""" FileName: app.py Author: Benhao Huang Create Date: 2023/11/19 Description: this file is used to display our project and add visualization elements to the game, using Streamlit """ import time import pandas as pd from copy import deepcopy import numpy as np import streamlit as st from scipy.signal import convolve # this is used to check if any player wins from streamlit import session_state from streamlit_server_state import server_state, server_state_lock from Gomoku_MCTS import MCTSpure, alphazero, Board, PolicyValueNet_old, PolicyValueNet_new, duel_PolicyValueNet, \ Gumbel_MCTSPlayer from Gomoku_Bot import Gomoku_bot from Gomoku_Bot import Board as Gomoku_bot_board import matplotlib.pyplot as plt from const import ( _BLACK, # 1, for human _WHITE, # 2 , for AI _BLANK, _PLAYER_COLOR_AI_VS_AI, _PLAYER_SYMBOL1, _PLAYER_SYMBOL2, _ROOM_COLOR, _VERTICAL, _NEW, _HORIZONTAL, _DIAGONAL_UP_LEFT, _DIAGONAL_UP_RIGHT, _BOARD_SIZE, _MODEL_PATH ) _PLAYER_SYMBOL = [0, _PLAYER_SYMBOL1, _PLAYER_SYMBOL2] # ''' # from ai import ( # BOS_TOKEN_ID, # generate_gpt2, # load_model, # ) # # gpt2 = load_model() # # ''' if "FirstPlayer" not in session_state: session_state.FirstPlayer = _BLACK session_state.Player = [[], [ _BLACK,_WHITE], [_WHITE,_BLACK]][session_state.FirstPlayer] session_state.Symbol = _PLAYER_SYMBOL[session_state.FirstPlayer] # Utils class Room: def __init__(self, room_id) -> None: self.ROOM_ID = room_id # self.BOARD = np.zeros(shape=(_BOARD_SIZE, _BOARD_SIZE), dtype=int) self.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Player) self.PLAYER = session_state.FirstPlayer self.TURN = self.PLAYER self.HISTORY = (0, 0) self.WINNER = _BLANK self.TIME = time.time() self.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1) self.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000), 'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100), 'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["duel"]).policy_value_fn, c_puct=5, n_playout=100), 'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100, m_action=8), 'Gomoku Bot': Gomoku_bot(self.gomoku_bot_board, -1)} self.MCTS_dict_ = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000), 'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100), 'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["duel"]).policy_value_fn, c_puct=5, n_playout=100), 'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100, m_action=8), 'Gomoku Bot': Gomoku_bot(self.gomoku_bot_board, -1)} self.MCTS = self.MCTS_dict['AlphaZero'] self.MCTS_ = self.MCTS_dict['AlphaZero'] self.last_mcts = self.MCTS self.AID_MCTS = self.MCTS_dict['AlphaZero'] self.COORDINATE_1D = [] self.current_move = -1 self.ai_simula_time_list = [] self.ai_simula_time_list_ = [] self.human_simula_time_list = [] def change_turn(cur): return cur % 2 + 1 # Initialize the game if "ROOM" not in session_state: session_state.ROOM = Room("local") if "OWNER" not in session_state: session_state.OWNER = False if "USE_AIAID" not in session_state: session_state.USE_AIAID = False # Check server health if "ROOMS" not in server_state: with server_state_lock["ROOMS"]: server_state.ROOMS = {} def handle_oppo_model_selection(): if st.session_state['selected_oppo_model'] == 'Gomoku Bot': session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict['Gomoku Bot'] return else: TreeNode = session_state.ROOM.last_mcts.mcts._root new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']] new_mct.mcts._root = deepcopy(TreeNode) session_state.ROOM.MCTS = new_mct session_state.ROOM.last_mcts = new_mct return def handle_oppo_model_selection_(): if st.session_state['selected_oppo_model_'] == 'Gomoku Bot': session_state.ROOM.MCTS_ = session_state.ROOM.MCTS_dict_['Gomoku Bot'] return else: TreeNode = session_state.ROOM.last_mcts_.mcts._root new_mct = session_state.ROOM.MCTS_dict_[st.session_state['selected_oppo_model_']] new_mct.mcts._root = deepcopy(TreeNode) session_state.ROOM.MCTS_ = new_mct session_state.ROOM.last_mcts_ = new_mct return def handle_aid_model_selection(): if st.session_state['selected_aid_model'] == 'None': session_state.USE_AIAID = False return session_state.USE_AIAID = True TreeNode = session_state.ROOM.MCTS.mcts._root # use the same tree node new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_aid_model']] new_mct.mcts._root = deepcopy(TreeNode) session_state.ROOM.AID_MCTS = new_mct return if 'selected_oppo_model' not in st.session_state: st.session_state['selected_oppo_model'] = 'AlphaZero' # 默认值 if 'selected_oppo_model_' not in st.session_state: st.session_state['selected_oppo_model_'] = 'AlphaZero' # 默认值 if 'selected_aid_model' not in st.session_state: st.session_state['selected_aid_model'] = 'AlphaZero' # 默认值 # Layout TITLE = st.empty() Model_Switch = st.empty() Model_Switch_ = st.empty() TITLE.header("🤖 AI 3603 Gomoku") selected_oppo_option = Model_Switch.selectbox('Select Model 1', ['Pure MCTS', 'AlphaZero', 'Gomoku Bot', 'duel', 'Gumbel AlphaZero'], index=1, key='oppo_model') selected_oppo_option_ = Model_Switch_.selectbox('Select Model 2', ['Pure MCTS', 'AlphaZero', 'Gomoku Bot', 'duel', 'Gumbel AlphaZero'], index=1, key='oppo_model_') if st.session_state['selected_oppo_model'] != selected_oppo_option: st.session_state['selected_oppo_model'] = selected_oppo_option handle_oppo_model_selection() if st.session_state['selected_oppo_model_'] != selected_oppo_option_: st.session_state['selected_oppo_model_'] = selected_oppo_option_ handle_oppo_model_selection_() ROUND_INFO = st.empty() st.markdown("
", unsafe_allow_html=True) BOARD_PLATE = [ [cell.empty() for cell in st.columns([1 for _ in range(_BOARD_SIZE)])] for _ in range(_BOARD_SIZE) ] LOG = st.empty() # Sidebar SCORE_TAG = st.sidebar.empty() SCORE_PLATE = st.sidebar.columns(2) # History scores SCORE_TAG.subheader("Scores") PLAY_MODE_INFO = st.sidebar.container() MULTIPLAYER_TAG = st.sidebar.empty() with st.sidebar.container(): ANOTHER_ROUND = st.empty() RESTART = st.empty() CHANGE_PLAYER = st.empty() AIAID = st.empty() EXIT = st.empty() selected_aid_option = AIAID.selectbox('Select Assistant Model', ['None', 'Pure MCTS', 'AlphaZero'], index=0, key='aid_model') if st.session_state['selected_aid_model'] != selected_aid_option: st.session_state['selected_aid_model'] = selected_aid_option handle_aid_model_selection() GAME_INFO = st.sidebar.container() message = st.empty() PLAY_MODE_INFO.write("---\n\n**You are Black, AI agent is White.**") GAME_INFO.markdown( """ --- # Freestyle Gomoku game. 🎲 - no restrictions 🚫 - no regrets 😎 - no regrets 😎 - swap players after one round is over 🔁 Powered by an AlphaZero approach with our own improvements! 🚀 For the specific details, please check out our report. ##### Adapted and improved by us! 🌟 Our Github repo """, unsafe_allow_html=True, ) def restart() -> None: """ Restart the game. """ session_state.ROOM = Room(session_state.ROOM.ROOM_ID) st.session_state['selected_oppo_model'] = 'AlphaZero' def swap_players() -> None: session_state.update( FirstPlayer=change_turn(session_state.FirstPlayer), ) session_state.update( Player=[[], [_BLACK, _WHITE], [_WHITE, _BLACK]][session_state.FirstPlayer], Symbol=_PLAYER_SYMBOL[session_state.FirstPlayer] ) session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Player) session_state.ROOM.PLAYER = session_state.FirstPlayer session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1) session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000), 'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100), 'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["duel"]).policy_value_fn, c_puct=5, n_playout=100), 'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH[ "Gumbel AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100, m_action=8), 'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)} session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']] session_state.ROOM.last_mcts = session_state.ROOM.MCTS session_state.ROOM.PLAYER = session_state.ROOM.PLAYER session_state.ROOM.TURN = session_state.ROOM.PLAYER session_state.ROOM.WINNER = _BLANK # 0 session_state.ROOM.ai_simula_time_list = [] session_state.ROOM.human_simula_time_list = [] session_state.ROOM.COORDINATE_1D = [] RESTART.button( "Reset", on_click=restart, help="Clear the board as well as the scores", ) CHANGE_PLAYER.button( "Swap players", on_click=swap_players, help="Swap players", ) # Draw the board def gomoku(): """ Draw the board. Handle the main logic. """ # Restart the game # Continue new round def another_round() -> None: """ Continue new round. """ session_state.ROOM = deepcopy(session_state.ROOM) session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5) session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1) session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000), 'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100), 'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["duel"]).policy_value_fn, c_puct=5, n_playout=100), 'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE, _MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn, c_puct=5, n_playout=100, m_action=8), 'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)} session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']] session_state.ROOM.last_mcts = session_state.ROOM.MCTS session_state.ROOM.PLAYER = session_state.ROOM.PLAYER session_state.ROOM.TURN = session_state.ROOM.PLAYER session_state.ROOM.WINNER = _BLANK # 0 session_state.ROOM.ai_simula_time_list = [] session_state.ROOM.human_simula_time_list = [] session_state.ROOM.COORDINATE_1D = [] # Room status sync def sync_room() -> bool: room_id = session_state.ROOM.ROOM_ID if room_id not in server_state.ROOMS.keys(): session_state.ROOM = Room("local") return False elif server_state.ROOMS[room_id].TIME == session_state.ROOM.TIME: return False elif server_state.ROOMS[room_id].TIME < session_state.ROOM.TIME: # Only acquire the lock when writing to the server state with server_state_lock["ROOMS"]: server_rooms = server_state.ROOMS server_rooms[room_id] = session_state.ROOM server_state.ROOMS = server_rooms return True else: session_state.ROOM = server_state.ROOMS[room_id] return True # Triggers the board response on click def handle_click(x, y): """ Controls whether to pass on / continue current board / may start new round """ if session_state.ROOM.BOARD.board_map[x][y] != _BLANK: pass elif ( session_state.ROOM.ROOM_ID in server_state.ROOMS.keys() and _ROOM_COLOR[session_state.OWNER] != server_state.ROOMS[session_state.ROOM.ROOM_ID].TURN ): sync_room() # normal play situation elif session_state.ROOM.WINNER == _BLANK: # session_state.ROOM = deepcopy(session_state.ROOM) # print("View of human player: ", session_state.ROOM.BOARD.board_map) move = session_state.ROOM.BOARD.location_to_move((x, y)) session_state.ROOM.current_move = move session_state.ROOM.BOARD.do_move(move) # Gomoku Bot BOARD session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - move // _BOARD_SIZE - 1, move % _BOARD_SIZE) # # this move starts from left up corner (0,0), however, the move in the game starts from left bottom corner (0,0) session_state.ROOM.BOARD.board_map[x][y] = session_state.ROOM.TURN session_state.ROOM.COORDINATE_1D.append(x * _BOARD_SIZE + y) session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN) win, winner = session_state.ROOM.BOARD.game_end() if win: session_state.ROOM.WINNER = winner session_state.ROOM.HISTORY = ( session_state.ROOM.HISTORY[0] + int(session_state.ROOM.WINNER == _WHITE), session_state.ROOM.HISTORY[1] + int(session_state.ROOM.WINNER == _BLACK), ) session_state.ROOM.TIME = time.time() def forbid_click(x, y): # st.warning('This posistion has been occupied!!!!', icon="⚠️") st.error("({}, {}) has been occupied!!)".format(x, y), icon="🚨") # Draw board def draw_board(response: bool): """construct each buttons for all cells of the board""" if response and session_state.ROOM.TURN == _BLACK: # Another AI message.empty() with st.spinner('🔮✨ Waiting for AI response... ⏳🚀'): time.sleep(0.1) print("AI's turn") print("Below are current board under AI's view") if st.session_state['selected_oppo_model_'] != 'Gomoku Bot': move, simul_time = session_state.ROOM.MCTS_.get_action(session_state.ROOM.BOARD, return_time=True) else: move, simul_time = session_state.ROOM.MCTS_.get_action(return_time=True) session_state.ROOM.ai_simula_time_list_.append(simul_time) print("AI takes move: ", move) session_state.ROOM.current_move = move gpt_response = move gpt_i, gpt_j = gpt_response // _BOARD_SIZE, gpt_response % _BOARD_SIZE print("AI's move is located at ({}, {}) :".format(gpt_i, gpt_j)) move = session_state.ROOM.BOARD.location_to_move((gpt_i, gpt_j)) print("Location to move: ", move) # print("Location to move: ", move) # MCTS BOARD session_state.ROOM.BOARD.do_move(move) # Gomoku Bot BOARD session_state.ROOM.MCTS_dict_["Gomoku Bot"].board.put(_BOARD_SIZE - 1 - move // _BOARD_SIZE, move % _BOARD_SIZE) # session_state.ROOM.BOARD[gpt_i][gpt_j] = session_state.ROOM.TURN session_state.ROOM.COORDINATE_1D.append(gpt_i * _BOARD_SIZE + gpt_j) if not session_state.ROOM.BOARD.game_end()[0]: if session_state.USE_AIAID: copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts) _, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD) sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True) top_five_acts = [act for act, prob in sorted_acts_probs[:5]] top_five_probs = [prob for act, prob in sorted_acts_probs[:5]] else: top_five_acts = [] top_five_probs = [] # construction of clickable buttons for i, row in enumerate(session_state.ROOM.BOARD.board_map): # print("row:", row) for j, cell in enumerate(row): if ( i * _BOARD_SIZE + j in session_state.ROOM.COORDINATE_1D ): if i == gpt_i and j == gpt_j: # BOARD_PLATE[i][j].button( # session_state.Symbol[_NEW], # key=f"{i}:{j}", # args=(i, j), # on_click=forbid_click, # ) BOARD_PLATE[i][j].write( session_state.Symbol[_NEW] ) else: # disable click for GPT choices # BOARD_PLATE[i][j].button( # session_state.Symbol[cell], # key=f"{i}:{j}", # args=(i, j), # on_click=forbid_click # ) BOARD_PLATE[i][j].write( session_state.Symbol[cell] ) else: if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts and not \ session_state.ROOM.BOARD.game_end()[0]: # enable click for other cells available for human choices prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)] # BOARD_PLATE[i][j].button( # session_state.Symbol[cell] + f"({round(prob, 2)})", # key=f"{i}:{j}", # on_click=forbid_click, # args=(i, j), # ) BOARD_PLATE[i][j].write( session_state.Symbol[cell] ) else: # enable click for other cells available for human choices # BOARD_PLATE[i][j].button( # session_state.Symbol[cell], # key=f"{i}:{j}", # on_click=forbid_click, # args=(i, j), # ) BOARD_PLATE[i][j].write( session_state.Symbol[cell] ) message.markdown( 'AI agent has calculated its strategy, which takes {:.3e}s per simulation.'.format( simul_time), unsafe_allow_html=True ) LOG.subheader("Logs") # change turn session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN) # session_state.ROOM.WINNER = check_win() win, winner = session_state.ROOM.BOARD.game_end() if win: session_state.ROOM.WINNER = winner session_state.ROOM.HISTORY = ( session_state.ROOM.HISTORY[0] + int(session_state.ROOM.WINNER == _WHITE), session_state.ROOM.HISTORY[1] + int(session_state.ROOM.WINNER == _BLACK), ) session_state.ROOM.TIME = time.time() elif response and session_state.ROOM.TURN == _WHITE: # AI turn message.empty() with st.spinner('🔮✨ Waiting for AI response... ⏳🚀'): time.sleep(0.1) print("AI's turn") print("Below are current board under AI's view") if st.session_state['selected_oppo_model'] != 'Gomoku Bot': move, simul_time = session_state.ROOM.MCTS.get_action(session_state.ROOM.BOARD, return_time=True) else: move, simul_time = session_state.ROOM.MCTS.get_action(return_time=True) session_state.ROOM.ai_simula_time_list.append(simul_time) print("AI takes move: ", move) session_state.ROOM.current_move = move gpt_response = move gpt_i, gpt_j = gpt_response // _BOARD_SIZE, gpt_response % _BOARD_SIZE print("AI's move is located at ({}, {}) :".format(gpt_i, gpt_j)) move = session_state.ROOM.BOARD.location_to_move((gpt_i, gpt_j)) print("Location to move: ", move) # MCTS BOARD session_state.ROOM.BOARD.do_move(move) # Gomoku Bot BOARD session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - 1 - move // _BOARD_SIZE, move % _BOARD_SIZE) # session_state.ROOM.BOARD[gpt_i][gpt_j] = session_state.ROOM.TURN session_state.ROOM.COORDINATE_1D.append(gpt_i * _BOARD_SIZE + gpt_j) if not session_state.ROOM.BOARD.game_end()[0]: if session_state.USE_AIAID: copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts) _, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD) sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True) top_five_acts = [act for act, prob in sorted_acts_probs[:5]] top_five_probs = [prob for act, prob in sorted_acts_probs[:5]] else: top_five_acts = [] top_five_probs = [] # construction of clickable buttons for i, row in enumerate(session_state.ROOM.BOARD.board_map): # print("row:", row) for j, cell in enumerate(row): if ( i * _BOARD_SIZE + j in session_state.ROOM.COORDINATE_1D ): if i == gpt_i and j == gpt_j: # BOARD_PLATE[i][j].button( # session_state.Symbol[_NEW], # key=f"{i}:{j}", # args=(i, j), # on_click=forbid_click, # ) BOARD_PLATE[i][j].write( session_state.Symbol[_NEW] ) else: # disable click for GPT choices # BOARD_PLATE[i][j].button( # session_state.Symbol[cell], # key=f"{i}:{j}", # args=(i, j), # on_click=forbid_click # ) BOARD_PLATE[i][j].write( session_state.Symbol[cell] ) else: if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts and not \ session_state.ROOM.BOARD.game_end()[0]: # enable click for other cells available for human choices prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)] # BOARD_PLATE[i][j].button( # session_state.Symbol[cell] + f"({round(prob, 2)})", # key=f"{i}:{j}", # on_click=forbid_click, # args=(i, j), # ) BOARD_PLATE[i][j].write( session_state.Symbol[cell] ) else: # enable click for other cells available for human choices # BOARD_PLATE[i][j].button( # session_state.Symbol[cell], # key=f"{i}:{j}", # on_click=forbid_click, # args=(i, j), # ) BOARD_PLATE[i][j].write( session_state.Symbol[cell] ) message.markdown( 'AI agent has calculated its strategy, which takes {:.3e}s per simulation.'.format( simul_time), unsafe_allow_html=True ) LOG.subheader("Logs") # change turn session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN) # session_state.ROOM.WINNER = check_win() win, winner = session_state.ROOM.BOARD.game_end() if win: session_state.ROOM.WINNER = winner session_state.ROOM.HISTORY = ( session_state.ROOM.HISTORY[0] + int(session_state.ROOM.WINNER == _WHITE), session_state.ROOM.HISTORY[1] + int(session_state.ROOM.WINNER == _BLACK), ) session_state.ROOM.TIME = time.time() if not response or session_state.ROOM.WINNER != _BLANK: if session_state.ROOM.WINNER != _BLANK: print("Game over") for i, row in enumerate(session_state.ROOM.BOARD.board_map): for j, cell in enumerate(row): BOARD_PLATE[i][j].write( session_state.Symbol[cell], # key=f"{i}:{j}", ) # Game process control def game_control(): if session_state.ROOM.WINNER != _BLANK: draw_board(False) else: draw_board(True) if session_state.ROOM.WINNER != _BLANK or 0 not in session_state.ROOM.BOARD.board_map: ANOTHER_ROUND.button( "Play Next round!", on_click=another_round, help="Clear board and swap first player", ) # Infos def update_info() -> None: # Additional information if session_state.ROOM.WINNER != _BLANK: st.balloons() ROUND_INFO.write( f"#### **{_PLAYER_COLOR_AI_VS_AI[session_state.ROOM.WINNER]} WIN!**\n**Click buttons on the left for more plays.**" ) st.markdown("
", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) chart_data = pd.DataFrame(session_state.ROOM.ai_simula_time_list, columns=["Simulation Time"]) chart_placeholder.line_chart(chart_data) chart_placeholder = st.empty() while session_state.ROOM.WINNER == _BLANK: game_control() update_info() SCORE_PLATE[0].metric("Gomoku-Agent", session_state.ROOM.HISTORY[0]) SCORE_PLATE[1].metric("Black", session_state.ROOM.HISTORY[1]) if __name__ == "__main__": gomoku()