp(logvar1 - logvar2)
+ + ((mean1 - mean2) ** 2) * th.exp(-logvar2)
+ )
+
+
+def approx_standard_normal_cdf(x):
+ """
+ A fast approximation of the cumulative distribution function of the
+ standard normal.
+ """
+ return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
+
+
+def discretized_gaussian_log_likelihood(x, *, means, log_scales):
+ """
+ Compute the log-likelihood of a Gaussian distribution discretizing to a
+ given image.
+
+ :param x: the target images. It is assumed that this was uint8 values,
+ rescaled to the range [-1, 1].
+ :param means: the Gaussian mean Tensor.
+ :param log_scales: the Gaussian log stddev Tensor.
+ :return: a tensor like x of log probabilities (in nats).
+ """
+ assert x.shape == means.shape == log_scales.shape
+ centered_x = x - means
+ inv_stdv = th.exp(-log_scales)
+ plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
+ cdf_plus = approx_standard_normal_cdf(plus_in)
+ min_in = inv_stdv * (centered_x - 1.0 / 255.0)
+ cdf_min = approx_standard_normal_cdf(min_in)
+ log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
+ log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
+ cdf_delta = cdf_plus - cdf_min
+ log_probs = th.where(
+ x < -0.999,
+ log_cdf_plus,
+ th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
+ )
+ assert log_probs.shape == x.shape
+ return log_probs
diff --git a/pixel_guide_diffusion/nn.py b/pixel_guide_diffusion/nn.py
new file mode 100644
index 0000000000000000000000000000000000000000..e36fb3ef7af8db46737b66baa5a2db7ea3a874ae
--- /dev/null
+++ b/pixel_guide_diffusion/nn.py
@@ -0,0 +1,191 @@
+"""
+Various utilities for neural networks.
+"""
+
+import math
+
+import torch as th
+import torch.nn as nn
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+ def forward(self, x):
+ return x * th.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x.float()).type(x.dtype)
+
+
+class SpaceToDepth(nn.Module):
+ def __init__(self, factor):
+ super().__init__()
+
+ self.factor = factor
+
+ def forward(self, x):
+ if self.factor == 1:
+ return x
+
+ batch, channel, height, width = x.shape
+ h_fold = height // self.factor
+ w_fold = width // self.factor
+
+ return (
+ x.view(batch, channel, h_fold, self.factor, w_fold, self.factor)
+ .permute(0, 1, 3, 5, 2, 4)
+ .reshape(batch, -1, h_fold, w_fold)
+ )
+
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def update_ema(target_params, source_params, rate=0.99):
+ """
+ Update target parameters to be closer to those of source parameters using
+ an exponential moving average.
+
+ :param target_params: the target parameter sequence.
+ :param source_params: the source parameter sequence.
+ :param rate: the EMA rate (closer to 1 means slower).
+ """
+ for targ, src in zip(target_params, source_params):
+ targ.detach().mul_(rate).add_(src, alpha=1 - rate)
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+ """
+ Make a standard normalization layer.
+
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNorm32(32, channels)
+
+
+def timestep_embedding(timesteps, dim, max_period=10000):
+ """
+ Create sinusoidal timestep embeddings.
+
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ half = dim // 2
+ freqs = th.exp(
+ -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
+ return embedding
+
+
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ if flag:
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(th.autograd.Function):
+ @staticmethod
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+ with th.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ def backward(ctx, *output_grads):
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with th.enable_grad():
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = th.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
diff --git a/pixel_guide_diffusion/resample.py b/pixel_guide_diffusion/resample.py
new file mode 100644
index 0000000000000000000000000000000000000000..c82eccdcd47c468d41e7cbe02de6a731f2c9bf81
--- /dev/null
+++ b/pixel_guide_diffusion/resample.py
@@ -0,0 +1,154 @@
+from abc import ABC, abstractmethod
+
+import numpy as np
+import torch as th
+import torch.distributed as dist
+
+
+def create_named_schedule_sampler(name, diffusion):
+ """
+ Create a ScheduleSampler from a library of pre-defined samplers.
+
+ :param name: the name of the sampler.
+ :param diffusion: the diffusion object to sample for.
+ """
+ if name == "uniform":
+ return UniformSampler(diffusion)
+ elif name == "loss-second-moment":
+ return LossSecondMomentResampler(diffusion)
+ else:
+ raise NotImplementedError(f"unknown schedule sampler: {name}")
+
+
+class ScheduleSampler(ABC):
+ """
+ A distribution over timesteps in the diffusion process, intended to reduce
+ variance of the objective.
+
+ By default, samplers perform unbiased importance sampling, in which the
+ objective's mean is unchanged.
+ However, subclasses may override sample() to change how the resampled
+ terms are reweighted, allowing for actual changes in the objective.
+ """
+
+ @abstractmethod
+ def weights(self):
+ """
+ Get a numpy array of weights, one per diffusion step.
+
+ The weights needn't be normalized, but must be positive.
+ """
+
+ def sample(self, batch_size, device):
+ """
+ Importance-sample timesteps for a batch.
+
+ :param batch_size: the number of timesteps.
+ :param device: the torch device to save to.
+ :return: a tuple (timesteps, weights):
+ - timesteps: a tensor of timestep indices.
+ - weights: a tensor of weights to scale the resulting losses.
+ """
+ w = self.weights()
+ p = w / np.sum(w)
+ indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
+ indices = th.from_numpy(indices_np).long().to(device)
+ weights_np = 1 / (len(p) * p[indices_np])
+ weights = th.from_numpy(weights_np).float().to(device)
+ return indices, weights
+
+
+class UniformSampler(ScheduleSampler):
+ def __init__(self, diffusion):
+ self.diffusion = diffusion
+ self._weights = np.ones([diffusion.num_timesteps])
+
+ def weights(self):
+ return self._weights
+
+
+class LossAwareSampler(ScheduleSampler):
+ def update_with_local_losses(self, local_ts, local_losses):
+ """
+ Update the reweighting using losses from a model.
+
+ Call this method from each rank with a batch of timesteps and the
+ corresponding losses for each of those timesteps.
+ This method will perform synchronization to make sure all of the ranks
+ maintain the exact same reweighting.
+
+ :param local_ts: an integer Tensor of timesteps.
+ :param local_losses: a 1D Tensor of losses.
+ """
+ batch_sizes = [
+ th.tensor([0], dtype=th.int32, device=local_ts.device)
+ for _ in range(dist.get_world_size())
+ ]
+ dist.all_gather(
+ batch_sizes,
+ th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
+ )
+
+ # Pad all_gather batches to be the maximum batch size.
+ batch_sizes = [x.item() for x in batch_sizes]
+ max_bs = max(batch_sizes)
+
+ timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
+ loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
+ dist.all_gather(timestep_batches, local_ts)
+ dist.all_gather(loss_batches, local_losses)
+ timesteps = [
+ x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
+ ]
+ losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
+ self.update_with_all_losses(timesteps, losses)
+
+ @abstractmethod
+ def update_with_all_losses(self, ts, losses):
+ """
+ Update the reweighting using losses from a model.
+
+ Sub-classes should override this method to update the reweighting
+ using losses from the model.
+
+ This method directly updates the reweighting without synchronizing
+ between workers. It is called by update_with_local_losses from all
+ ranks with identical arguments. Thus, it should have deterministic
+ behavior to maintain state across workers.
+
+ :param ts: a list of int timesteps.
+ :param losses: a list of float losses, one per timestep.
+ """
+
+
+class LossSecondMomentResampler(LossAwareSampler):
+ def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
+ self.diffusion = diffusion
+ self.history_per_term = history_per_term
+ self.uniform_prob = uniform_prob
+ self._loss_history = np.zeros(
+ [diffusion.num_timesteps, history_per_term], dtype=np.float64
+ )
+ self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
+
+ def weights(self):
+ if not self._warmed_up():
+ return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
+ weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
+ weights /= np.sum(weights)
+ weights *= 1 - self.uniform_prob
+ weights += self.uniform_prob / len(weights)
+ return weights
+
+ def update_with_all_losses(self, ts, losses):
+ for t, loss in zip(ts, losses):
+ if self._loss_counts[t] == self.history_per_term:
+ # Shift out the oldest loss term.
+ self._loss_history[t, :-1] = self._loss_history[t, 1:]
+ self._loss_history[t, -1] = loss
+ else:
+ self._loss_history[t, self._loss_counts[t]] = loss
+ self._loss_counts[t] += 1
+
+ def _warmed_up(self):
+ return (self._loss_counts == self.history_per_term).all()
diff --git a/pixel_guide_diffusion/respace.py b/pixel_guide_diffusion/respace.py
new file mode 100644
index 0000000000000000000000000000000000000000..045d58df956e6ddb04216e972bffff47c59bf488
--- /dev/null
+++ b/pixel_guide_diffusion/respace.py
@@ -0,0 +1,122 @@
+import numpy as np
+import torch as th
+
+from .gaussian_diffusion import GaussianDiffusion
+
+
+def space_timesteps(num_timesteps, section_counts):
+ """
+ Create a list of timesteps to use from an original diffusion process,
+ given the number of timesteps we want to take from equally-sized portions
+ of the original process.
+
+ For example, if there's 300 timesteps and the section counts are [10,15,20]
+ then the first 100 timesteps are strided to be 10 timesteps, the second 100
+ are strided to be 15 timesteps, and the final 100 are strided to be 20.
+
+ If the stride is a string starting with "ddim", then the fixed striding
+ from the DDIM paper is used, and only one section is allowed.
+
+ :param num_timesteps: the number of diffusion steps in the original
+ process to divide up.
+ :param section_counts: either a list of numbers, or a string containing
+ comma-separated numbers, indicating the step count
+ per section. As a special case, use "ddimN" where N
+ is a number of steps to use the striding from the
+ DDIM paper.
+ :return: a set of diffusion steps from the original process to use.
+ """
+ if isinstance(section_counts, str):
+ if section_counts.startswith("ddim"):
+ desired_count = int(section_counts[len("ddim") :])
+ for i in range(1, num_timesteps):
+ if len(range(0, num_timesteps, i)) == desired_count:
+ return set(range(0, num_timesteps, i))
+ raise ValueError(
+ f"cannot create exactly {num_timesteps} steps with an integer stride"
+ )
+ section_counts = [int(x) for x in section_counts.split(",")]
+ size_per = num_timesteps // len(section_counts)
+ extra = num_timesteps % len(section_counts)
+ start_idx = 0
+ all_steps = []
+ for i, section_count in enumerate(section_counts):
+ size = size_per + (1 if i < extra else 0)
+ if size < section_count:
+ raise ValueError(
+ f"cannot divide section of {size} steps into {section_count}"
+ )
+ if section_count <= 1:
+ frac_stride = 1
+ else:
+ frac_stride = (size - 1) / (section_count - 1)
+ cur_idx = 0.0
+ taken_steps = []
+ for _ in range(section_count):
+ taken_steps.append(start_idx + round(cur_idx))
+ cur_idx += frac_stride
+ all_steps += taken_steps
+ start_idx += size
+ return set(all_steps)
+
+
+class SpacedDiffusion(GaussianDiffusion):
+ """
+ A diffusion process which can skip steps in a base diffusion process.
+
+ :param use_timesteps: a collection (sequence or set) of timesteps from the
+ original diffusion process to retain.
+ :param kwargs: the kwargs to create the base diffusion process.
+ """
+
+ def __init__(self, use_timesteps, **kwargs):
+ self.use_timesteps = set(use_timesteps)
+ self.timestep_map = []
+ self.original_num_steps = len(kwargs["betas"])
+
+ base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
+ last_alpha_cumprod = 1.0
+ new_betas = []
+ for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
+ if i in self.use_timesteps:
+ new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
+ last_alpha_cumprod = alpha_cumprod
+ self.timestep_map.append(i)
+ kwargs["betas"] = np.array(new_betas)
+ super().__init__(**kwargs)
+
+ def p_mean_variance(
+ self, model, *args, **kwargs
+ ): # pylint: disable=signature-differs
+ return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
+
+ def training_losses(
+ self, model, *args, **kwargs
+ ): # pylint: disable=signature-differs
+ return super().training_losses(self._wrap_model(model), *args, **kwargs)
+
+ def _wrap_model(self, model):
+ if isinstance(model, _WrappedModel):
+ return model
+ return _WrappedModel(
+ model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
+ )
+
+ def _scale_timesteps(self, t):
+ # Scaling is done by the wrapped model.
+ return t
+
+
+class _WrappedModel:
+ def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
+ self.model = model
+ self.timestep_map = timestep_map
+ self.rescale_timesteps = rescale_timesteps
+ self.original_num_steps = original_num_steps
+
+ def __call__(self, x, ts, **kwargs):
+ map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
+ new_ts = map_tensor[ts]
+ if self.rescale_timesteps:
+ new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
+ return self.model(x, new_ts, **kwargs)
diff --git a/pixel_guide_diffusion/script_util.py b/pixel_guide_diffusion/script_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..b85a60adb2a8a6cdf10aec3504ba2f30d7500d1b
--- /dev/null
+++ b/pixel_guide_diffusion/script_util.py
@@ -0,0 +1,537 @@
+import argparse
+import inspect
+
+from . import gaussian_diffusion as gd
+from .respace import SpacedDiffusion, space_timesteps
+from .unet import PixelGuideSuperResModel, PixelGuideModel, SuperResModel, UNetModel
+
+NUM_CLASSES = 1000
+
+
+def model_and_diffusion_defaults():
+ """
+ Defaults for image training.
+ """
+ return dict(
+ image_size=64,
+ num_channels=128,
+ num_res_blocks=2,
+ num_heads=4,
+ num_heads_upsample=-1,
+ attention_resolutions="16,8",
+ dropout=0.0,
+ learn_sigma=False,
+ sigma_small=False,
+ class_cond=False,
+ diffusion_steps=1000,
+ noise_schedule="linear",
+ timestep_respacing="",
+ use_kl=False,
+ predict_xstart=False,
+ rescale_timesteps=True,
+ rescale_learned_sigmas=True,
+ use_checkpoint=False,
+ use_scale_shift_norm=True,
+ use_attention=True,
+ )
+
+
+def create_model_and_diffusion(
+ image_size,
+ class_cond,
+ learn_sigma,
+ sigma_small,
+ num_channels,
+ num_res_blocks,
+ num_heads,
+ num_heads_upsample,
+ attention_resolutions,
+ dropout,
+ diffusion_steps,
+ noise_schedule,
+ timestep_respacing,
+ use_kl,
+ predict_xstart,
+ rescale_timesteps,
+ rescale_learned_sigmas,
+ use_checkpoint,
+ use_scale_shift_norm,
+ use_attention,
+):
+ model = create_model(
+ image_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma=learn_sigma,
+ class_cond=class_cond,
+ use_checkpoint=use_checkpoint,
+ attention_resolutions=attention_resolutions,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ use_attention=use_attention,
+ dropout=dropout,
+ )
+ diffusion = create_gaussian_diffusion(
+ steps=diffusion_steps,
+ learn_sigma=learn_sigma,
+ sigma_small=sigma_small,
+ noise_schedule=noise_schedule,
+ use_kl=use_kl,
+ predict_xstart=predict_xstart,
+ rescale_timesteps=rescale_timesteps,
+ rescale_learned_sigmas=rescale_learned_sigmas,
+ timestep_respacing=timestep_respacing,
+ )
+ return model, diffusion
+
+
+def create_model(
+ image_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma,
+ class_cond,
+ use_checkpoint,
+ attention_resolutions,
+ num_heads,
+ num_heads_upsample,
+ use_scale_shift_norm,
+ use_attention,
+ dropout,
+):
+ if image_size == 256:
+ channel_mult = (1, 1, 2, 2, 4, 4)
+ elif image_size == 128:
+ channel_mult = (1, 2, 2, 3, 4)
+ elif image_size == 64:
+ channel_mult = (1, 2, 3, 4)
+ elif image_size == 32:
+ channel_mult = (1, 2, 2, 2)
+ else:
+ raise ValueError(f"unsupported image size: {image_size}")
+
+ attention_ds = []
+ for res in attention_resolutions.split(","):
+ attention_ds.append(image_size // int(res))
+
+ return UNetModel(
+ in_channels=3,
+ model_channels=num_channels,
+ out_channels=(3 if not learn_sigma else 6),
+ num_res_blocks=num_res_blocks,
+ attention_resolutions=tuple(attention_ds),
+ dropout=dropout,
+ channel_mult=channel_mult,
+ num_classes=(NUM_CLASSES if class_cond else None),
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ use_attention=use_attention
+ )
+
+
+def sr_model_and_diffusion_defaults():
+ res = model_and_diffusion_defaults()
+ res["large_size"] = 256
+ res["small_size"] = 64
+ arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
+ for k in res.copy().keys():
+ if k not in arg_names:
+ del res[k]
+ return res
+
+
+def sr_create_model_and_diffusion(
+ large_size,
+ small_size,
+ class_cond,
+ learn_sigma,
+ num_channels,
+ num_res_blocks,
+ num_heads,
+ num_heads_upsample,
+ attention_resolutions,
+ dropout,
+ diffusion_steps,
+ noise_schedule,
+ timestep_respacing,
+ use_kl,
+ predict_xstart,
+ rescale_timesteps,
+ rescale_learned_sigmas,
+ use_checkpoint,
+ use_scale_shift_norm,
+ use_attention
+):
+ model = sr_create_model(
+ large_size,
+ small_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma=learn_sigma,
+ class_cond=class_cond,
+ use_checkpoint=use_checkpoint,
+ attention_resolutions=attention_resolutions,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ use_attention=use_attention,
+ dropout=dropout,
+ )
+ diffusion = create_gaussian_diffusion(
+ steps=diffusion_steps,
+ learn_sigma=learn_sigma,
+ noise_schedule=noise_schedule,
+ use_kl=use_kl,
+ predict_xstart=predict_xstart,
+ rescale_timesteps=rescale_timesteps,
+ rescale_learned_sigmas=rescale_learned_sigmas,
+ timestep_respacing=timestep_respacing,
+ )
+ return model, diffusion
+
+
+def sr_create_model(
+ large_size,
+ small_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma,
+ class_cond,
+ use_checkpoint,
+ attention_resolutions,
+ num_heads,
+ num_heads_upsample,
+ use_scale_shift_norm,
+ use_attention,
+ dropout,
+):
+ _ = small_size # hack to prevent unused variable
+
+ if large_size == 256:
+ channel_mult = (1, 1, 2, 2, 4, 4)
+ elif large_size == 128:
+ channel_mult = (1, 2, 2, 3, 4)
+ elif large_size == 64:
+ channel_mult = (1, 2, 3, 4)
+ else:
+ raise ValueError(f"unsupported large size: {large_size}")
+
+ attention_ds = []
+ for res in attention_resolutions.split(","):
+ attention_ds.append(large_size // int(res))
+
+ return SuperResModel(
+ in_channels=3,
+ model_channels=num_channels,
+ out_channels=(3 if not learn_sigma else 6),
+ num_res_blocks=num_res_blocks,
+ attention_resolutions=tuple(attention_ds),
+ dropout=dropout,
+ channel_mult=channel_mult,
+ num_classes=(NUM_CLASSES if class_cond else None),
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ use_attention=use_attention
+ )
+
+
+
+def pg_model_and_diffusion_defaults():
+ res = model_and_diffusion_defaults()
+ res["image_size"] = 32
+ res["guide_size"] = 256
+ arg_names = inspect.getfullargspec(pg_create_model_and_diffusion)[0]
+ for k in res.copy().keys():
+ if k not in arg_names:
+ del res[k]
+ return res
+
+
+def pg_create_model_and_diffusion(
+ image_size,
+ guide_size,
+ class_cond,
+ learn_sigma,
+ num_channels,
+ num_res_blocks,
+ num_heads,
+ num_heads_upsample,
+ attention_resolutions,
+ dropout,
+ diffusion_steps,
+ noise_schedule,
+ timestep_respacing,
+ use_kl,
+ predict_xstart,
+ rescale_timesteps,
+ rescale_learned_sigmas,
+ use_checkpoint,
+ use_scale_shift_norm,
+ use_attention
+):
+ model = pg_create_model(
+ image_size,
+ guide_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma=learn_sigma,
+ class_cond=class_cond,
+ use_checkpoint=use_checkpoint,
+ attention_resolutions=attention_resolutions,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ dropout=dropout,
+ use_attention=use_attention
+ )
+ diffusion = create_gaussian_diffusion(
+ steps=diffusion_steps,
+ learn_sigma=learn_sigma,
+ noise_schedule=noise_schedule,
+ use_kl=use_kl,
+ predict_xstart=predict_xstart,
+ rescale_timesteps=rescale_timesteps,
+ rescale_learned_sigmas=rescale_learned_sigmas,
+ timestep_respacing=timestep_respacing,
+ )
+ return model, diffusion
+
+
+def pg_create_model(
+ image_size,
+ guide_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma,
+ class_cond,
+ use_checkpoint,
+ attention_resolutions,
+ num_heads,
+ num_heads_upsample,
+ use_scale_shift_norm,
+ use_attention,
+ dropout,
+):
+
+ if image_size == 256:
+ channel_mult = (1, 1, 2, 2, 4, 4)
+ elif image_size == 128:
+ channel_mult = (1, 2, 2, 3, 4)
+ elif image_size == 64:
+ channel_mult = (1, 2, 3, 4)
+ elif image_size == 32:
+ channel_mult = (1, 2, 2, 2)
+ else:
+ raise ValueError(f"unsupported image size: {image_size}")
+
+ attention_ds = []
+ for res in attention_resolutions.split(","):
+ attention_ds.append(image_size // int(res))
+
+ guide_fold = guide_size // image_size
+
+ return PixelGuideModel(
+ in_channels=3,
+ guide_channels=1,
+ model_channels=num_channels,
+ out_channels=(3 if not learn_sigma else 6),
+ num_res_blocks=num_res_blocks,
+ attention_resolutions=tuple(attention_ds),
+ dropout=dropout,
+ channel_mult=channel_mult,
+ num_classes=(NUM_CLASSES if class_cond else None),
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ use_attention=use_attention,
+ guide_fold=guide_fold
+ )
+
+
+def pgsr_model_and_diffusion_defaults():
+ res = model_and_diffusion_defaults()
+ res["large_size"] = 256
+ res["small_size"] = 64
+ res["guide_size"] = 256
+ arg_names = inspect.getfullargspec(pgsr_create_model_and_diffusion)[0]
+ for k in res.copy().keys():
+ if k not in arg_names:
+ del res[k]
+ return res
+
+
+def pgsr_create_model_and_diffusion(
+ large_size,
+ small_size,
+ guide_size,
+ class_cond,
+ learn_sigma,
+ num_channels,
+ num_res_blocks,
+ num_heads,
+ num_heads_upsample,
+ attention_resolutions,
+ dropout,
+ diffusion_steps,
+ noise_schedule,
+ timestep_respacing,
+ use_kl,
+ predict_xstart,
+ rescale_timesteps,
+ rescale_learned_sigmas,
+ use_checkpoint,
+ use_scale_shift_norm,
+ use_attention,
+):
+ model = pgsr_create_model(
+ large_size,
+ small_size,
+ guide_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma=learn_sigma,
+ class_cond=class_cond,
+ use_checkpoint=use_checkpoint,
+ attention_resolutions=attention_resolutions,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ use_attention=use_attention,
+ dropout=dropout,
+ )
+ diffusion = create_gaussian_diffusion(
+ steps=diffusion_steps,
+ learn_sigma=learn_sigma,
+ noise_schedule=noise_schedule,
+ use_kl=use_kl,
+ predict_xstart=predict_xstart,
+ rescale_timesteps=rescale_timesteps,
+ rescale_learned_sigmas=rescale_learned_sigmas,
+ timestep_respacing=timestep_respacing,
+ )
+ return model, diffusion
+
+
+def pgsr_create_model(
+ large_size,
+ small_size,
+ guide_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma,
+ class_cond,
+ use_checkpoint,
+ attention_resolutions,
+ num_heads,
+ num_heads_upsample,
+ use_scale_shift_norm,
+ use_attention,
+ dropout,
+):
+ _ = small_size # hack to prevent unused variable
+
+ if large_size == 256:
+ channel_mult = (1, 2, 2, 3, 4)
+ elif large_size == 128:
+ channel_mult = (1, 2, 2, 2)
+ else:
+ raise ValueError(f"unsupported image size: {large_size}")
+
+ attention_ds = []
+ for res in attention_resolutions.split(","):
+ attention_ds.append(large_size // int(res))
+
+ guide_fold = guide_size // large_size
+
+ return PixelGuideSuperResModel(
+ in_channels=3,
+ guide_channels=1,
+ model_channels=num_channels,
+ out_channels=(3 if not learn_sigma else 6),
+ num_res_blocks=num_res_blocks,
+ attention_resolutions=tuple(attention_ds),
+ dropout=dropout,
+ channel_mult=channel_mult,
+ num_classes=(NUM_CLASSES if class_cond else None),
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ use_attention=use_attention,
+ guide_fold=guide_fold
+ )
+
+
+def create_gaussian_diffusion(
+ *,
+ steps=1000,
+ learn_sigma=False,
+ sigma_small=False,
+ noise_schedule="linear",
+ use_kl=False,
+ predict_xstart=False,
+ rescale_timesteps=False,
+ rescale_learned_sigmas=False,
+ timestep_respacing="",
+):
+ betas = gd.get_named_beta_schedule(noise_schedule, steps)
+ if use_kl:
+ loss_type = gd.LossType.RESCALED_KL
+ elif rescale_learned_sigmas:
+ loss_type = gd.LossType.RESCALED_MSE
+ else:
+ loss_type = gd.LossType.MSE
+ if not timestep_respacing:
+ timestep_respacing = [steps]
+ return SpacedDiffusion(
+ use_timesteps=space_timesteps(steps, timestep_respacing),
+ betas=betas,
+ model_mean_type=(
+ gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
+ ),
+ model_var_type=(
+ (
+ gd.ModelVarType.FIXED_LARGE
+ if not sigma_small
+ else gd.ModelVarType.FIXED_SMALL
+ )
+ if not learn_sigma
+ else gd.ModelVarType.LEARNED_RANGE
+ ),
+ loss_type=loss_type,
+ rescale_timesteps=rescale_timesteps,
+ )
+
+
+def add_dict_to_argparser(parser, default_dict):
+ for k, v in default_dict.items():
+ v_type = type(v)
+ if v is None:
+ v_type = str
+ elif isinstance(v, bool):
+ v_type = str2bool
+ parser.add_argument(f"--{k}", default=v, type=v_type)
+
+
+def args_to_dict(args, keys):
+ return {k: getattr(args, k) for k in keys}
+
+
+def str2bool(v):
+ """
+ https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
+ """
+ if isinstance(v, bool):
+ return v
+ if v.lower() in ("yes", "true", "t", "y", "1"):
+ return True
+ elif v.lower() in ("no", "false", "f", "n", "0"):
+ return False
+ else:
+ raise argparse.ArgumentTypeError("boolean value expected")
diff --git a/pixel_guide_diffusion/train_util.py b/pixel_guide_diffusion/train_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..1867604145736352dc51ab05b6caae8b541a6ebb
--- /dev/null
+++ b/pixel_guide_diffusion/train_util.py
@@ -0,0 +1,356 @@
+import copy
+import functools
+import os
+
+import blobfile as bf
+import numpy as np
+import torch as th
+import torch.distributed as dist
+from torch.nn.parallel.distributed import DistributedDataParallel as DDP
+from torch.optim import AdamW
+
+from . import dist_util, logger
+from .fp16_util import (
+ make_master_params,
+ master_params_to_model_params,
+ model_grads_to_master_grads,
+ unflatten_master_params,
+ zero_grad,
+)
+from .nn import update_ema
+from .resample import LossAwareSampler, UniformSampler
+
+# For ImageNet experiments, this was a good default value.
+# We found that the lg_loss_scale quickly climbed to
+# 20-21 within the first ~1K steps of training.
+INITIAL_LOG_LOSS_SCALE = 20.0
+
+
+class TrainLoop:
+ def __init__(
+ self,
+ *,
+ model,
+ diffusion,
+ data,
+ batch_size,
+ microbatch,
+ lr,
+ ema_rate,
+ log_interval,
+ save_interval,
+ resume_checkpoint,
+ use_fp16=False,
+ fp16_scale_growth=1e-3,
+ schedule_sampler=None,
+ weight_decay=0.0,
+ lr_anneal_steps=0,
+ ):
+ self.model = model
+ self.diffusion = diffusion
+ self.data = data
+ self.batch_size = batch_size
+ self.microbatch = microbatch if microbatch > 0 else batch_size
+ self.lr = lr
+ self.ema_rate = (
+ [ema_rate]
+ if isinstance(ema_rate, float)
+ else [float(x) for x in ema_rate.split(",")]
+ )
+ self.log_interval = log_interval
+ self.save_interval = save_interval
+ self.resume_checkpoint = resume_checkpoint
+ self.use_fp16 = use_fp16
+ self.fp16_scale_growth = fp16_scale_growth
+ self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
+ self.weight_decay = weight_decay
+ self.lr_anneal_steps = lr_anneal_steps
+
+ self.step = 0
+ self.resume_step = 0
+ self.global_batch = self.batch_size * dist.get_world_size()
+
+ self.model_params = list(self.model.parameters())
+ self.master_params = self.model_params
+ self.lg_loss_scale = INITIAL_LOG_LOSS_SCALE
+ self.sync_cuda = th.cuda.is_available()
+
+ self._load_and_sync_parameters()
+ if self.use_fp16:
+ self._setup_fp16()
+
+ self.opt = AdamW(self.master_params, lr=self.lr, weight_decay=self.weight_decay)
+ if self.resume_step:
+ self._load_optimizer_state()
+ # Model was resumed, either due to a restart or a checkpoint
+ # being specified at the command line.
+ self.ema_params = [
+ self._load_ema_parameters(rate) for rate in self.ema_rate
+ ]
+ else:
+ self.ema_params = [
+ copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate))
+ ]
+
+ if th.cuda.is_available():
+ self.use_ddp = True
+ self.ddp_model = DDP(
+ self.model,
+ device_ids=[dist_util.dev()],
+ output_device=dist_util.dev(),
+ broadcast_buffers=False,
+ bucket_cap_mb=128,
+ find_unused_parameters=False,
+ )
+ else:
+ if dist.get_world_size() > 1:
+ logger.warn(
+ "Distributed training requires CUDA. "
+ "Gradients will not be synchronized properly!"
+ )
+ self.use_ddp = False
+ self.ddp_model = self.model
+
+ def _load_and_sync_parameters(self):
+ resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
+
+ if resume_checkpoint:
+ self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
+ if dist.get_rank() == 0:
+ logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
+ self.model.load_state_dict(
+ dist_util.load_state_dict(
+ resume_checkpoint, map_location=dist_util.dev()
+ )
+ )
+
+ dist_util.sync_params(self.model.parameters())
+
+ def _load_ema_parameters(self, rate):
+ ema_params = copy.deepcopy(self.master_params)
+
+ main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
+ ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
+ if ema_checkpoint:
+ if dist.get_rank() == 0:
+ logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
+ state_dict = dist_util.load_state_dict(
+ ema_checkpoint, map_location=dist_util.dev()
+ )
+ ema_params = self._state_dict_to_master_params(state_dict)
+
+ dist_util.sync_params(ema_params)
+ return ema_params
+
+ def _load_optimizer_state(self):
+ main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
+ opt_checkpoint = bf.join(
+ bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
+ )
+ if bf.exists(opt_checkpoint):
+ logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
+ state_dict = dist_util.load_state_dict(
+ opt_checkpoint, map_location=dist_util.dev()
+ )
+ self.opt.load_state_dict(state_dict)
+
+ def _setup_fp16(self):
+ self.master_params = make_master_params(self.model_params)
+ self.model.convert_to_fp16()
+
+ def run_loop(self):
+ while (
+ not self.lr_anneal_steps
+ or self.step + self.resume_step < self.lr_anneal_steps
+ ):
+ batch, cond = next(self.data)
+ self.run_step(batch, cond)
+ if self.step % self.log_interval == 0:
+ logger.dumpkvs()
+ if self.step % self.save_interval == 0:
+ self.save()
+ # Run for a finite amount of time in integration tests.
+ if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
+ return
+ self.step += 1
+ # Save the last checkpoint if it wasn't already saved.
+ if (self.step - 1) % self.save_interval != 0:
+ self.save()
+
+ def run_step(self, batch, cond):
+ self.forward_backward(batch, cond)
+ if self.use_fp16:
+ self.optimize_fp16()
+ else:
+ self.optimize_normal()
+ self.log_step()
+
+ def forward_backward(self, batch, cond):
+ zero_grad(self.model_params)
+ for i in range(0, batch.shape[0], self.microbatch):
+ micro = batch[i : i + self.microbatch].to(dist_util.dev())
+ micro_cond = {
+ k: v[i : i + self.microbatch].to(dist_util.dev())
+ for k, v in cond.items()
+ }
+ last_batch = (i + self.microbatch) >= batch.shape[0]
+ t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
+
+ compute_losses = functools.partial(
+ self.diffusion.training_losses,
+ self.ddp_model,
+ micro,
+ t,
+ model_kwargs=micro_cond,
+ )
+
+ if last_batch or not self.use_ddp:
+ losses = compute_losses()
+ else:
+ with self.ddp_model.no_sync():
+ losses = compute_losses()
+
+ if isinstance(self.schedule_sampler, LossAwareSampler):
+ self.schedule_sampler.update_with_local_losses(
+ t, losses["loss"].detach()
+ )
+
+ loss = (losses["loss"] * weights).mean()
+ log_loss_dict(
+ self.diffusion, t, {k: v * weights for k, v in losses.items()}
+ )
+ if self.use_fp16:
+ loss_scale = 2 ** self.lg_loss_scale
+ (loss * loss_scale).backward()
+ else:
+ loss.backward()
+
+ def optimize_fp16(self):
+ if any(not th.isfinite(p.grad).all() for p in self.model_params):
+ self.lg_loss_scale -= 1
+ logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
+ return
+
+ model_grads_to_master_grads(self.model_params, self.master_params)
+ self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale))
+ self._log_grad_norm()
+ self._anneal_lr()
+ self.opt.step()
+ for rate, params in zip(self.ema_rate, self.ema_params):
+ update_ema(params, self.master_params, rate=rate)
+ master_params_to_model_params(self.model_params, self.master_params)
+ self.lg_loss_scale += self.fp16_scale_growth
+
+ def optimize_normal(self):
+ self._log_grad_norm()
+ self._anneal_lr()
+ self.opt.step()
+ for rate, params in zip(self.ema_rate, self.ema_params):
+ update_ema(params, self.master_params, rate=rate)
+
+ def _log_grad_norm(self):
+ sqsum = 0.0
+ for p in self.master_params:
+ sqsum += (p.grad ** 2).sum().item()
+ logger.logkv_mean("grad_norm", np.sqrt(sqsum))
+
+ def _anneal_lr(self):
+ if not self.lr_anneal_steps:
+ return
+ frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
+ lr = self.lr * (1 - frac_done)
+ for param_group in self.opt.param_groups:
+ param_group["lr"] = lr
+
+ def log_step(self):
+ logger.logkv("step", self.step + self.resume_step)
+ logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
+ if self.use_fp16:
+ logger.logkv("lg_loss_scale", self.lg_loss_scale)
+
+ def save(self):
+ def save_checkpoint(rate, params):
+ state_dict = self._master_params_to_state_dict(params)
+ if dist.get_rank() == 0:
+ logger.log(f"saving model {rate}...")
+ if not rate:
+ filename = f"model{(self.step+self.resume_step):06d}.pt"
+ else:
+ filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt"
+ with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
+ th.save(state_dict, f)
+
+ save_checkpoint(0, self.master_params)
+ for rate, params in zip(self.ema_rate, self.ema_params):
+ save_checkpoint(rate, params)
+
+ if dist.get_rank() == 0:
+ with bf.BlobFile(
+ bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"),
+ "wb",
+ ) as f:
+ th.save(self.opt.state_dict(), f)
+
+ dist.barrier()
+
+ def _master_params_to_state_dict(self, master_params):
+ if self.use_fp16:
+ master_params = unflatten_master_params(
+ self.model.parameters(), master_params
+ )
+ state_dict = self.model.state_dict()
+ for i, (name, _value) in enumerate(self.model.named_parameters()):
+ assert name in state_dict
+ state_dict[name] = master_params[i]
+ return state_dict
+
+ def _state_dict_to_master_params(self, state_dict):
+ params = [state_dict[name] for name, _ in self.model.named_parameters()]
+ if self.use_fp16:
+ return make_master_params(params)
+ else:
+ return params
+
+
+def parse_resume_step_from_filename(filename):
+ """
+ Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
+ checkpoint's number of steps.
+ """
+ split = filename.split("model")
+ if len(split) < 2:
+ return 0
+ split1 = split[-1].split(".")[0]
+ try:
+ return int(split1)
+ except ValueError:
+ return 0
+
+
+def get_blob_logdir():
+ return os.environ.get("DIFFUSION_BLOB_LOGDIR", logger.get_dir())
+
+
+def find_resume_checkpoint():
+ # On your infrastructure, you may want to override this to automatically
+ # discover the latest checkpoint on your blob storage, etc.
+ return None
+
+
+def find_ema_checkpoint(main_checkpoint, step, rate):
+ if main_checkpoint is None:
+ return None
+ filename = f"ema_{rate}_{(step):06d}.pt"
+ path = bf.join(bf.dirname(main_checkpoint), filename)
+ if bf.exists(path):
+ return path
+ return None
+
+
+def log_loss_dict(diffusion, ts, losses):
+ for key, values in losses.items():
+ logger.logkv_mean(key, values.mean().item())
+ # Log the quantiles (four quartiles, in particular).
+ for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
+ quartile = int(4 * sub_t / diffusion.num_timesteps)
+ logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
diff --git a/pixel_guide_diffusion/unet.py b/pixel_guide_diffusion/unet.py
new file mode 100644
index 0000000000000000000000000000000000000000..4286fdf522502a3f76aef8dcd8c1ba507fc927c6
--- /dev/null
+++ b/pixel_guide_diffusion/unet.py
@@ -0,0 +1,594 @@
+from abc import abstractmethod
+
+import math
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from .fp16_util import convert_module_to_f16, convert_module_to_f32
+from .nn import (
+ SiLU,
+ SpaceToDepth,
+ conv_nd,
+ linear,
+ avg_pool_nd,
+ zero_module,
+ normalization,
+ timestep_embedding,
+ checkpoint,
+)
+
+
+class TimestepBlock(nn.Module):
+ """
+ Any module where forward() takes timestep embeddings as a second argument.
+ """
+
+ @abstractmethod
+ def forward(self, x, emb):
+ """
+ Apply the module to `x` given `emb` timestep embeddings.
+ """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+ """
+ A sequential module that passes timestep embeddings to the children that
+ support it as an extra input.
+ """
+
+ def forward(self, x, emb):
+ for layer in self:
+ if isinstance(layer, TimestepBlock):
+ x = layer(x, emb)
+ else:
+ x = layer(x)
+ return x
+
+
+class Upsample(nn.Module):
+ """
+ An upsampling layer with an optional convolution.
+
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ upsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2):
+ super().__init__()
+ self.channels = channels
+ self.use_conv = use_conv
+ self.dims = dims
+ if use_conv:
+ self.conv = conv_nd(dims, channels, channels, 3, padding=1)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.dims == 3:
+ x = F.interpolate(
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+ )
+ else:
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
+ if self.use_conv:
+ x = self.conv(x)
+ return x
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2):
+ super().__init__()
+ self.channels = channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(dims, channels, channels, 3, stride=stride, padding=1)
+ else:
+ self.op = avg_pool_nd(stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+ """
+ A residual block that can optionally change the number of channels.
+
+ :param channels: the number of input channels.
+ :param emb_channels: the number of timestep embedding channels.
+ :param dropout: the rate of dropout.
+ :param out_channels: if specified, the number of out channels.
+ :param use_conv: if True and out_channels is specified, use a spatial
+ convolution instead of a smaller 1x1 convolution to change the
+ channels in the skip connection.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
+ """
+
+ def __init__(
+ self,
+ channels,
+ emb_channels,
+ dropout,
+ out_channels=None,
+ use_conv=False,
+ use_scale_shift_norm=False,
+ dims=2,
+ use_checkpoint=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.emb_channels = emb_channels
+ self.dropout = dropout
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_checkpoint = use_checkpoint
+ self.use_scale_shift_norm = use_scale_shift_norm
+
+ self.in_layers = nn.Sequential(
+ normalization(channels),
+ SiLU(),
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
+ )
+ self.emb_layers = nn.Sequential(
+ SiLU(),
+ linear(
+ emb_channels,
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+ ),
+ )
+ self.out_layers = nn.Sequential(
+ normalization(self.out_channels),
+ SiLU(),
+ nn.Dropout(p=dropout),
+ zero_module(
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
+ ),
+ )
+
+ if self.out_channels == channels:
+ self.skip_connection = nn.Identity()
+ elif use_conv:
+ self.skip_connection = conv_nd(
+ dims, channels, self.out_channels, 3, padding=1
+ )
+ else:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+ def forward(self, x, emb):
+ """
+ Apply the block to a Tensor, conditioned on a timestep embedding.
+
+ :param x: an [N x C x ...] Tensor of features.
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ return checkpoint(
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
+ )
+
+ def _forward(self, x, emb):
+ h = self.in_layers(x)
+ emb_out = self.emb_layers(emb).type(h.dtype)
+ while len(emb_out.shape) < len(h.shape):
+ emb_out = emb_out[..., None]
+ if self.use_scale_shift_norm:
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+ scale, shift = th.chunk(emb_out, 2, dim=1)
+ h = out_norm(h) * (1 + scale) + shift
+ h = out_rest(h)
+ else:
+ h = h + emb_out
+ h = self.out_layers(h)
+ return self.skip_connection(x) + h
+
+
+class AttentionBlock(nn.Module):
+ """
+ An attention block that allows spatial positions to attend to each other.
+
+ Originally ported from here, but adapted to the N-d case.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+ """
+
+ def __init__(self, channels, num_heads=1, use_checkpoint=False):
+ super().__init__()
+ self.channels = channels
+ self.num_heads = num_heads
+ self.use_checkpoint = use_checkpoint
+
+ self.norm = normalization(channels)
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
+ self.attention = QKVAttention()
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
+
+ def forward(self, x):
+ return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
+
+ def _forward(self, x):
+ b, c, *spatial = x.shape
+ x = x.reshape(b, c, -1)
+ qkv = self.qkv(self.norm(x))
+ qkv = qkv.reshape(b * self.num_heads, -1, qkv.shape[2])
+ h = self.attention(qkv)
+ h = h.reshape(b, -1, h.shape[-1])
+ h = self.proj_out(h)
+ return (x + h).reshape(b, c, *spatial)
+
+
+class QKVAttention(nn.Module):
+ """
+ A module which performs QKV attention.
+ """
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+
+ :param qkv: an [N x (C * 3) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x C x T] tensor after attention.
+ """
+ ch = qkv.shape[1] // 3
+ q, k, v = th.split(qkv, ch, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts", q * scale, k * scale
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ return th.einsum("bts,bcs->bct", weight, v)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ """
+ A counter for the `thop` package to count the operations in an
+ attention operation.
+
+ Meant to be used like:
+
+ macs, params = thop.profile(
+ model,
+ inputs=(inputs, timestamps),
+ custom_ops={QKVAttention: QKVAttention.count_flops},
+ )
+
+ """
+ b, c, *spatial = y[0].shape
+ num_spatial = int(np.prod(spatial))
+ # We perform two matmuls with the same number of ops.
+ # The first computes the weight matrix, the second computes
+ # the combination of the value vectors.
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
+ model.total_ops += th.DoubleTensor([matmul_ops])
+
+
+class UNetModel(nn.Module):
+ """
+ The full UNet model with attention and timestep embedding.
+
+ :param in_channels: channels in the input Tensor.
+ :param model_channels: base channel count for the model.
+ :param out_channels: channels in the output Tensor.
+ :param num_res_blocks: number of residual blocks per downsample.
+ :param attention_resolutions: a collection of downsample rates at which
+ attention will take place. May be a set, list, or tuple.
+ For example, if this contains 4, then at 4x downsampling, attention
+ will be used.
+ :param dropout: the dropout probability.
+ :param channel_mult: channel multiplier for each level of the UNet.
+ :param conv_resample: if True, use learned convolutions for upsampling and
+ downsampling.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param num_classes: if specified (as an int), then this model will be
+ class-conditional with `num_classes` classes.
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+ :param num_heads: the number of attention heads in each attention layer.
+ """
+
+ def __init__(
+ self,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ num_classes=None,
+ use_checkpoint=False,
+ num_heads=1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ use_attention=True
+ ):
+ super().__init__()
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.num_classes = num_classes
+ self.use_checkpoint = use_checkpoint
+ self.num_heads = num_heads
+ self.num_heads_upsample = num_heads_upsample
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ if self.num_classes is not None:
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
+
+ self.input_blocks = nn.ModuleList(
+ [
+ TimestepEmbedSequential(
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
+ )
+ ]
+ )
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=mult * model_channels,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ layers.append(
+ AttentionBlock(
+ ch, use_checkpoint=use_checkpoint, num_heads=num_heads
+ ) if use_attention else nn.Sequential()
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ self.input_blocks.append(
+ TimestepEmbedSequential(Downsample(ch, conv_resample, dims=dims))
+ )
+ input_block_chans.append(ch)
+ ds *= 2
+
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(ch, use_checkpoint=use_checkpoint, num_heads=num_heads) if use_attention else nn.Sequential(),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+
+ self.output_blocks = nn.ModuleList([])
+ for level, mult in list(enumerate(channel_mult))[::-1]:
+ for i in range(num_res_blocks + 1):
+ layers = [
+ ResBlock(
+ ch + input_block_chans.pop(),
+ time_embed_dim,
+ dropout,
+ out_channels=model_channels * mult,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = model_channels * mult
+ if ds in attention_resolutions:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads_upsample,
+ ) if use_attention else nn.Sequential()
+ )
+ if level and i == num_res_blocks:
+ layers.append(Upsample(ch, conv_resample, dims=dims))
+ ds //= 2
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
+
+ self.out = nn.Sequential(
+ normalization(ch),
+ SiLU(),
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
+ )
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+ self.output_blocks.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+ self.output_blocks.apply(convert_module_to_f32)
+
+ @property
+ def inner_dtype(self):
+ """
+ Get the dtype used by the torso of the model.
+ """
+ return next(self.input_blocks.parameters()).dtype
+
+ def forward(self, x, timesteps, y=None):
+ """
+ Apply the model to an input batch.
+
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :param y: an [N] Tensor of labels, if class-conditional.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ assert (y is not None) == (
+ self.num_classes is not None
+ ), "must specify y if and only if the model is class-conditional"
+
+ hs = []
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
+
+ if self.num_classes is not None:
+ assert y.shape == (x.shape[0],)
+ emb = emb + self.label_emb(y)
+
+ h = x.type(self.inner_dtype)
+ for module in self.input_blocks:
+ h = module(h, emb)
+ hs.append(h)
+ h = self.middle_block(h, emb)
+ for module in self.output_blocks:
+ cat_in = th.cat([h, hs.pop()], dim=1)
+ h = module(cat_in, emb)
+ h = h.type(x.dtype)
+ return self.out(h)
+
+ def get_feature_vectors(self, x, timesteps, y=None):
+ """
+ Apply the model and return all of the intermediate tensors.
+
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :param y: an [N] Tensor of labels, if class-conditional.
+ :return: a dict with the following keys:
+ - 'down': a list of hidden state tensors from downsampling.
+ - 'middle': the tensor of the output of the lowest-resolution
+ block in the model.
+ - 'up': a list of hidden state tensors from upsampling.
+ """
+ hs = []
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
+ if self.num_classes is not None:
+ assert y.shape == (x.shape[0],)
+ emb = emb + self.label_emb(y)
+ result = dict(down=[], up=[])
+ h = x.type(self.inner_dtype)
+ for module in self.input_blocks:
+ h = module(h, emb)
+ hs.append(h)
+ result["down"].append(h.type(x.dtype))
+ h = self.middle_block(h, emb)
+ result["middle"] = h.type(x.dtype)
+ for module in self.output_blocks:
+ cat_in = th.cat([h, hs.pop()], dim=1)
+ h = module(cat_in, emb)
+ result["up"].append(h.type(x.dtype))
+ return result
+
+
+class SuperResModel(UNetModel):
+ """
+ A UNetModel that performs super-resolution.
+
+ Expects an extra kwarg `low_res` to condition on a low-resolution image.
+ """
+
+ def __init__(self, in_channels, *args, **kwargs):
+ super().__init__(in_channels * 2, *args, **kwargs)
+
+ def forward(self, x, timesteps, low_res=None, **kwargs):
+ _, _, new_height, new_width = x.shape
+ upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
+ x = th.cat([x, upsampled], dim=1)
+ return super().forward(x, timesteps, **kwargs)
+
+ def get_feature_vectors(self, x, timesteps, low_res=None, **kwargs):
+ _, new_height, new_width, _ = x.shape
+ upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
+ x = th.cat([x, upsampled], dim=1)
+ return super().get_feature_vectors(x, timesteps, **kwargs)
+
+
+class PixelGuideModel(UNetModel):
+ """
+ A UNetModel that need a guide tensor which has the same height and width with the input tensor.
+
+ Expects an extra kwarg `guide` as a condition for the model.
+ """
+
+ def __init__(self, in_channels, guide_channels, *args, guide_fold=1, **kwargs):
+ super().__init__(in_channels + guide_channels * guide_fold**2, *args, **kwargs)
+
+ self.guide_folder = SpaceToDepth(guide_fold)
+
+ def forward(self, x, timesteps, guide=None, **kwargs):
+ guide = self.guide_folder(guide)
+ x = th.cat([x, guide], dim=1)
+ return super().forward(x, timesteps, **kwargs)
+
+ def get_feature_vectors(self, x, timesteps, guide=None, **kwargs):
+ guide = self.guide_folder(guide)
+ x = th.cat([x, guide], dim=1)
+ return super().get_feature_vectors(x, timesteps, **kwargs)
+
+
+class PixelGuideSuperResModel(PixelGuideModel):
+ """
+ A PixelGuideModel that performs super-resolution.
+
+ Expects an extra kwarg `low_res` to condition on a low-resolution image.
+ """
+
+ def __init__(self, in_channels, *args, **kwargs):
+ super().__init__(in_channels * 2, *args, **kwargs)
+
+ def forward(self, x, timesteps, low_res=None, **kwargs):
+ _, _, new_height, new_width = x.shape
+ upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
+ x = th.cat([x, upsampled], dim=1)
+ return super().forward(x, timesteps, **kwargs)
+
+ def get_feature_vectors(self, x, timesteps, low_res=None, **kwargs):
+ _, new_height, new_width, _ = x.shape
+ upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
+ x = th.cat([x, upsampled], dim=1)
+ return super().get_feature_vectors(x, timesteps, **kwargs)
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4d6e7c08e7a4395ff65d5cf0b35673e952fb3146
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,6 @@
+blobfile
+mpi4py
+gradio==3.0.5
+urllib3==1.24.3
+torch
+torchvision
diff --git a/scripts/cascaded_pixel_guide_sample.py b/scripts/cascaded_pixel_guide_sample.py
new file mode 100644
index 0000000000000000000000000000000000000000..c765b3332531488b0312326b2d0282cec3c00f57
--- /dev/null
+++ b/scripts/cascaded_pixel_guide_sample.py
@@ -0,0 +1,148 @@
+"""
+Generate a large batch of samples from a super resolution model, given a batch
+of samples from a regular model from image_sample.py.
+"""
+
+import argparse
+import os
+
+import blobfile as bf
+import numpy as np
+import torch as th
+import torch.distributed as dist
+
+from torchvision import utils
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.script_util import (
+ pg_model_and_diffusion_defaults,
+ pg_create_model_and_diffusion,
+ pgsr_model_and_diffusion_defaults,
+ pgsr_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = pg_create_model_and_diffusion(
+ **args_to_dict(args, pg_model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ dist_util.load_state_dict(args.model_path, map_location="cpu")
+ )
+ model.to(dist_util.dev())
+ model.eval()
+
+ logger.log("creating model2...")
+ args.num_channels = args.num_channels2
+ args.use_attention = args.use_attention2
+ model2, diffusion2 = pgsr_create_model_and_diffusion(
+ **args_to_dict(args, pgsr_model_and_diffusion_defaults().keys())
+ )
+ model2.load_state_dict(
+ dist_util.load_state_dict(args.model_path2, map_location="cpu")
+ )
+ model2.to(dist_util.dev())
+ model2.eval()
+
+ logger.log("creating data loader...")
+ data = load_data(
+ data_dir=args.data_dir,
+ batch_size=args.batch_size,
+ image_size=args.large_size,
+ class_cond=args.class_cond,
+ guide_dir=args.guide_dir,
+ guide_size=args.guide_size,
+ deterministic=True,
+ )
+
+ if args.seed > -1:
+ th.manual_seed(args.seed)
+
+ logger.log("creating samples...")
+ os.makedirs('sample', exist_ok=True)
+ i = 0
+ while i * args.batch_size < args.num_samples:
+ if dist.get_rank() == 0:
+ target, model_kwargs = next(data)
+ target = target.to(dist_util.dev())
+ model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()}
+
+ with th.no_grad():
+ sample_fn = (
+ diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
+ )
+ sample = sample_fn(
+ model,
+ (args.batch_size, 3, args.image_size, args.image_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+
+ model_kwargs["low_res"] = sample
+ sample_fn2 = (
+ diffusion2.p_sample_loop if not args.use_ddim else diffusion2.ddim_sample_loop
+ )
+ sample2 = sample_fn2(
+ model2,
+ (args.batch_size, 3, args.large_size, args.large_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+
+ guide = model_kwargs["guide"]
+ h, w = guide.shape[2:]
+ guide = guide.clamp(-1,1).repeat(1,3,1,1)
+ sample = th.nn.functional.interpolate(sample.clamp(-1,1), size=(h, w))
+ sample2 = th.nn.functional.interpolate(sample2.clamp(-1,1), size=(h, w))
+ target = th.nn.functional.interpolate(target.clamp(-1,1), size=(h, w))
+
+ # images = th.cat([guide, sample, sample2, target], 0)
+ images = th.cat([guide, sample2, target], 0)
+ utils.save_image(
+ images,
+ f"sample/{str(i).zfill(6)}.png",
+ nrow=args.batch_size,
+ normalize=True,
+ range=(-1, 1),
+ )
+
+ i += 1
+ logger.log(f"created {i * args.batch_size} samples")
+
+ logger.log("sampling complete")
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ guide_dir="",
+ clip_denoised=True,
+ num_samples=100,
+ batch_size=4,
+ use_ddim=False,
+ base_samples="",
+ model_path="",
+ seed=-1,
+ )
+ defaults.update(pg_model_and_diffusion_defaults())
+ defaults.update(pgsr_model_and_diffusion_defaults())
+ defaults.update(dict(
+ num_channels2=128,
+ use_attention2=True,
+ model_path2="",
+ ))
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/image_nll.py b/scripts/image_nll.py
new file mode 100644
index 0000000000000000000000000000000000000000..2b72bfd3810d63270a873f7889dddfd2512387b3
--- /dev/null
+++ b/scripts/image_nll.py
@@ -0,0 +1,96 @@
+"""
+Approximate the bits/dimension for an image model.
+"""
+
+import argparse
+import os
+
+import numpy as np
+import torch.distributed as dist
+
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.script_util import (
+ model_and_diffusion_defaults,
+ create_model_and_diffusion,
+ add_dict_to_argparser,
+ args_to_dict,
+)
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model and diffusion...")
+ model, diffusion = create_model_and_diffusion(
+ **args_to_dict(args, model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ dist_util.load_state_dict(args.model_path, map_location="cpu")
+ )
+ model.to(dist_util.dev())
+ model.eval()
+
+ logger.log("creating data loader...")
+ data = load_data(
+ data_dir=args.data_dir,
+ batch_size=args.batch_size,
+ image_size=args.image_size,
+ class_cond=args.class_cond,
+ deterministic=True,
+ )
+
+ logger.log("evaluating...")
+ run_bpd_evaluation(model, diffusion, data, args.num_samples, args.clip_denoised)
+
+
+def run_bpd_evaluation(model, diffusion, data, num_samples, clip_denoised):
+ all_bpd = []
+ all_metrics = {"vb": [], "mse": [], "xstart_mse": []}
+ num_complete = 0
+ while num_complete < num_samples:
+ batch, model_kwargs = next(data)
+ batch = batch.to(dist_util.dev())
+ model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()}
+ minibatch_metrics = diffusion.calc_bpd_loop(
+ model, batch, clip_denoised=clip_denoised, model_kwargs=model_kwargs
+ )
+
+ for key, term_list in all_metrics.items():
+ terms = minibatch_metrics[key].mean(dim=0) / dist.get_world_size()
+ dist.all_reduce(terms)
+ term_list.append(terms.detach().cpu().numpy())
+
+ total_bpd = minibatch_metrics["total_bpd"]
+ total_bpd = total_bpd.mean() / dist.get_world_size()
+ dist.all_reduce(total_bpd)
+ all_bpd.append(total_bpd.item())
+ num_complete += dist.get_world_size() * batch.shape[0]
+
+ logger.log(f"done {num_complete} samples: bpd={np.mean(all_bpd)}")
+
+ if dist.get_rank() == 0:
+ for name, terms in all_metrics.items():
+ out_path = os.path.join(logger.get_dir(), f"{name}_terms.npz")
+ logger.log(f"saving {name} terms to {out_path}")
+ np.savez(out_path, np.mean(np.stack(terms), axis=0))
+
+ dist.barrier()
+ logger.log("evaluation complete")
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="", clip_denoised=True, num_samples=1000, batch_size=1, model_path=""
+ )
+ defaults.update(model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/image_sample.py b/scripts/image_sample.py
new file mode 100644
index 0000000000000000000000000000000000000000..289e06f074436bae8d9daf970315150e20f5a4d6
--- /dev/null
+++ b/scripts/image_sample.py
@@ -0,0 +1,106 @@
+"""
+Generate a large batch of image samples from a model and save them as a large
+numpy array. This can be used to produce samples for FID evaluation.
+"""
+
+import argparse
+import os
+
+import numpy as np
+import torch as th
+import torch.distributed as dist
+
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.script_util import (
+ NUM_CLASSES,
+ model_and_diffusion_defaults,
+ create_model_and_diffusion,
+ add_dict_to_argparser,
+ args_to_dict,
+)
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model and diffusion...")
+ model, diffusion = create_model_and_diffusion(
+ **args_to_dict(args, model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ dist_util.load_state_dict(args.model_path, map_location="cpu")
+ )
+ model.to(dist_util.dev())
+ model.eval()
+
+ logger.log("sampling...")
+ all_images = []
+ all_labels = []
+ while len(all_images) * args.batch_size < args.num_samples:
+ model_kwargs = {}
+ if args.class_cond:
+ classes = th.randint(
+ low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
+ )
+ model_kwargs["y"] = classes
+ sample_fn = (
+ diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
+ )
+ sample = sample_fn(
+ model,
+ (args.batch_size, 3, args.image_size, args.image_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+ sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
+ sample = sample.permute(0, 2, 3, 1)
+ sample = sample.contiguous()
+
+ gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
+ dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
+ all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
+ if args.class_cond:
+ gathered_labels = [
+ th.zeros_like(classes) for _ in range(dist.get_world_size())
+ ]
+ dist.all_gather(gathered_labels, classes)
+ all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
+ logger.log(f"created {len(all_images) * args.batch_size} samples")
+
+ arr = np.concatenate(all_images, axis=0)
+ arr = arr[: args.num_samples]
+ if args.class_cond:
+ label_arr = np.concatenate(all_labels, axis=0)
+ label_arr = label_arr[: args.num_samples]
+ if dist.get_rank() == 0:
+ shape_str = "x".join([str(x) for x in arr.shape])
+ out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
+ logger.log(f"saving to {out_path}")
+ if args.class_cond:
+ np.savez(out_path, arr, label_arr)
+ else:
+ np.savez(out_path, arr)
+
+ dist.barrier()
+ logger.log("sampling complete")
+
+
+def create_argparser():
+ defaults = dict(
+ clip_denoised=True,
+ num_samples=10000,
+ batch_size=16,
+ use_ddim=False,
+ model_path="",
+ )
+ defaults.update(model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/image_train.py b/scripts/image_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..eccdb3980699fd513bb1d01e89954fc2000d14da
--- /dev/null
+++ b/scripts/image_train.py
@@ -0,0 +1,83 @@
+"""
+Train a diffusion model on images.
+"""
+
+import argparse
+
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.resample import create_named_schedule_sampler
+from pixel_guide_diffusion.script_util import (
+ model_and_diffusion_defaults,
+ create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+from pixel_guide_diffusion.train_util import TrainLoop
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model and diffusion...")
+ model, diffusion = create_model_and_diffusion(
+ **args_to_dict(args, model_and_diffusion_defaults().keys())
+ )
+ model.to(dist_util.dev())
+ schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
+
+ logger.log("creating data loader...")
+ data = load_data(
+ data_dir=args.data_dir,
+ batch_size=args.batch_size,
+ image_size=args.image_size,
+ class_cond=args.class_cond,
+ )
+
+ logger.log("training...")
+ TrainLoop(
+ model=model,
+ diffusion=diffusion,
+ data=data,
+ batch_size=args.batch_size,
+ microbatch=args.microbatch,
+ lr=args.lr,
+ ema_rate=args.ema_rate,
+ log_interval=args.log_interval,
+ save_interval=args.save_interval,
+ resume_checkpoint=args.resume_checkpoint,
+ use_fp16=args.use_fp16,
+ fp16_scale_growth=args.fp16_scale_growth,
+ schedule_sampler=schedule_sampler,
+ weight_decay=args.weight_decay,
+ lr_anneal_steps=args.lr_anneal_steps,
+ ).run_loop()
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ schedule_sampler="uniform",
+ lr=1e-4,
+ weight_decay=0.0,
+ lr_anneal_steps=0,
+ batch_size=1,
+ microbatch=-1, # -1 disables microbatches
+ ema_rate="0.9999", # comma-separated list of EMA values
+ log_interval=10,
+ save_interval=10000,
+ resume_checkpoint="",
+ use_fp16=False,
+ fp16_scale_growth=1e-3,
+ )
+ defaults.update(model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/pixel_guide_sample.py b/scripts/pixel_guide_sample.py
new file mode 100644
index 0000000000000000000000000000000000000000..dea18e9479f64014711a01b9d1a2dd58f7e5c985
--- /dev/null
+++ b/scripts/pixel_guide_sample.py
@@ -0,0 +1,111 @@
+"""
+Generate a large batch of samples from a super resolution model, given a batch
+of samples from a regular model from image_sample.py.
+"""
+
+import argparse
+import os
+
+import blobfile as bf
+import numpy as np
+import torch as th
+import torch.distributed as dist
+
+from torchvision import utils
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.script_util import (
+ pg_model_and_diffusion_defaults,
+ pg_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = pg_create_model_and_diffusion(
+ **args_to_dict(args, pg_model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ dist_util.load_state_dict(args.model_path, map_location="cpu")
+ )
+ model.to(dist_util.dev())
+ model.eval()
+
+ logger.log("creating data loader...")
+ data = load_data(
+ data_dir=args.data_dir,
+ batch_size=args.batch_size,
+ image_size=args.image_size,
+ class_cond=args.class_cond,
+ guide_dir=args.guide_dir,
+ guide_size=args.guide_size,
+ deterministic=True,
+ )
+
+ logger.log("creating samples...")
+ os.makedirs('sample', exist_ok=True)
+ i = 0
+ while i * args.batch_size < args.num_samples:
+ if dist.get_rank() == 0:
+ target, model_kwargs = next(data)
+ target = target.to(dist_util.dev())
+ model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()}
+
+ with th.no_grad():
+ sample_fn = (
+ diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
+ )
+ sample = sample_fn(
+ model,
+ (args.batch_size, 3, args.image_size, args.image_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+
+ guide = model_kwargs["guide"]
+ h, w = guide.shape[2:]
+ guide = guide.clamp(-1,1).repeat(1,3,1,1)
+ sample = th.nn.functional.interpolate(sample.clamp(-1,1), size=(h, w))
+ target = th.nn.functional.interpolate(target.clamp(-1,1), size=(h, w))
+
+ images = th.cat([guide, sample, target], 0)
+ utils.save_image(
+ images,
+ f"sample/{str(i).zfill(6)}.png",
+ nrow=args.batch_size,
+ normalize=True,
+ range=(-1, 1),
+ )
+
+ i += 1
+ logger.log(f"created {i * args.batch_size} samples")
+
+ logger.log("sampling complete")
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ guide_dir="",
+ clip_denoised=True,
+ num_samples=100,
+ batch_size=4,
+ use_ddim=False,
+ base_samples="",
+ model_path="",
+ )
+ defaults.update(pg_model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/pixel_guide_super_res_sample.py b/scripts/pixel_guide_super_res_sample.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e4d9b3fdd1e2e7f543dd0508ae9709e07c82f02
--- /dev/null
+++ b/scripts/pixel_guide_super_res_sample.py
@@ -0,0 +1,133 @@
+"""
+Generate a large batch of samples from a super resolution model, given a batch
+of samples from a regular model from image_sample.py.
+"""
+
+import argparse
+import os
+
+import blobfile as bf
+import numpy as np
+import torch as th
+import torch.distributed as dist
+
+from torchvision import utils
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.script_util import (
+ pgsr_model_and_diffusion_defaults,
+ pgsr_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = pgsr_create_model_and_diffusion(
+ **args_to_dict(args, pgsr_model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ dist_util.load_state_dict(args.model_path, map_location="cpu")
+ )
+ model.to(dist_util.dev())
+ model.eval()
+
+ logger.log("creating data loader...")
+ data = load_superres_data(
+ args.data_dir,
+ args.batch_size,
+ large_size=args.large_size,
+ small_size=args.small_size,
+ class_cond=args.class_cond,
+ guide_dir=args.guide_dir,
+ guide_size=args.guide_size,
+ crop_size=args.crop_size,
+ deterministic=True,
+ )
+
+ logger.log("creating samples...")
+ os.makedirs('sample', exist_ok=True)
+ i = 0
+ while i * args.batch_size < args.num_samples:
+ if dist.get_rank() == 0:
+ target, model_kwargs = next(data)
+ target = target.to(dist_util.dev())
+ model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()}
+ model_kwargs["low_res"] = th.nn.functional.interpolate(target, args.small_size, mode="area").detach()
+
+ with th.no_grad():
+ sample_fn = (
+ diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
+ )
+ sample = sample_fn(
+ model,
+ (args.batch_size, 3, args.crop_size, args.crop_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+
+ guide = model_kwargs["guide"]
+ low_res = model_kwargs["low_res"]
+ h, w = guide.shape[2:]
+ guide = guide.clamp(-1,1).repeat(1,3,1,1)
+ low_res = th.nn.functional.interpolate(low_res.clamp(-1,1), size=(h, w))
+ sample = th.nn.functional.interpolate(sample.clamp(-1,1), size=(h, w))
+ target = th.nn.functional.interpolate(target.clamp(-1,1), size=(h, w))
+
+ images = th.cat([guide, low_res, sample, target], 0)
+ utils.save_image(
+ images,
+ f"sample/{str(i).zfill(6)}.png",
+ nrow=args.batch_size,
+ normalize=True,
+ range=(-1, 1),
+ )
+
+ i += 1
+ logger.log(f"created {i * args.batch_size} samples")
+
+ logger.log("sampling complete")
+
+
+def load_superres_data(data_dir, batch_size, large_size, small_size, class_cond=False, guide_dir='', guide_size=0, crop_size=0, deterministic=False):
+ data = load_data(
+ data_dir=data_dir,
+ batch_size=batch_size,
+ image_size=large_size,
+ class_cond=class_cond,
+ guide_dir=guide_dir,
+ guide_size=guide_size,
+ crop_size=crop_size,
+ deterministic=deterministic,
+ )
+ for large_batch, model_kwargs in data:
+ model_kwargs["low_res"] = th.nn.functional.interpolate(large_batch, scale_factor=small_size/large_size, mode="area").detach()
+ yield large_batch, model_kwargs
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ guide_dir="",
+ crop_size=128,
+ clip_denoised=True,
+ num_samples=100,
+ batch_size=4,
+ use_ddim=False,
+ base_samples="",
+ model_path="",
+ )
+ defaults.update(pgsr_model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/pixel_guide_super_res_train.py b/scripts/pixel_guide_super_res_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..a095f385e9e1ab159807616769e8339ac329ec58
--- /dev/null
+++ b/scripts/pixel_guide_super_res_train.py
@@ -0,0 +1,108 @@
+"""
+Train a super-resolution model.
+"""
+
+import argparse
+
+import torch.nn.functional as F
+
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.resample import create_named_schedule_sampler
+from pixel_guide_diffusion.script_util import (
+ pgsr_model_and_diffusion_defaults,
+ pgsr_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+from pixel_guide_diffusion.train_util import TrainLoop
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = pgsr_create_model_and_diffusion(
+ **args_to_dict(args, pgsr_model_and_diffusion_defaults().keys())
+ )
+ model.to(dist_util.dev())
+ schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
+
+ logger.log("creating data loader...")
+ data = load_superres_data(
+ args.data_dir,
+ args.batch_size,
+ large_size=args.large_size,
+ small_size=args.small_size,
+ class_cond=args.class_cond,
+ guide_dir=args.guide_dir,
+ guide_size=args.guide_size,
+ crop_size=args.crop_size,
+ deterministic=True,
+ )
+
+ logger.log("training...")
+ TrainLoop(
+ model=model,
+ diffusion=diffusion,
+ data=data,
+ batch_size=args.batch_size,
+ microbatch=args.microbatch,
+ lr=args.lr,
+ ema_rate=args.ema_rate,
+ log_interval=args.log_interval,
+ save_interval=args.save_interval,
+ resume_checkpoint=args.resume_checkpoint,
+ use_fp16=args.use_fp16,
+ fp16_scale_growth=args.fp16_scale_growth,
+ schedule_sampler=schedule_sampler,
+ weight_decay=args.weight_decay,
+ lr_anneal_steps=args.lr_anneal_steps,
+ ).run_loop()
+
+
+def load_superres_data(data_dir, batch_size, large_size, small_size, class_cond=False, guide_dir='', guide_size=0, crop_size=0, deterministic=False):
+ data = load_data(
+ data_dir=data_dir,
+ batch_size=batch_size,
+ image_size=large_size,
+ class_cond=class_cond,
+ guide_dir=guide_dir,
+ guide_size=guide_size,
+ crop_size=crop_size,
+ deterministic=deterministic,
+ )
+ for large_batch, model_kwargs in data:
+ model_kwargs["low_res"] = F.interpolate(large_batch, scale_factor=small_size/large_size, mode="area")
+ yield large_batch, model_kwargs
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ guide_dir="",
+ crop_size=32,
+ schedule_sampler="uniform",
+ lr=1e-4,
+ weight_decay=0.0,
+ lr_anneal_steps=0,
+ batch_size=1,
+ microbatch=-1,
+ ema_rate="0.9999",
+ log_interval=10,
+ save_interval=10000,
+ resume_checkpoint="",
+ use_fp16=False,
+ fp16_scale_growth=1e-3,
+ )
+ defaults.update(pgsr_model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/pixel_guide_train.py b/scripts/pixel_guide_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..179252211c16408144bf06feb438be599bd81801
--- /dev/null
+++ b/scripts/pixel_guide_train.py
@@ -0,0 +1,89 @@
+"""
+Train a super-resolution model.
+"""
+
+import argparse
+
+import torch.nn.functional as F
+
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.resample import create_named_schedule_sampler
+from pixel_guide_diffusion.script_util import (
+ pg_model_and_diffusion_defaults,
+ pg_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+from pixel_guide_diffusion.train_util import TrainLoop
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = pg_create_model_and_diffusion(
+ **args_to_dict(args, pg_model_and_diffusion_defaults().keys())
+ )
+ model.to(dist_util.dev())
+ schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
+
+ logger.log("creating data loader...")
+ data = load_data(
+ data_dir=args.data_dir,
+ batch_size=args.batch_size,
+ image_size=args.image_size,
+ class_cond=args.class_cond,
+ guide_dir=args.guide_dir,
+ guide_size=args.guide_size,
+ deterministic=True,
+ )
+
+ logger.log("training...")
+ TrainLoop(
+ model=model,
+ diffusion=diffusion,
+ data=data,
+ batch_size=args.batch_size,
+ microbatch=args.microbatch,
+ lr=args.lr,
+ ema_rate=args.ema_rate,
+ log_interval=args.log_interval,
+ save_interval=args.save_interval,
+ resume_checkpoint=args.resume_checkpoint,
+ use_fp16=args.use_fp16,
+ fp16_scale_growth=args.fp16_scale_growth,
+ schedule_sampler=schedule_sampler,
+ weight_decay=args.weight_decay,
+ lr_anneal_steps=args.lr_anneal_steps,
+ ).run_loop()
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ guide_dir="",
+ schedule_sampler="uniform",
+ lr=1e-4,
+ weight_decay=0.0,
+ lr_anneal_steps=0,
+ batch_size=1,
+ microbatch=-1,
+ ema_rate="0.9999",
+ log_interval=10,
+ save_interval=10000,
+ resume_checkpoint="",
+ use_fp16=False,
+ fp16_scale_growth=1e-3,
+ )
+ defaults.update(pg_model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/super_res_sample.py b/scripts/super_res_sample.py
new file mode 100644
index 0000000000000000000000000000000000000000..d7e4e3374073945a4f34d92c0caab164c45eac3a
--- /dev/null
+++ b/scripts/super_res_sample.py
@@ -0,0 +1,117 @@
+"""
+Generate a large batch of samples from a super resolution model, given a batch
+of samples from a regular model from image_sample.py.
+"""
+
+import argparse
+import os
+
+import blobfile as bf
+import numpy as np
+import torch as th
+import torch.distributed as dist
+
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.script_util import (
+ sr_model_and_diffusion_defaults,
+ sr_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = sr_create_model_and_diffusion(
+ **args_to_dict(args, sr_model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ dist_util.load_state_dict(args.model_path, map_location="cpu")
+ )
+ model.to(dist_util.dev())
+ model.eval()
+
+ logger.log("loading data...")
+ data = load_data_for_worker(args.base_samples, args.batch_size, args.class_cond)
+
+ logger.log("creating samples...")
+ all_images = []
+ while len(all_images) * args.batch_size < args.num_samples:
+ model_kwargs = next(data)
+ model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()}
+ sample = diffusion.p_sample_loop(
+ model,
+ (args.batch_size, 3, args.large_size, args.large_size),
+ clip_denoised=args.clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+ sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
+ sample = sample.permute(0, 2, 3, 1)
+ sample = sample.contiguous()
+
+ all_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
+ dist.all_gather(all_samples, sample) # gather not supported with NCCL
+ for sample in all_samples:
+ all_images.append(sample.cpu().numpy())
+ logger.log(f"created {len(all_images) * args.batch_size} samples")
+
+ arr = np.concatenate(all_images, axis=0)
+ arr = arr[: args.num_samples]
+ if dist.get_rank() == 0:
+ shape_str = "x".join([str(x) for x in arr.shape])
+ out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
+ logger.log(f"saving to {out_path}")
+ np.savez(out_path, arr)
+
+ dist.barrier()
+ logger.log("sampling complete")
+
+
+def load_data_for_worker(base_samples, batch_size, class_cond):
+ with bf.BlobFile(base_samples, "rb") as f:
+ obj = np.load(f)
+ image_arr = obj["arr_0"]
+ if class_cond:
+ label_arr = obj["arr_1"]
+ rank = dist.get_rank()
+ num_ranks = dist.get_world_size()
+ buffer = []
+ label_buffer = []
+ while True:
+ for i in range(rank, len(image_arr), num_ranks):
+ buffer.append(image_arr[i])
+ if class_cond:
+ label_buffer.append(label_arr[i])
+ if len(buffer) == batch_size:
+ batch = th.from_numpy(np.stack(buffer)).float()
+ batch = batch / 127.5 - 1.0
+ batch = batch.permute(0, 3, 1, 2)
+ res = dict(low_res=batch)
+ if class_cond:
+ res["y"] = th.from_numpy(np.stack(label_buffer))
+ yield res
+ buffer, label_buffer = [], []
+
+
+def create_argparser():
+ defaults = dict(
+ clip_denoised=True,
+ num_samples=10000,
+ batch_size=16,
+ use_ddim=False,
+ base_samples="",
+ model_path="",
+ )
+ defaults.update(sr_model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/super_res_train.py b/scripts/super_res_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..251c40e8df2cef848b8ac43386e8bc1c5ac49d54
--- /dev/null
+++ b/scripts/super_res_train.py
@@ -0,0 +1,98 @@
+"""
+Train a super-resolution model.
+"""
+
+import argparse
+
+import torch.nn.functional as F
+
+from pixel_guide_diffusion import dist_util, logger
+from pixel_guide_diffusion.image_datasets import load_data
+from pixel_guide_diffusion.resample import create_named_schedule_sampler
+from pixel_guide_diffusion.script_util import (
+ sr_model_and_diffusion_defaults,
+ sr_create_model_and_diffusion,
+ args_to_dict,
+ add_dict_to_argparser,
+)
+from pixel_guide_diffusion.train_util import TrainLoop
+
+
+def main():
+ args = create_argparser().parse_args()
+
+ dist_util.setup_dist()
+ logger.configure()
+
+ logger.log("creating model...")
+ model, diffusion = sr_create_model_and_diffusion(
+ **args_to_dict(args, sr_model_and_diffusion_defaults().keys())
+ )
+ model.to(dist_util.dev())
+ schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
+
+ logger.log("creating data loader...")
+ data = load_superres_data(
+ args.data_dir,
+ args.batch_size,
+ large_size=args.large_size,
+ small_size=args.small_size,
+ class_cond=args.class_cond,
+ )
+
+ logger.log("training...")
+ TrainLoop(
+ model=model,
+ diffusion=diffusion,
+ data=data,
+ batch_size=args.batch_size,
+ microbatch=args.microbatch,
+ lr=args.lr,
+ ema_rate=args.ema_rate,
+ log_interval=args.log_interval,
+ save_interval=args.save_interval,
+ resume_checkpoint=args.resume_checkpoint,
+ use_fp16=args.use_fp16,
+ fp16_scale_growth=args.fp16_scale_growth,
+ schedule_sampler=schedule_sampler,
+ weight_decay=args.weight_decay,
+ lr_anneal_steps=args.lr_anneal_steps,
+ ).run_loop()
+
+
+def load_superres_data(data_dir, batch_size, large_size, small_size, class_cond=False):
+ data = load_data(
+ data_dir=data_dir,
+ batch_size=batch_size,
+ image_size=large_size,
+ class_cond=class_cond,
+ )
+ for large_batch, model_kwargs in data:
+ model_kwargs["low_res"] = F.interpolate(large_batch, small_size, mode="area")
+ yield large_batch, model_kwargs
+
+
+def create_argparser():
+ defaults = dict(
+ data_dir="",
+ schedule_sampler="uniform",
+ lr=1e-4,
+ weight_decay=0.0,
+ lr_anneal_steps=0,
+ batch_size=1,
+ microbatch=-1,
+ ema_rate="0.9999",
+ log_interval=10,
+ save_interval=10000,
+ resume_checkpoint="",
+ use_fp16=False,
+ fp16_scale_growth=1e-3,
+ )
+ defaults.update(sr_model_and_diffusion_defaults())
+ parser = argparse.ArgumentParser()
+ add_dict_to_argparser(parser, defaults)
+ return parser
+
+
+if __name__ == "__main__":
+ main()
diff --git a/setup.py b/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..03d79fa50cd2da2c94b45f351b9a966d321dad76
--- /dev/null
+++ b/setup.py
@@ -0,0 +1,7 @@
+from setuptools import setup
+
+setup(
+ name="pixel-guide-diffusion",
+ py_modules=["pixel_guide_diffusion"],
+ install_requires=["blobfile>=1.0.5", "torch", "tqdm"],
+)
diff --git a/test_danbooru.sh b/test_danbooru.sh
new file mode 100644
index 0000000000000000000000000000000000000000..0512be74d28ea244b3d57559b29c9d43baf22382
--- /dev/null
+++ b/test_danbooru.sh
@@ -0,0 +1,6 @@
+
+MODEL_FLAGS="--image_size 32 --guide_size 128 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.0"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TEST_FLAGS="--batch_size 4"
+
+OPENAI_LOGDIR="./danbooru2017_guided_test_log" python scripts/pixel_guide_sample.py --data_dir data/danbooru2017/anime --guide_dir data/danbooru2017/anime_sketch --timestep_respacing ddim25 --use_ddim True --model_path danbooru2017_guided_log/ema_0.9999_360000.pt $MODEL_FLAGS $DIFFUSION_FLAGS $TEST_FLAGS
diff --git a/test_danbooru_cascade.sh b/test_danbooru_cascade.sh
new file mode 100644
index 0000000000000000000000000000000000000000..39ec5efd62103685f5df061cbcc92d47f6d431a8
--- /dev/null
+++ b/test_danbooru_cascade.sh
@@ -0,0 +1,6 @@
+
+MODEL_FLAGS="--image_size 32 --small_size 32 --large_size 128 --guide_size 128 --num_channels 128 --num_channels2 64 --num_res_blocks 3 --learn_sigma True --dropout 0.0 --use_attention2 False"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TEST_FLAGS="--batch_size 4 --seed 233"
+
+OPENAI_LOGDIR="./danbooru2017_guided_cascaded_test_log" python scripts/cascaded_pixel_guide_sample.py --data_dir data/danbooru2017/anime --guide_dir data/danbooru2017/anime_sketch --timestep_respacing ddim25 --use_ddim True --model_path danbooru2017_guided_log/ema_0.9999_360000.pt --model_path2 danbooru2017_guided_sr_log/ema_0.9999_360000.pt $MODEL_FLAGS $DIFFUSION_FLAGS $TEST_FLAGS
diff --git a/test_danbooru_sr.sh b/test_danbooru_sr.sh
new file mode 100644
index 0000000000000000000000000000000000000000..145e3c0f2d003e278205d76916a0cdb4473b6221
--- /dev/null
+++ b/test_danbooru_sr.sh
@@ -0,0 +1,6 @@
+
+MODEL_FLAGS="--large_size 128 --small_size 32 --guide_size 128 --num_channels 64 --num_res_blocks 3 --use_attention False --learn_sigma True --dropout 0.0"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TEST_FLAGS="--crop_size 128 --batch_size 4"
+
+OPENAI_LOGDIR="./danbooru2017_guided_sr_test_log" python scripts/pixel_guide_super_res_sample.py --data_dir data/danbooru2017/anime --guide_dir data/danbooru2017/anime_sketch --timestep_respacing ddim25 --use_ddim True --model_path danbooru2017_guided_sr_log/ema_0.9999_360000.pt $MODEL_FLAGS $DIFFUSION_FLAGS $TEST_FLAGS
diff --git a/train_danbooru.sh b/train_danbooru.sh
new file mode 100644
index 0000000000000000000000000000000000000000..10560117162d7604d296356f5feba0ccabcd2f77
--- /dev/null
+++ b/train_danbooru.sh
@@ -0,0 +1,6 @@
+
+MODEL_FLAGS="--image_size 32 --guide_size 128 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.0"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TRAIN_FLAGS="--use_fp16 True --lr 1e-4 --batch_size 128 --schedule_sampler loss-second-moment"
+
+OPENAI_LOGDIR="./danbooru2017_guided_log" python scripts/pixel_guide_train.py --data_dir data/danbooru2017/anime --guide_dir data/danbooru2017/anime_sketch $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
diff --git a/train_danbooru_sr.sh b/train_danbooru_sr.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c6be273321500edf2ca352a5a5c06ac215c8f8c5
--- /dev/null
+++ b/train_danbooru_sr.sh
@@ -0,0 +1,6 @@
+
+MODEL_FLAGS="--large_size 128 --small_size 32 --guide_size 128 --num_channels 64 --num_res_blocks 3 --use_attention False --learn_sigma True --dropout 0.0"
+DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
+TRAIN_FLAGS="--crop_size 32 --use_fp16 True --lr 1e-4 --batch_size 128 --schedule_sampler loss-second-moment"
+
+OPENAI_LOGDIR="./danbooru2017_guided_sr_log" python scripts/pixel_guide_super_res_train.py --data_dir data/danbooru2017/anime --guide_dir data/danbooru2017/anime_sketch $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS