import math import cv2 import numpy as np __all__ = ["EASTProcessTrain"] class EASTProcessTrain(object): def __init__( self, image_shape=[512, 512], background_ratio=0.125, min_crop_side_ratio=0.1, min_text_size=10, **kwargs ): self.input_size = image_shape[1] self.random_scale = np.array([0.5, 1, 2.0, 3.0]) self.background_ratio = background_ratio self.min_crop_side_ratio = min_crop_side_ratio self.min_text_size = min_text_size def preprocess(self, im): input_size = self.input_size im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(input_size) / float(im_size_max) im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale) img_mean = [0.485, 0.456, 0.406] img_std = [0.229, 0.224, 0.225] # im = im[:, :, ::-1].astype(np.float32) im = im / 255 im -= img_mean im /= img_std new_h, new_w, _ = im.shape im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32) im_padded[:new_h, :new_w, :] = im im_padded = im_padded.transpose((2, 0, 1)) im_padded = im_padded[np.newaxis, :] return im_padded, im_scale def rotate_im_poly(self, im, text_polys): """ rotate image with 90 / 180 / 270 degre """ im_w, im_h = im.shape[1], im.shape[0] dst_im = im.copy() dst_polys = [] rand_degree_ratio = np.random.rand() rand_degree_cnt = 1 if 0.333 < rand_degree_ratio < 0.666: rand_degree_cnt = 2 elif rand_degree_ratio > 0.666: rand_degree_cnt = 3 for i in range(rand_degree_cnt): dst_im = np.rot90(dst_im) rot_degree = -90 * rand_degree_cnt rot_angle = rot_degree * math.pi / 180.0 n_poly = text_polys.shape[0] cx, cy = 0.5 * im_w, 0.5 * im_h ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0] for i in range(n_poly): wordBB = text_polys[i] poly = [] for j in range(4): sx, sy = wordBB[j][0], wordBB[j][1] dx = ( math.cos(rot_angle) * (sx - cx) - math.sin(rot_angle) * (sy - cy) + ncx ) dy = ( math.sin(rot_angle) * (sx - cx) + math.cos(rot_angle) * (sy - cy) + ncy ) poly.append([dx, dy]) dst_polys.append(poly) dst_polys = np.array(dst_polys, dtype=np.float32) return dst_im, dst_polys def polygon_area(self, poly): """ compute area of a polygon :param poly: :return: """ edge = [ (poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]), (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]), (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]), (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1]), ] return np.sum(edge) / 2.0 def check_and_validate_polys(self, polys, tags, img_height, img_width): """ check so that the text poly is in the same direction, and also filter some invalid polygons :param polys: :param tags: :return: """ h, w = img_height, img_width if polys.shape[0] == 0: return polys polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1) polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1) validated_polys = [] validated_tags = [] for poly, tag in zip(polys, tags): p_area = self.polygon_area(poly) # invalid poly if abs(p_area) < 1: continue if p_area > 0: #'poly in wrong direction' if not tag: tag = True # reversed cases should be ignore poly = poly[(0, 3, 2, 1), :] validated_polys.append(poly) validated_tags.append(tag) return np.array(validated_polys), np.array(validated_tags) def draw_img_polys(self, img, polys): if len(img.shape) == 4: img = np.squeeze(img, axis=0) if img.shape[0] == 3: img = img.transpose((1, 2, 0)) img[:, :, 2] += 123.68 img[:, :, 1] += 116.78 img[:, :, 0] += 103.94 cv2.imwrite("tmp.jpg", img) img = cv2.imread("tmp.jpg") for box in polys: box = box.astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2) import random ino = random.randint(0, 100) cv2.imwrite("tmp_%d.jpg" % ino, img) return def shrink_poly(self, poly, r): """ fit a poly inside the origin poly, maybe bugs here... used for generate the score map :param poly: the text poly :param r: r in the paper :return: the shrinked poly """ # shrink ratio R = 0.3 # find the longer pair dist0 = np.linalg.norm(poly[0] - poly[1]) dist1 = np.linalg.norm(poly[2] - poly[3]) dist2 = np.linalg.norm(poly[0] - poly[3]) dist3 = np.linalg.norm(poly[1] - poly[2]) if dist0 + dist1 > dist2 + dist3: # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2) ## p0, p1 theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0])) poly[0][0] += R * r[0] * np.cos(theta) poly[0][1] += R * r[0] * np.sin(theta) poly[1][0] -= R * r[1] * np.cos(theta) poly[1][1] -= R * r[1] * np.sin(theta) ## p2, p3 theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0])) poly[3][0] += R * r[3] * np.cos(theta) poly[3][1] += R * r[3] * np.sin(theta) poly[2][0] -= R * r[2] * np.cos(theta) poly[2][1] -= R * r[2] * np.sin(theta) ## p0, p3 theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1])) poly[0][0] += R * r[0] * np.sin(theta) poly[0][1] += R * r[0] * np.cos(theta) poly[3][0] -= R * r[3] * np.sin(theta) poly[3][1] -= R * r[3] * np.cos(theta) ## p1, p2 theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1])) poly[1][0] += R * r[1] * np.sin(theta) poly[1][1] += R * r[1] * np.cos(theta) poly[2][0] -= R * r[2] * np.sin(theta) poly[2][1] -= R * r[2] * np.cos(theta) else: ## p0, p3 # print poly theta = np.arctan2((poly[3][0] - poly[0][0]), (poly[3][1] - poly[0][1])) poly[0][0] += R * r[0] * np.sin(theta) poly[0][1] += R * r[0] * np.cos(theta) poly[3][0] -= R * r[3] * np.sin(theta) poly[3][1] -= R * r[3] * np.cos(theta) ## p1, p2 theta = np.arctan2((poly[2][0] - poly[1][0]), (poly[2][1] - poly[1][1])) poly[1][0] += R * r[1] * np.sin(theta) poly[1][1] += R * r[1] * np.cos(theta) poly[2][0] -= R * r[2] * np.sin(theta) poly[2][1] -= R * r[2] * np.cos(theta) ## p0, p1 theta = np.arctan2((poly[1][1] - poly[0][1]), (poly[1][0] - poly[0][0])) poly[0][0] += R * r[0] * np.cos(theta) poly[0][1] += R * r[0] * np.sin(theta) poly[1][0] -= R * r[1] * np.cos(theta) poly[1][1] -= R * r[1] * np.sin(theta) ## p2, p3 theta = np.arctan2((poly[2][1] - poly[3][1]), (poly[2][0] - poly[3][0])) poly[3][0] += R * r[3] * np.cos(theta) poly[3][1] += R * r[3] * np.sin(theta) poly[2][0] -= R * r[2] * np.cos(theta) poly[2][1] -= R * r[2] * np.sin(theta) return poly def generate_quad(self, im_size, polys, tags): """ Generate quadrangle. """ h, w = im_size poly_mask = np.zeros((h, w), dtype=np.uint8) score_map = np.zeros((h, w), dtype=np.uint8) # (x1, y1, ..., x4, y4, short_edge_norm) geo_map = np.zeros((h, w, 9), dtype=np.float32) # mask used during traning, to ignore some hard areas training_mask = np.ones((h, w), dtype=np.uint8) for poly_idx, poly_tag in enumerate(zip(polys, tags)): poly = poly_tag[0] tag = poly_tag[1] r = [None, None, None, None] for i in range(4): dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4]) dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4]) r[i] = min(dist1, dist2) # score map shrinked_poly = self.shrink_poly(poly.copy(), r).astype(np.int32)[ np.newaxis, :, : ] cv2.fillPoly(score_map, shrinked_poly, 1) cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1) # if the poly is too small, then ignore it during training poly_h = min( np.linalg.norm(poly[0] - poly[3]), np.linalg.norm(poly[1] - poly[2]) ) poly_w = min( np.linalg.norm(poly[0] - poly[1]), np.linalg.norm(poly[2] - poly[3]) ) if min(poly_h, poly_w) < self.min_text_size: cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0) if tag: cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0) xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1)) # geo map. y_in_poly = xy_in_poly[:, 0] x_in_poly = xy_in_poly[:, 1] poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w) poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h) for pno in range(4): geo_channel_beg = pno * 2 geo_map[y_in_poly, x_in_poly, geo_channel_beg] = ( x_in_poly - poly[pno, 0] ) geo_map[y_in_poly, x_in_poly, geo_channel_beg + 1] = ( y_in_poly - poly[pno, 1] ) geo_map[y_in_poly, x_in_poly, 8] = 1.0 / max(min(poly_h, poly_w), 1.0) return score_map, geo_map, training_mask def crop_area(self, im, polys, tags, crop_background=False, max_tries=50): """ make random crop from the input image :param im: :param polys: :param tags: :param crop_background: :param max_tries: :return: """ h, w, _ = im.shape pad_h = h // 10 pad_w = w // 10 h_array = np.zeros((h + pad_h * 2), dtype=np.int32) w_array = np.zeros((w + pad_w * 2), dtype=np.int32) for poly in polys: poly = np.round(poly, decimals=0).astype(np.int32) minx = np.min(poly[:, 0]) maxx = np.max(poly[:, 0]) w_array[minx + pad_w : maxx + pad_w] = 1 miny = np.min(poly[:, 1]) maxy = np.max(poly[:, 1]) h_array[miny + pad_h : maxy + pad_h] = 1 # ensure the cropped area not across a text h_axis = np.where(h_array == 0)[0] w_axis = np.where(w_array == 0)[0] if len(h_axis) == 0 or len(w_axis) == 0: return im, polys, tags for i in range(max_tries): xx = np.random.choice(w_axis, size=2) xmin = np.min(xx) - pad_w xmax = np.max(xx) - pad_w xmin = np.clip(xmin, 0, w - 1) xmax = np.clip(xmax, 0, w - 1) yy = np.random.choice(h_axis, size=2) ymin = np.min(yy) - pad_h ymax = np.max(yy) - pad_h ymin = np.clip(ymin, 0, h - 1) ymax = np.clip(ymax, 0, h - 1) if ( xmax - xmin < self.min_crop_side_ratio * w or ymax - ymin < self.min_crop_side_ratio * h ): # area too small continue if polys.shape[0] != 0: poly_axis_in_area = ( (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) & (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax) ) selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0] else: selected_polys = [] if len(selected_polys) == 0: # no text in this area if crop_background: im = im[ymin : ymax + 1, xmin : xmax + 1, :] polys = [] tags = [] return im, polys, tags else: continue im = im[ymin : ymax + 1, xmin : xmax + 1, :] polys = polys[selected_polys] tags = tags[selected_polys] polys[:, :, 0] -= xmin polys[:, :, 1] -= ymin return im, polys, tags return im, polys, tags def crop_background_infor(self, im, text_polys, text_tags): im, text_polys, text_tags = self.crop_area( im, text_polys, text_tags, crop_background=True ) if len(text_polys) > 0: return None # pad and resize image input_size = self.input_size im, ratio = self.preprocess(im) score_map = np.zeros((input_size, input_size), dtype=np.float32) geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32) training_mask = np.ones((input_size, input_size), dtype=np.float32) return im, score_map, geo_map, training_mask def crop_foreground_infor(self, im, text_polys, text_tags): im, text_polys, text_tags = self.crop_area( im, text_polys, text_tags, crop_background=False ) if text_polys.shape[0] == 0: return None # continue for all ignore case if np.sum((text_tags * 1.0)) >= text_tags.size: return None # pad and resize image input_size = self.input_size im, ratio = self.preprocess(im) text_polys[:, :, 0] *= ratio text_polys[:, :, 1] *= ratio _, _, new_h, new_w = im.shape # print(im.shape) # self.draw_img_polys(im, text_polys) score_map, geo_map, training_mask = self.generate_quad( (new_h, new_w), text_polys, text_tags ) return im, score_map, geo_map, training_mask def __call__(self, data): im = data["image"] text_polys = data["polys"] text_tags = data["ignore_tags"] if im is None: return None if text_polys.shape[0] == 0: return None # add rotate cases if np.random.rand() < 0.5: im, text_polys = self.rotate_im_poly(im, text_polys) h, w, _ = im.shape text_polys, text_tags = self.check_and_validate_polys( text_polys, text_tags, h, w ) if text_polys.shape[0] == 0: return None # random scale this image rd_scale = np.random.choice(self.random_scale) im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale) text_polys *= rd_scale if np.random.rand() < self.background_ratio: outs = self.crop_background_infor(im, text_polys, text_tags) else: outs = self.crop_foreground_infor(im, text_polys, text_tags) if outs is None: return None im, score_map, geo_map, training_mask = outs score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32) geo_map = np.swapaxes(geo_map, 1, 2) geo_map = np.swapaxes(geo_map, 1, 0) geo_map = geo_map[:, ::4, ::4].astype(np.float32) training_mask = training_mask[np.newaxis, ::4, ::4] training_mask = training_mask.astype(np.float32) data["image"] = im[0] data["score_map"] = score_map data["geo_map"] = geo_map data["training_mask"] = training_mask return data