import numpy as np from glob import glob import cv2 import gradio as gr import torch import torchvision.models as models from PIL import Image import torch.optim as optim import torchvision.transforms as transforms from torchvision import datasets from PIL import ImageFile import torch.nn as nn from collections import OrderedDict import pathlib dog_files = np.array(glob('dogImages/*/*/*')) human_files = np.array(glob('lfw/*/*')) # Human face detector using OpenCV def detector_humanface(image_path): # Loading color image (RGB) # image = cv2.imread(image_path) image = image_path # Converting color image to grayscale grayscale_img = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY) # Taking pre-trained human face detector classifier face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt.xml') # finding face in grayscale image faces = face_cascade.detectMultiScale(grayscale_img) return len(faces) > 0 # detecting dogs using pre-trained model vggmodel = models.vgg16(pretrained=True) # check if CUDA is available use_cuda = torch.cuda.is_available() # move model to GPU if CUDA is available if use_cuda: vggmodel = vggmodel.cuda() # detecting dog in an image def vgg_model(img_path): # move model to GPU if CUDA is available use_cuda = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # image = Image.open(img_path) image = img_path transform = transforms.Compose([transforms.ToTensor()]) tensor_image = transform(image) image_tranformation = transforms.Compose( [ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # normalizing each channel RGB ] ) # changing the dimension using unsqueeze & taking all tensors into size one list transformed_img = image_tranformation(image).unsqueeze(0).to(use_cuda) detected_dog = vggmodel(transformed_img) _, pred = torch.max(detected_dog, 1) # return the index of predicted class return pred[0] def dog_detector(img_path): index = vgg_model(img_path) if index>=151 and index<=268: return True else: False # Set PIL to be tolerant of image files that are truncated. ImageFile.LOAD_TRUNCATED_IMAGES = True train_dir = 'dogImages/train' test_dir = 'dogImages/test' valid_dir = 'dogImages/valid' train_folder = datasets.ImageFolder(train_dir) model = models.resnet152(pretrained=True) # Freeze training for all "feature" layers -> turning off computing gradient for each parameter for param in model.parameters(): param.requires_grad_(False) # Building classifier # Next adding my own layers after features layers for # training purpose which is to be customised according to output labels available pre_trained_classifier = nn.Sequential( OrderedDict( [ ('fc1', nn.Linear(2048, 1000)), ('relu', nn.ReLU()), ('dropout', nn.Dropout(p=0.5)), ('fc2', nn.Linear(1000, 133)), ('output', nn.LogSoftmax(dim=1)) ] ) ) model.fc = pre_trained_classifier # move model to GPU if CUDA is available if use_cuda: model = model.cuda() loss_fun = nn.CrossEntropyLoss() optimizer = optim.SGD(model.fc.parameters(), lr=0.01, momentum=0.9) scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) # load the model that got the best validation accuracy model.load_state_dict(torch.load('save_trained_model.pt', map_location=torch.device('cpu'))) # list of class names (breed names of dogs) class_names_breed = [breed[4:].replace("_", " ") for breed in train_folder.classes] # function that takes a dog image & returns the breed of that dog in the image def predict_dog_breed(image_path): # img = Image.open(image_path) img = image_path model.to('cpu') # pre-processing the input image transform_image = transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor() ] ) processed_image = transform_image(img).unsqueeze(0) # feedforward : feeding to trained model output = model(processed_image) # taking the prediction _, pred = torch.max(output, dim=1) return class_names_breed[pred[0]] # checking if prediction is correct or not def run_app(image_path): # img = Image.open(image_path) img = image_path out_str = "" ### handle cases for a human face, dog, and neither if dog_detector(image_path) == True: out_str = "Hi, This Dog's Breed is " + str(predict_dog_breed(image_path)) return out_str elif detector_humanface(image_path) == True: out_str = "hello, human! You look like a " + str(predict_dog_breed(image_path)) + " Breed" return out_str else: out_str = 'Error... No Dog or Human Face present!! Nothing Detected!!' return out_str def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) demo = gr.Blocks() with demo: gr.Markdown( """ #
Breed Finder !
### Find the breed for dog image or resembling breed for human Image! Enter the image of a dog or human and check its resembling breed... 1. If uploaded image is of Dog : it will give its Breed 2. Else If uploaded image is of Human: it will give its resembling breed of dog """) inp = gr.Image(label='input image of dog/human', type='pil') with gr.Row(): paths = sorted(pathlib.Path('images').glob('*.jpg')) example_images = gr.Dataset(components=[inp], samples=[[path.as_posix()] for path in paths]) submit = gr.Button("Generate Breed Name") submit.click(fn=run_app, inputs=inp, outputs=gr.Textbox(label='breed')) example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) gr.Markdown( '
visitor badge
' ) demo.launch(enable_queue=True, debug=True)