import argparse import math import os import platform import cv2 import numpy as np import paddle from paddle import inference from PIL import Image, ImageDraw, ImageFont def str2bool(v): return v.lower() in ("true", "t", "1") def init_args(): parser = argparse.ArgumentParser() # params for prediction engine parser.add_argument("--use_gpu", type=str2bool, default=False) parser.add_argument("--use_xpu", type=str2bool, default=False) parser.add_argument("--ir_optim", type=str2bool, default=False) parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--min_subgraph_size", type=int, default=15) parser.add_argument("--precision", type=str, default="fp32") parser.add_argument("--gpu_mem", type=int, default=500) # params for text detector parser.add_argument("--image_dir", type=str) parser.add_argument("--det_algorithm", type=str, default="DB") parser.add_argument("--det_model_dir", type=str, default="./ch_PP-OCRv3_det_infer/") parser.add_argument("--det_limit_side_len", type=float, default=960) parser.add_argument("--det_limit_type", type=str, default="max") # DB parmas parser.add_argument("--det_db_thresh", type=float, default=0.1) parser.add_argument("--det_db_box_thresh", type=float, default=0.1) parser.add_argument("--det_db_unclip_ratio", type=float, default=1.7) parser.add_argument("--max_batch_size", type=int, default=10) parser.add_argument("--use_dilation", type=str2bool, default=True) parser.add_argument("--det_db_score_mode", type=str, default="fast") # EAST parmas parser.add_argument("--det_east_score_thresh", type=float, default=0.8) parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) # SAST parmas parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) parser.add_argument("--det_sast_polygon", type=str2bool, default=False) # PSE parmas parser.add_argument("--det_pse_thresh", type=float, default=0) parser.add_argument("--det_pse_box_thresh", type=float, default=0.85) parser.add_argument("--det_pse_min_area", type=float, default=16) parser.add_argument("--det_pse_box_type", type=str, default="quad") parser.add_argument("--det_pse_scale", type=int, default=1) # FCE parmas parser.add_argument("--scales", type=list, default=[8, 16, 32]) parser.add_argument("--alpha", type=float, default=1.0) parser.add_argument("--beta", type=float, default=1.0) parser.add_argument("--fourier_degree", type=int, default=5) parser.add_argument("--det_fce_box_type", type=str, default="poly") # params for text recognizer parser.add_argument("--rec_algorithm", type=str, default="SVTR_LCNet") parser.add_argument("--rec_model_dir", type=str, default="./ch_PP-OCRv3_rec_infer/") parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320") parser.add_argument("--rec_batch_num", type=int, default=6) parser.add_argument("--max_text_length", type=int, default=25) parser.add_argument( "--rec_char_dict_path", type=str, default="./ppocr/ppocr_keys_v1.txt" ) parser.add_argument("--use_space_char", type=str2bool, default=True) parser.add_argument("--drop_score", type=float, default=0.5) # params for text classifier parser.add_argument("--use_angle_cls", type=str2bool, default=False) parser.add_argument("--cls_model_dir", type=str) parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192") parser.add_argument("--label_list", type=list, default=["0", "180"]) parser.add_argument("--cls_batch_num", type=int, default=6) parser.add_argument("--cls_thresh", type=float, default=0.9) parser.add_argument("--enable_mkldnn", type=str2bool, default=True) parser.add_argument("--cpu_threads", type=int, default=10) parser.add_argument("--use_pdserving", type=str2bool, default=False) parser.add_argument("--warmup", type=str2bool, default=False) # parser.add_argument("--draw_img_save_dir", type=str, default="./inference_results") parser.add_argument("--save_crop_res", type=str2bool, default=False) parser.add_argument("--crop_res_save_dir", type=str, default="./output") # multi-process parser.add_argument("--use_mp", type=str2bool, default=False) parser.add_argument("--total_process_num", type=int, default=1) parser.add_argument("--process_id", type=int, default=0) parser.add_argument("--benchmark", type=str2bool, default=False) parser.add_argument("--save_log_path", type=str, default="./log_output/") parser.add_argument("--use_onnx", type=str2bool, default=False) return parser def parse_args(): parser = init_args() return parser.parse_args() def create_predictor(args, mode): if mode == "det": model_dir = args.det_model_dir elif mode == "rec": model_dir = args.rec_model_dir if args.use_onnx: import onnxruntime as ort model_file_path = model_dir if not os.path.exists(model_file_path): raise ValueError("not find model file path {}".format(model_file_path)) sess = ort.InferenceSession(model_file_path) return sess, sess.get_inputs()[0], None, None else: model_file_path = model_dir + "/inference.pdmodel" params_file_path = model_dir + "/inference.pdiparams" if not os.path.exists(model_file_path): raise ValueError("not find model file path {}".format(model_file_path)) if not os.path.exists(params_file_path): raise ValueError("not find params file path {}".format(params_file_path)) config = inference.Config(model_file_path, params_file_path) if hasattr(args, "precision"): if args.precision == "fp16" and args.use_tensorrt: precision = inference.PrecisionType.Half elif args.precision == "int8": precision = inference.PrecisionType.Int8 else: precision = inference.PrecisionType.Float32 else: precision = inference.PrecisionType.Float32 if args.use_gpu: gpu_id = get_infer_gpuid() config.enable_use_gpu(args.gpu_mem, 0) if args.use_tensorrt: config.enable_tensorrt_engine( workspace_size=1 << 30, precision_mode=precision, max_batch_size=args.max_batch_size, min_subgraph_size=args.min_subgraph_size, ) # skip the minmum trt subgraph use_dynamic_shape = True if mode == "det": min_input_shape = { "x": [1, 3, 50, 50], "conv2d_92.tmp_0": [1, 120, 20, 20], "conv2d_91.tmp_0": [1, 24, 10, 10], "conv2d_59.tmp_0": [1, 96, 20, 20], "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10], "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20], "conv2d_124.tmp_0": [1, 256, 20, 20], "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20], "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20], "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20], "elementwise_add_7": [1, 56, 2, 2], "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2], } max_input_shape = { "x": [1, 3, 1536, 1536], "conv2d_92.tmp_0": [1, 120, 400, 400], "conv2d_91.tmp_0": [1, 24, 200, 200], "conv2d_59.tmp_0": [1, 96, 400, 400], "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200], "conv2d_124.tmp_0": [1, 256, 400, 400], "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400], "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400], "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400], "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400], "elementwise_add_7": [1, 56, 400, 400], "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400], } opt_input_shape = { "x": [1, 3, 640, 640], "conv2d_92.tmp_0": [1, 120, 160, 160], "conv2d_91.tmp_0": [1, 24, 80, 80], "conv2d_59.tmp_0": [1, 96, 160, 160], "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80], "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160], "conv2d_124.tmp_0": [1, 256, 160, 160], "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160], "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160], "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160], "elementwise_add_7": [1, 56, 40, 40], "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40], } min_pact_shape = { "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20], "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20], "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20], "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20], } max_pact_shape = { "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400], "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400], "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400], "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400], } opt_pact_shape = { "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160], "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160], "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160], "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160], } min_input_shape.update(min_pact_shape) max_input_shape.update(max_pact_shape) opt_input_shape.update(opt_pact_shape) elif mode == "rec": if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]: use_dynamic_shape = False imgH = int(args.rec_image_shape.split(",")[-2]) min_input_shape = {"x": [1, 3, imgH, 10]} max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]} opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]} config.exp_disable_tensorrt_ops(["transpose2"]) elif mode == "cls": min_input_shape = {"x": [1, 3, 48, 10]} max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]} opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]} else: use_dynamic_shape = False if use_dynamic_shape: config.set_trt_dynamic_shape_info( min_input_shape, max_input_shape, opt_input_shape ) elif args.use_xpu: config.enable_xpu(10 * 1024 * 1024) else: config.disable_gpu() if hasattr(args, "cpu_threads"): config.set_cpu_math_library_num_threads(args.cpu_threads) else: # default cpu threads as 10 config.set_cpu_math_library_num_threads(10) if args.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() if args.precision == "fp16": config.enable_mkldnn_bfloat16() # enable memory optim config.enable_memory_optim() config.disable_glog_info() config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.delete_pass("matmul_transpose_reshape_fuse_pass") if mode == "table": config.delete_pass("fc_fuse_pass") # not supported for table config.switch_use_feed_fetch_ops(False) config.switch_ir_optim(True) # create predictor predictor = inference.create_predictor(config) input_names = predictor.get_input_names() for name in input_names: input_tensor = predictor.get_input_handle(name) output_tensors = get_output_tensors(args, mode, predictor) return predictor, input_tensor, output_tensors, config def get_output_tensors(args, mode, predictor): output_names = predictor.get_output_names() output_tensors = [] if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]: output_name = "softmax_0.tmp_0" if output_name in output_names: return [predictor.get_output_handle(output_name)] else: for output_name in output_names: output_tensor = predictor.get_output_handle(output_name) output_tensors.append(output_tensor) else: for output_name in output_names: output_tensor = predictor.get_output_handle(output_name) output_tensors.append(output_tensor) return output_tensors def get_infer_gpuid(): sysstr = platform.system() if sysstr == "Windows": return 0 if not paddle.fluid.core.is_compiled_with_rocm(): cmd = "env | grep CUDA_VISIBLE_DEVICES" else: cmd = "env | grep HIP_VISIBLE_DEVICES" env_cuda = os.popen(cmd).readlines() if len(env_cuda) == 0: return 0 else: gpu_id = env_cuda[0].strip().split("=")[1] return int(gpu_id[0]) def draw_e2e_res(dt_boxes, strs, img_path): src_im = cv2.imread(img_path) for box, str in zip(dt_boxes, strs): box = box.astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) cv2.putText( src_im, str, org=(int(box[0, 0, 0]), int(box[0, 0, 1])), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.7, color=(0, 255, 0), thickness=1, ) return src_im def draw_text_det_res(dt_boxes, img_path): src_im = cv2.imread(img_path) for box in dt_boxes: box = np.array(box).astype(np.int32).reshape(-1, 2) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) return src_im def resize_img(img, input_size=600): """ resize img and limit the longest side of the image to input_size """ img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = float(input_size) / float(im_size_max) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img def draw_ocr( image, boxes, txts=None, scores=None, drop_score=0.5, font_path="./doc/fonts/simfang.ttf", ): """ Visualize the results of OCR detection and recognition args: image(Image|array): RGB image boxes(list): boxes with shape(N, 4, 2) txts(list): the texts scores(list): txxs corresponding scores drop_score(float): only scores greater than drop_threshold will be visualized font_path: the path of font which is used to draw text return(array): the visualized img """ if scores is None: scores = [1] * len(boxes) box_num = len(boxes) for i in range(box_num): if scores is not None and (scores[i] < drop_score or math.isnan(scores[i])): continue box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) if txts is not None: img = np.array(resize_img(image, input_size=600)) txt_img = text_visual( txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score, font_path=font_path, ) img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) return img return image def draw_ocr_box_txt( image, boxes, txts, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf" ): h, w = image.height, image.width img_left = image.copy() img_right = Image.new("RGB", (w, h), (255, 255, 255)) import random random.seed(0) draw_left = ImageDraw.Draw(img_left) draw_right = ImageDraw.Draw(img_right) for idx, (box, txt) in enumerate(zip(boxes, txts)): if scores is not None and scores[idx] < drop_score: continue color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw_left.polygon(box, fill=color) draw_right.polygon( [ box[0][0], box[0][1], box[1][0], box[1][1], box[2][0], box[2][1], box[3][0], box[3][1], ], outline=color, ) box_height = math.sqrt( (box[0][0] - box[3][0]) ** 2 + (box[0][1] - box[3][1]) ** 2 ) box_width = math.sqrt( (box[0][0] - box[1][0]) ** 2 + (box[0][1] - box[1][1]) ** 2 ) if box_height > 2 * box_width: font_size = max(int(box_width * 0.9), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") cur_y = box[0][1] for c in txt: char_size = font.getsize(c) draw_right.text((box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font) cur_y += char_size[1] else: font_size = max(int(box_height * 0.8), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") draw_right.text([box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font) img_left = Image.blend(image, img_left, 0.5) img_show = Image.new("RGB", (w * 2, h), (255, 255, 255)) img_show.paste(img_left, (0, 0, w, h)) img_show.paste(img_right, (w, 0, w * 2, h)) return np.array(img_show) def str_count(s): """ Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters """ import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if c in string.ascii_letters or c.isdigit() or c.isspace(): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return s_len - math.ceil(en_dg_count / 2) def text_visual( texts, scores, img_h=400, img_w=600, threshold=0.0, font_path="./doc/simfang.ttf" ): """ create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array): """ if scores is not None: assert len(texts) == len( scores ), "The number of txts and corresponding scores must match" def create_blank_img(): blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 blank_img[:, img_w - 1 :] = 0 blank_img = Image.fromarray(blank_img).convert("RGB") draw_txt = ImageDraw.Draw(blank_img) return blank_img, draw_txt blank_img, draw_txt = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") gap = font_size + 5 txt_img_list = [] count, index = 1, 0 for idx, txt in enumerate(texts): index += 1 if scores[idx] < threshold or math.isnan(scores[idx]): index -= 1 continue first_line = True while str_count(txt) >= img_w // font_size - 4: tmp = txt txt = tmp[: img_w // font_size - 4] if first_line: new_txt = str(index) + ": " + txt first_line = False else: new_txt = " " + txt draw_txt.text((0, gap * count), new_txt, txt_color, font=font) txt = tmp[img_w // font_size - 4 :] if count >= img_h // gap - 1: txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 if first_line: new_txt = str(index) + ": " + txt + " " + "%.3f" % (scores[idx]) else: new_txt = " " + txt + " " + "%.3f" % (scores[idx]) draw_txt.text((0, gap * count), new_txt, txt_color, font=font) # whether add new blank img or not if count >= img_h // gap - 1 and idx + 1 < len(texts): txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if len(txt_img_list) == 1: blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img) def base64_to_cv2(b64str): import base64 data = base64.b64decode(b64str.encode("utf8")) data = np.frombuffer(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def draw_boxes(image, boxes, scores=None, drop_score=0.5): if scores is None: scores = [1] * len(boxes) for (box, score) in zip(boxes, scores): if score < drop_score: continue box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) return image def get_rotate_crop_image(img, points): """ img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top """ assert len(points) == 4, "shape of points must be 4*2" img_crop_width = int( max( np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]) ) ) img_crop_height = int( max( np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]) ) ) pts_std = np.float32( [ [0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height], ] ) M = cv2.getPerspectiveTransform(points, pts_std) dst_img = cv2.warpPerspective( img, M, (img_crop_width, img_crop_height), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC, ) dst_img_height, dst_img_width = dst_img.shape[0:2] if dst_img_height * 1.0 / dst_img_width >= 1.5: dst_img = np.rot90(dst_img) return dst_img def check_gpu(use_gpu): if use_gpu and not paddle.is_compiled_with_cuda(): use_gpu = False return use_gpu