import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch model_name = "ruslanmv/Medical-Llama3-8B" # Check for CUDA availability device = "cuda" if torch.cuda.is_available() else "cpu" # Adjust configuration based on available hardware if device == "cuda": device_map = 'auto' bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) else: device_map = None bnb_config = None # Load the model with adjusted parameters model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True, use_cache=False, device_map=device_map, low_cpu_mem_usage=True if device == "cuda" else False ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.chat_template = """ {% for message in messages %} {% if message['role'] == 'system' %} System: {{ message['content'] }} {% elif message['role'] == 'user' %} Human: {{ message['content'] }} {% elif message['role'] == 'assistant' %} Assistant: {{ message['content'] }} {% endif %} {% endfor %} Human: {{ messages[-1]['content'] }} Assistant:""" def process_medical_history(prescription_details): sys_message = ''' You are an AI Medical Assistant. Given a string of prescription details, generate a structured medical history output. Include the following sections with appropriate headings: 1. Date of Prescription 2. Duration of Medicines 3. Problems Recognized 4. Test Results Format the output clearly with each section having its own heading and content on a new line. Do not include unnecessary details like additional notes, extra tokens and markers like <|endoftext|> or <|pad|>. ''' question = f"Please format the following prescription details into a structured medical history: {prescription_details}" messages = [ {"role": "system", "content": sys_message}, {"role": "user", "content": question} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=300, use_cache=True) response_text = tokenizer.batch_decode(outputs)[0].strip() answer = response_text.split('Assistant:')[-1].strip() # Clean up the output answer = answer.replace('<|endoftext|>', '').replace('<|pad|>', '').strip() return answer demo = gr.Interface(fn=process_medical_history, inputs="text", outputs="text") demo.launch()